=R A"

MPI Environment
(Cray XT Systems)

Customer Documentation and Training

MP| Message Protocols s

 Message consists of envelope and data

* Envelope contains tag, communicator, length, source
information, plus implementation private data

— vshort
* Message data is sent with the envelope
» Default is 1024 bytes, max is 16,384 (user tunable)

- short (Eager)

» Message is sent, based on the expectation that the destination
can store; if no matching receive exists, the receiver must buffer
or drop

» Default is 128,000 bytes (user tunable)
- Long (Rendezvous)
= Only the envelope is sent (and buffered) immediately

» Message is not sent until the destination posts a receive
» Any message longer than short

Messages and the Cray XT System SR

— All short Cray XT messages are eager
= MPICH_MAX SHORT_MSG_SIZE defines the maximum size of a
short message (the default size is 128,000 bytes)

- For long messages, a small 8-byte message is sent to
the receiver, which contains sufficient information for
the receiver to pull the message data when a matching
receive is posted

— However, if the MPICH _PTL_EAGER_LONG environment
variable is set, the sender sends long messages via the
eager (short) protocol

* This is good if application logic ensures that matching receives
are pre-posted

Where Do Unexpected Messages G0? ===

— There are three buffers for unexpected eager
messages (20M each by default). Portals delivers
unexpected messages (< 128KB) to these buffers.

- Both long and short unexpected messages generate
entries in the unexpected event queue (EQ)

— When the process posts areceive, the MPI library
checks against unexpected messages and, if it finds a
short match, copies data from buffer. If it matches an
unexpected long message, it pulls data from the
sender.

— Therefore, it Is Important to prepost receives

MPI Inside the SeaStar

Match Entries created by
application pre-posting of

Ay

Match Entries posted by MPI to handle unexpected short and
long messages

Portals matches incoming messages with
pre-posted messages and delivers messags
data directly into user buffer.

A 4

Eager short Eager short .
message message ong
ME —» ME message
ME
A 4) 4
Unexpeqted long
message buffers
Portald Event
Short un- Short un- Queue events only
expected expected
buffer buffer
b

v Unexpected EQ

|
- |
Recelves :
|
|
Pre-posted Pre-posted | | Eziigzggrt
. ME ME |1, ME
msgX msgY |
|
|
Incoming 4 ! I |
message |
App |
buffer |
for |
bAuppr N I Short un-
or I expected
msgX : buffer
|
| N
|
|
|
|
|
|
|
1

Other EQ

Unexpected short message buffers

An unexpected message generates two
entries on the unexpected event Queue

Cray XT MPI Tunables SFRasy

MPICH_UNEX_ BUFFER SIZE

= Qverrides the size of the buffers that are allocated to the MPI
unexpected receive queue; default is 60 MB

» If you increase MPICH_MAX_ SHORT_MSG_SIZE, increase this
one as well; it is the total size of the buffers that hold
unexpected short messages

MPICH PTL UNEX_ EVENTS

* The number of event queue entries for unexpected MPI point-to-
point messages. Defaults to 20480

MPICH PTL OTHER EVENTS

* The number of entries in the event queue that is used to receive

all other (not unexpected point-to-point) MPI-related Portals
events

Cray XT MPI Tunables SFRasy

MPICH_ALLTOALLVW_ _FCSIZE

* The algorithm for flow-controlled versions of the
MPICH_ALLTOALLV and MPICH_ALLTOALLW is enabled when the

size of the communicator is greater than this variable; default is
120

MPICH_ALLTOALLVW_ SENDWIN,
MPICH_ALLTOALLVW_RECVWIN

= When flow control is enabled, send and receive windows are
established that can allow maximums of 80 Isend operations

and 100 Irecv operations; use these variables to change these
numbers

= Also applies to medium-size (256<n<32768 bytes)
MP1_ALLTOALL operations

Cray XT MPI Tunables SRasr

MP1_COLL OPT ON

» Enables collective optimizations that use non default
architecture-specific algorithms for some MPI collective
operations

MPICH_FAST MEMCPY
* Enables an optimized memcpy routine in MPI
MPICH_MAX_VSHORT MSG SIZE

» Specifies in bytes the maximum size of a message to be
considered for the vshort path; default is 1024

MPI1CH_VSHORT_ BUFFERS

= Specifies the number of 16,384 byte buffers to be preallocated
for the sending side buffering of messages for the vshort

protocol; default is 32

MPI Rank Reordering cEmas

— The default ordering for multi-core nodes is SMP

—~ MPICH_RANK REORDER_METHOD is an environment

variable which allows users to select an alternative
ordering.

