
Many-Cores for the
Masses: Optimizing
Large Scale Science
Applications on Cori

Intel HPC Developer Conference
November, 2016

Richard Gerber  
Jack Deslippe 
Douglas Doerfler

NERSC

NERSC: the Mission HPC Facility for DOE Office of Science
Research

Bio	Energy,		Environment	 Compu2ng	

Par2cle	Physics,	Astrophysics	

Largest funder of physical
science research in U.S.

Nuclear	Physics	

6,000 users, 700 projects, 700 codes, 48 states, 40 countries, universities & national labs

Materials,	Chemistry,	Geophysics	

Fusion	Energy,	Plasma	Physics	

 Current Production Systems

Edison
5,560 Ivy Bridge Nodes / 24 cores/node
 133 K cores, 64 GB memory/node
Cray XC30 / Aries Dragonfly interconnect
6 PB Lustre Cray Sonexion scratch FS

Cori Haswell Nodes
1,900 Haswell Nodes / 32 cores/node
 52 K cores, 128 GB memory/node
Cray XC40 / Aries Dragonfly interconnect
24 PB Lustre Cray Sonexion scratch FS
1.5 PB Burst Buffer

 Cori Xeon Phi KNL Nodes

Cray XC40 system with 9,300 Intel
Knights Landing compute nodes

68 cores / 96 GB DRAM / 16 GB HBM

Support the entire Office of Science
research community

Begin to transition workload to energy
efficient architectures

Data Intensive Science Support
10 Haswell processor cabinets (Phase 1)

NVRAM Burst Buffer 1.5 PB, 1.5 TB/sec

30 PB of disk, >700 GB/sec I/O bandwidth

Integrated with Cori Haswell nodes on
Aries network for data / simulation /
analysis on one system

 NERSC Exascale Scientific Application Program (NESAP)

Goal:	Prepare	DOE	Office	of	Science	users	for	many	core	

Partner	closely	with	~20	applica2on	teams	and	apply	lessons	learned	to	
broad	NERSC	user	community	

NESAP	ac2vi2es	include:	

Leverage	
community	

efforts	

Close	
interac4ons	
with	vendors	 Developer	

Workshops	

Early	
engagemen
t	with	code	

teams	
Postdoc	
Program	

	

Training	
and	online	
modules	

Early	access	
to	KNL	

NESAP - NERSC Exascale
Science Apps Program

What is different about Cori?

Edison (“Ivy Bridge):

●  5576 nodes
●  12 physical cores per node
●  24 virtual cores per node
●  2.4 - 3.2 GHz

●  8 double precision ops/cycle

●  64 GB of DDR3 memory (2.5

GB per physical core)

●  ~100 GB/s Memory Bandwidth

Cori (“Knights Landing”):

●  9304 nodes
●  68 physical cores per node
●  272 virtual cores per node
●  1.4 - 1.6 GHz

●  32 double precision ops/cycle

●  16 GB of fast memory

 96GB of DDR4 memory

●  Fast memory has 400 - 500 GB/s

Code Coverage in NERSC App Readiness

Breakdown	of	Applica1on	Hours	
on	Hopper	and	Edison	

Timeline

Time	

Jan	
2014	

May	
2014	

Jan	
2015	

Jan	
2016	

Jan	
2017	

Prototype	Code	Teams	
(BerkeleyGW	/	Staff)	
	
-Prototype	good	prac4ces	for	
dungeon	sessions	and	use	of	on	
site	staff.	

