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NERSC: the Mission HPC Facility for DOE Office of Science 
Research

Bio	Energy,		Environment	 Compu2ng	

Par2cle	Physics,	Astrophysics	

Largest funder of physical 
science research in U.S.  

Nuclear	Physics	

6,000 users, 700 projects, 700 codes, 48 states, 40 countries, universities & national labs 

Materials,	Chemistry,	Geophysics	

Fusion	Energy,	Plasma	Physics	



 
 

 
 Current Production Systems

Edison
5,560 Ivy Bridge Nodes / 24 cores/node
 133 K cores, 64 GB memory/node
Cray XC30 / Aries Dragonfly interconnect
6 PB Lustre Cray Sonexion scratch FS

Cori Haswell Nodes
1,900 Haswell Nodes / 32 cores/node
 52 K cores, 128 GB memory/node
Cray XC40 / Aries Dragonfly interconnect
24 PB Lustre Cray Sonexion scratch FS
1.5 PB Burst Buffer



 
 

 
 Cori Xeon Phi KNL Nodes

Cray XC40 system with 9,300 Intel 
Knights Landing compute nodes 

68 cores / 96 GB DRAM / 16 GB HBM 

Support the entire Office of Science 
research community 

Begin to transition workload to energy 
efficient architectures 

Data Intensive Science Support 
10 Haswell processor cabinets (Phase 1)  

NVRAM Burst Buffer 1.5 PB, 1.5 TB/sec 

30 PB of disk, >700 GB/sec I/O bandwidth 

Integrated with Cori Haswell nodes on 
Aries network for data / simulation / 
analysis on one system 



 
 

 
 NERSC Exascale Scientific Application Program (NESAP)

Goal:	Prepare	DOE	Office	of	Science	users	for	many	core	

Partner	closely	with	~20	applica2on	teams	and	apply	lessons	learned	to	
broad	NERSC	user	community	

NESAP	ac2vi2es	include:	

Leverage	
community	

efforts	

Close	
interac4ons	
with	vendors	 Developer	

Workshops	

Early	
engagemen
t	with	code	

teams	
Postdoc	
Program	

	

Training	
and	online	
modules	

Early	access	
to	KNL	



NESAP - NERSC Exascale 
Science Apps Program



What is different about Cori?

Edison (“Ivy Bridge): 
 

●  5576 nodes 
●  12 physical cores per node 
●  24 virtual cores per node 
●  2.4 - 3.2 GHz 

 
●  8 double precision ops/cycle  

 
●  64 GB of DDR3 memory (2.5 

GB per physical core) 
 
●  ~100 GB/s Memory Bandwidth 

Cori (“Knights Landing”): 
 

●  9304 nodes 
●  68 physical cores per node 
●  272 virtual cores per node 
●  1.4 - 1.6 GHz 

 
●  32 double precision ops/cycle 

 
●  16 GB of fast memory 

         96GB of DDR4 memory 
 
●  Fast memory has 400 - 500 GB/s 



Code Coverage in NERSC App Readiness

Breakdown	of	Applica1on	Hours	
on	Hopper	and	Edison	



Timeline

Time	

Jan	
2014	

May	
2014	

Jan	
2015	

Jan	
2016	

Jan	
2017	

Prototype	Code	Teams	
(BerkeleyGW	/	Staff)	
	
-Prototype	good	prac4ces	for	
dungeon	sessions	and	use	of	on	
site	staff.	

Requirements	
Evalua4on	

Gather	Early	Experiences	
and	Op4miza4on	
Strategy	

Vendor	
General	
Training	

Vendor	
General	
Training	

NERSC	Led	OpenMP	and	Vectoriza4on	Training	(One	Per	Quarter)	

Post-Doc	Program	

NERSC	User	and	3rd	Party	Developer	Conferences	

Code	Team	Ac4vity	

Chip	Vendor	On-Site	Personnel	/	Dungeon	Sessions	

Center	of	Excellence	

White	Box	Access	 Delivery	



Optimizing Code For Cori is like:

A.  A	Staircase	?	
	
B.  A	Labyrinth	?	
	
C.  A	Space	Elevator?	

(More)		
Op*mized	Code	



-	12	-	

MPI/OpenMP	
Scaling	Issue	

IO	
boOlenecks	

Use	Edison	to	Test/
Add	OpenMP	

Improve	Scalability.	
Help	from	NERSC/
Cray	COE	Available.	