— To display the MPI rank placement and launching
Information, set PMI_DEBUG to 1.

MPI Rank Reordering cEmas

« MPICH_RANK_REORDER_METHOD accepts the
following values:

1. Round-robin

2. Specifies SMP-style placement. For a multi-core node, this places
sequential MPI ranks on the same node. For example, for an 8-
process MPIjob on dual-core nodes, the placement would be:

NODE 0 1 2 3
RANK 0&1 2&3 4&5 6&7

3. Specifies folded-rank placement. Instead of rank placement
starting over on the first node when half of the MPI processes
have been placed, this option places the N/2 process on the last
node, going back to the initial node. For example, for an 8-
process job on dual-core nodes, the placement would be:

NODE 0 1 2 3
RANK 0&7 1&6 2&5 3&4

4. Specifies a custom rank placement defined in the file named
MPICH RANK_ ORDER.

MPI| Reordering - sample program

Ay

#include <mpi.h>

#include <stdlib.h>

#include <stdio.h>

int main(int ac, char**av) {
int 1, me ,np, nameSize;
char myProcName[MPI_MAX PROCESSOR_NAME];
MPI _Init(&ac, &av);
MP1_Comm_rank(MP1_COMM_WORLD, &me);
MPI_Comm_size(MPI_COMM_WORLD, &np);
MP1_Get_processor_name(myProcName, &nameSize);
for (1=0; 1<np; ++1) {

it (1==me) {

fflush(stdout);

}
MPI1_Barrier(MP1_COMM_WORLD);

+
MPI_Finalize();
exi1t(0);

printf(""'rank = %d processor = %s\n'',me,myProcName);

MP| Rank Reordering - SMP rank

% export MPICH RANK REORDER METHOD=1
% export PMI_DEBUG=1
% aprun -n 8 ./MP1_where
rank = 0 processor = nid00346
rank = 1 processor = nid00346

rank = 2 processor = nid00347
rank = 3 processor = nid00347
rank = 4 processor = nid00348
rank = 5 processor = nid00348
rank = 6 processor = nid00349
rank = 7 processor = nid00349

MP| Rank Reordering - folded rank

% export MPICH RANK REORDER METHOD=2
% aprun -n 8 ./MP1_where
rank = 0 processor = ni1d00346

rank = 1 processor = ni1d00347
rank = 2 processor = ni1d00348
rank = 3 processor = ni1d00349
rank = 4 processor = ni1d00349
rank = 5 processor = ni1d00348
rank = 6 processor = ni1d00347
rank = 7 processor = ni1d00346

Ay

MP| Rank Reordering - custom rank

rank

rank

rank =
rank =
rank =
rank =
rank =
rank =

~NOo o0b~h wWDNPEO

pPprocessor
processor

processor =
processor =
processor =
processor =
processor =

processor

% cat MPICH_RANK ORDER

0,2,1,3,4,6,5,7
% export MPICH RANK REORDER METHOD=3
% aprun -n 8 _/MPl_where

n1d00346
n1d00347
n1d00346
n1d00347
n1d00348
n1d00349
n1d00348
n1d00349

Ay

Timing With MPI_Wtime s

e Using MPI1_WTIME

-~ You can compute the elapsed time between two points
In an MPI program by using MP1_Wtime

-~ MP1_Wtime granularity is 0.000001 sec. (see
MP1_Wtick). You cannot time any period that is
smaller than a microsecond with it.

— The clock in each node is independent of the clocks in
other nodes

- MPI_WTIME_IS_GLOBAL has value=1if MP1_WTIME is
globally synchronized
» Defaultis O