Requirements	
Evalua4on	

Gather	Early	Experiences	
and	Op4miza4on	
Strategy	

Vendor	
General	
Training	

Vendor	
General	
Training	

NERSC	Led	OpenMP	and	Vectoriza4on	Training	(One	Per	Quarter)	

Post-Doc	Program	

NERSC	User	and	3rd	Party	Developer	Conferences	

Code	Team	Ac4vity	

Chip	Vendor	On-Site	Personnel	/	Dungeon	Sessions	

Center	of	Excellence	

White	Box	Access	 Delivery	

Optimizing Code For Cori is like:

A.  A	Staircase	?	
	
B.  A	Labyrinth	?	
	
C.  A	Space	Elevator?	

(More)		
Op*mized	Code	

-	12	-	

MPI/OpenMP	
Scaling	Issue	

IO	
boOlenecks	

Use	Edison	to	Test/
Add	OpenMP	

Improve	Scalability.	
Help	from	NERSC/
Cray	COE	Available.	

U2lize	High-Level	IO-
Libraries.	Consult	
with	NERSC	about	
use	of	Burst	Buffer.	

U4lize	
performant	/	
portable	
libraries	

The	Dungeon:	
Simulate	kernels	on	KNL.	
Plan	use	of	on	package	

memory,	vector	
instruc2ons.	

The	Ant	Farm!	
Communica4on	
dominates	
beyond	100	
nodes	

Code	shows	no	
improvements	
when	turning	
on	vectoriza4on	

OpenMP	
scales	
only	to	4	
Threads	

large	cache	
miss	rate	

50%	
Wall4me	is	
IO	

Compute	intensive	
doesn’t	vectorize	

Can	you	
use	a	
library?	

Create	micro-kernels	or	
examples	to	examine	

thread	level	performance,	
vectoriza4on,	cache	use,	

locality.	

Increase	
Memory	
Locality	

Memory	bandwidth	
bound	kernel	

It is easy to get bogged down in the weeds.

How do you know what part of an HPC system
limits performance in your application?

How do you know what new KNL feature to
target?

Will vectorization help my performance?

NERSC distills the process for users into 3
important points for KNL:

1.  Identify/exploit on-node shared-memory
parallelism.

2.  Identify/exploit on-core vector parallelism.

3.  Understand and optimize memory

bandwidth requirements with MCDRAM

Optimizing Code is hard….

...

Using the Berkeley Lab Roofline Model to Frame Conversation
With Users.

Interaction with Intel staff at dungeon sessions
have lead to:

-  Optimization strategy around roofline model
(Tutorial presented at IXPUG).

-  Advancement of Intel tools (SDE, VTune,
Advisor).

We are actively working with Intel on “co-design”
of performance tools (Intel Advisor)

http://www.nersc.gov/users/application-performance/
measuring-arithmetic-intensity/

BGW

Early KNL Single Node
Results

NESAP Speedups

NESAP KNL vs Haswell

NESAP MCDRAM Effects

NESAP VPU Effects

WARP Example
PIC Code, Current Deposition and Field Gathering

dominate cycles

Tiling Added in Pre-Dungeon Work

Vectorization added in dungeon work

MFDN Example
Use case requires all memory on node (HBM + DDR)

Two phases:

1. Sparse Matrix-Matrix or Matrix-Vector multiplies
2. Matrix Construction (Not Many FLOPs).

Major breakthrough at Dungeon Session with Intel.
Code sped up by > 2x in 3 days.

Working closely with Intel and Cray staff on vector
version of construction phase. For example, vector
popcount.

SPMM Performance on Haswell and KNL

BerkeleyGW Optimization Example
Optimization process for Kernel-C (Sigma code):

1.  Refactor (3 Loops for MPI, OpenMP, Vectors)
2.  Add OpenMP
3.  Initial Vectorization (loop reordering, conditional

removal)
4.  Cache-Blocking
5.  Improved Vectorization
6.  Hyper-threading

BerkeleyGW Example

Early Cori at Scale Studies

What are the issues at scale?