U2lize	High-Level	IO-
Libraries.	Consult	
with	NERSC	about	
use	of	Burst	Buffer.	

U4lize	
performant	/	
portable	
libraries	

The	Dungeon:	
Simulate	kernels	on	KNL.	
Plan	use	of	on	package	

memory,	vector	
instruc2ons.	

The	Ant	Farm!	
Communica4on	
dominates	
beyond	100	
nodes	

Code	shows	no	
improvements	
when	turning	
on	vectoriza4on	

OpenMP	
scales	
only	to	4	
Threads	

large	cache	
miss	rate	

50%	
Wall4me	is	
IO	

Compute	intensive	
doesn’t	vectorize	

Can	you	
use	a	
library?	

Create	micro-kernels	or	
examples	to	examine	

thread	level	performance,	
vectoriza4on,	cache	use,	

locality.	

Increase	
Memory	
Locality	

Memory	bandwidth	
bound	kernel	



It is easy to get bogged down in the weeds.  
 
How do you know what part of an HPC system 
limits performance in your application? 
 
How do you know what new KNL feature to 
target? 
 
Will vectorization help my performance? 
 
 
NERSC distills the process for users into 3 
important points for KNL: 
 

1.  Identify/exploit on-node shared-memory 
parallelism. 

 
2.  Identify/exploit on-core vector parallelism. 

 
3.  Understand and optimize memory 

bandwidth requirements with MCDRAM 
 
 

Optimizing Code is hard….  

... 



Using the Berkeley Lab Roofline Model to Frame Conversation 
With Users. 

 

Interaction with Intel staff at dungeon sessions 
have lead to: 
 

-  Optimization strategy around roofline model 
(Tutorial presented at IXPUG).  

-  Advancement of Intel tools (SDE, VTune, 
Advisor). 

 

We are actively working with Intel on “co-design” 
of performance tools (Intel Advisor)  
 

http://www.nersc.gov/users/application-performance/
measuring-arithmetic-intensity/ 

 
 
 
 

BGW 



Early KNL Single Node 
Results



NESAP Speedups



NESAP KNL vs Haswell



NESAP MCDRAM Effects



NESAP VPU Effects



WARP Example 
PIC Code, Current Deposition and Field Gathering 

dominate cycles 

Tiling Added in Pre-Dungeon Work 

Vectorization added in dungeon work 



MFDN Example 
Use case requires all memory on node (HBM + DDR) 
 
Two phases: 
 
1. Sparse Matrix-Matrix or Matrix-Vector multiplies 
2. Matrix Construction (Not Many FLOPs). 
 
Major breakthrough at Dungeon Session with Intel. 
Code sped up by > 2x in 3 days.  
 
Working closely with Intel and Cray staff on vector 
version of construction phase. For example, vector 
popcount. 

SPMM Performance on Haswell and KNL 



BerkeleyGW Optimization Example 
Optimization process for Kernel-C (Sigma code): 
 

1.  Refactor (3 Loops for MPI, OpenMP, Vectors) 
2.  Add OpenMP 
3.  Initial Vectorization (loop reordering, conditional 

removal) 
4.  Cache-Blocking 
5.  Improved Vectorization 
6.  Hyper-threading 



BerkeleyGW Example 



Early Cori at Scale Studies



What are the issues at scale?

•  Cori is based on the Cray XC architecture and uses the Aries high-speed 
interconnect

•  KNL performance per core is ~⅓ that of a Haswell/Broadwell Xeon core
•  Much of the communication stack, and in particular MPI, is done on the 

core
–  Cray MPI does support asynchronous progress with core 

specialization threads
–  Aries Block Transfer Engine also enables progress 
–  Aries does have a Collective Engine to offload MPI collectives, 

including Barrier, small message Bcast, Allreduce, etc.
•  Do we have to repartition our MPI+OpenMP codes differently when 

running on KNL vs Haswell?



What we are NOT going to present today

•  Cori priorities are bringing Haswell to production and 
stabilizing the hardware after integration of HSW & KNL

•  KNL NUMA cluster mode tradeoffs
–  E.g. Quad vs SNC2 vs SNC4

•  KNL memory mode tradeoffs
–  E.g. MCDRAM vs Cache

•  Highly optimized results
–  These are initial tests and observations





Edison (Ivy Bridge) and Cori (KNL) 
2 Nodes, 1 core per node 
Bandwidth 

Point-to-point (pp) 
Streaming (bw) 
Bi-directional streaming (bibw) 

Latency 
Point-to-Point 

Data collected in quad, flat mode 
 
KNL single core:  
Bandwidth is ~0.8x that of Ivy Bridge 
Latency is ~2x higher 

MPI Micro-benchmarks 

Using OSU MPI benchmark suite: http://mvapich.cse.ohio-state.edu/
benchmarks/ 



In order to support many-core processors such as 
KNL, the NIC needs to support high message 
rates at all message sizes 

 
Message rate benchmark at 64 nodes 

Plotting BW, more intuitive than rate 
3D stencil communication 
6 Peers per rank 
ranks per node varied from 1 to 64 
Consulting with Cray, need to use hugepages 

to avoid Aries TLB thrashing 
Data collected in quad, cache mode 

 
KNL vs Haswell:  
●  Haswell reaches ½ BW with smaller msg sizes 
●  Still optimizing tuning to resolve lower HSW BW at 

high rank counts 

But multi-core, high message 
rate traits are more interesting 

Using Sandia MPI benchmark suite: http://
www.cs.sandia.gov/smb/ 

Increasing Message 
Rate 

½ BW 



MILC - Quantum Chromodyamics (QCD) code 
#3 most used code at NERSC 
NESAP Tier 1 code 
Stresses computation and communication 
Weak and strong scaling needs 

MPI vs OpenMP tradeoff study 
3 scales, 432, 864 and 1728 nodes 
Fixed problem, 72^3x144 lattice 

Cori Speedup vs Edison 
1.5x at 432 nodes 
1.3x at 864 nodes 
1.1x at 1728 nodes 

Data collected in quad, cache mode 
 
Cori shows performance improvements at all scales 
and all decompositions 

How does all this translate to 
application performance? 



Edison (Ivy Bridge) and Cori (KNL) 
UPC uni-directional “put” Bw 

“Get” characteristics are similar 
Data collected in quad, flat mode 

 
Single core:  
Cori latency ~2x of Edison 
Cori bandwidth ~0.8x of Edison 
Same as MPI results  

Multi core: 
Similar BW profile at full core counts 
Peak message rate acheived at same 

message size (256 bytes)  

UPC Micro-benchmarks 

Using OSU MPI benchmark suite: http://mvapich.cse.ohio-state.edu/
benchmarks/ 

Edison 

Cori 



Hipmer is a De Novo Genome 
Assembly Code based on UPC 

Micro-benchmarks emulate key 
communication operators 

Random Get 
Traversal 
Construction 

Data collected in quad, cache mode 
 
16 Nodes, 32 threads/node 

Higher avg. small message latency 
on KNL 

Similar avg. large message 
bandwidth  

Hipmer Micro-benchmarks 

Cori/Haswell Cori/KNL 

Random Get 
Latency vs 

Message 
Size 

Traversal 
Latency vs 

Message 
Size 

Construction 
Bandwidth vs 

Message Size 



Parting observations

•  Although we are in the early stages of bringing up Cori’s KNL partition, it 
looks like codes will scale effectively to full size of the machine


•  Individual core performance is lower, as expected, but aggregate 

performance is on par or better than Edison and Cori/Haswell

•  Although we have not extensively compared the available clustering 

modes, we expect some combination of Quad/Flat and Quad/Cache to be 
used in early production



END, Thank you!