•  Cori is based on the Cray XC architecture and uses the Aries high-speed
interconnect

•  KNL performance per core is ~⅓ that of a Haswell/Broadwell Xeon core
•  Much of the communication stack, and in particular MPI, is done on the

core
–  Cray MPI does support asynchronous progress with core

specialization threads
–  Aries Block Transfer Engine also enables progress
–  Aries does have a Collective Engine to offload MPI collectives,

including Barrier, small message Bcast, Allreduce, etc.
•  Do we have to repartition our MPI+OpenMP codes differently when

running on KNL vs Haswell?

What we are NOT going to present today

•  Cori priorities are bringing Haswell to production and
stabilizing the hardware after integration of HSW & KNL

•  KNL NUMA cluster mode tradeoffs
–  E.g. Quad vs SNC2 vs SNC4

•  KNL memory mode tradeoffs
–  E.g. MCDRAM vs Cache

•  Highly optimized results
–  These are initial tests and observations

Edison (Ivy Bridge) and Cori (KNL)
2 Nodes, 1 core per node
Bandwidth

Point-to-point (pp)
Streaming (bw)
Bi-directional streaming (bibw)

Latency
Point-to-Point

Data collected in quad, flat mode

KNL single core:
Bandwidth is ~0.8x that of Ivy Bridge
Latency is ~2x higher

MPI Micro-benchmarks

Using OSU MPI benchmark suite: http://mvapich.cse.ohio-state.edu/
benchmarks/

In order to support many-core processors such as
KNL, the NIC needs to support high message
rates at all message sizes

Message rate benchmark at 64 nodes

Plotting BW, more intuitive than rate
3D stencil communication
6 Peers per rank
ranks per node varied from 1 to 64
Consulting with Cray, need to use hugepages

to avoid Aries TLB thrashing
Data collected in quad, cache mode

KNL vs Haswell:
●  Haswell reaches ½ BW with smaller msg sizes
●  Still optimizing tuning to resolve lower HSW BW at

high rank counts

But multi-core, high message
rate traits are more interesting

Using Sandia MPI benchmark suite: http://
www.cs.sandia.gov/smb/

Increasing Message
Rate

½ BW

MILC - Quantum Chromodyamics (QCD) code
#3 most used code at NERSC
NESAP Tier 1 code
Stresses computation and communication
Weak and strong scaling needs

MPI vs OpenMP tradeoff study
3 scales, 432, 864 and 1728 nodes
Fixed problem, 72^3x144 lattice

Cori Speedup vs Edison
1.5x at 432 nodes
1.3x at 864 nodes
1.1x at 1728 nodes

Data collected in quad, cache mode

Cori shows performance improvements at all scales
and all decompositions

How does all this translate to
application performance?

Edison (Ivy Bridge) and Cori (KNL)
UPC uni-directional “put” Bw

“Get” characteristics are similar
Data collected in quad, flat mode

Single core:
Cori latency ~2x of Edison
Cori bandwidth ~0.8x of Edison
Same as MPI results

Multi core:
Similar BW profile at full core counts
Peak message rate acheived at same

message size (256 bytes)

UPC Micro-benchmarks

Using OSU MPI benchmark suite: http://mvapich.cse.ohio-state.edu/
benchmarks/

Edison

Cori

Hipmer is a De Novo Genome
Assembly Code based on UPC

Micro-benchmarks emulate key
communication operators

Random Get
Traversal
Construction

Data collected in quad, cache mode

16 Nodes, 32 threads/node

Higher avg. small message latency
on KNL

Similar avg. large message
bandwidth

Hipmer Micro-benchmarks

Cori/Haswell Cori/KNL

Random Get
Latency vs

Message
Size

Traversal
Latency vs

Message
Size

Construction
Bandwidth vs

Message Size

Parting observations

•  Although we are in the early stages of bringing up Cori’s KNL partition, it
looks like codes will scale effectively to full size of the machine

•  Individual core performance is lower, as expected, but aggregate

performance is on par or better than Edison and Cori/Haswell

•  Although we have not extensively compared the available clustering

modes, we expect some combination of Quad/Flat and Quad/Cache to be
used in early production

END, Thank you!

