
MPI Environment
(Cray XT Systems)

Customer Documentation and Training

MPI Message Protocols

• Message consists of envelope and data
Envelope contains tag, communicator, length, source
information plus implementation private datainformation, plus implementation private data

– vshort
Message data is sent with the envelope
Default is 1024 bytes, max is 16,384 (user tunable)

– short (Eager)
M i t b d th t ti th t th d ti tiMessage is sent, based on the expectation that the destination
can store; if no matching receive exists, the receiver must buffer
or drop
D f lt i 128 000 b t (t bl)Default is 128,000 bytes (user tunable)

– Long (Rendezvous)
Only the envelope is sent (and buffered) immediatelyOnly the envelope is sent (and buffered) immediately
Message is not sent until the destination posts a receive
Any message longer than short10/18/2010 2Cray Private

Messages and the Cray XT System

– All short Cray XT messages are eager
MPICH_MAX_SHORT_MSG_SIZE defines the maximum size of a
short message (the default size is 128 000 bytes)short message (the default size is 128,000 bytes)

– For long messages, a small 8-byte message is sent to
the receiver, which contains sufficient information for
the receiver to pull the message data when a matching
receive is posted
However if the MPICH PTL EAGER LONG environment– However, if the MPICH_PTL_EAGER_LONG environment
variable is set, the sender sends long messages via the
eager (short) protocol

This is good if application logic ensures that matching receives
are pre-posted

10/18/2010 3Cray Private

Where Do Unexpected Messages Go?

– There are three buffers for unexpected eager
messages (20M each by default). Portals delivers
unexpected messages (< 128KB) to these buffersunexpected messages (< 128KB) to these buffers.

– Both long and short unexpected messages generate
entries in the unexpected event queue (EQ)p q ()

– When the process posts a receive, the MPI library
checks against unexpected messages and, if it finds a
short match copies data from buffer If it matches anshort match, copies data from buffer. If it matches an
unexpected long message, it pulls data from the
sender.

– Therefore, it is important to prepost receives

10/18/2010 4Cray Private

MPI Inside the SeaStar
Match Entries created by Match Entries posted by MPI to handle unexpected short and

LongPre posted Pre posted
Eager short Eager short Eager short

application pre-posting of
Receives

Match Entries posted by MPI to handle unexpected short and
long messages

Long
message

ME

Pre-posted
ME

msgX

Pre-posted
ME

msgY

message
ME

message
ME

message
ME

App

App
buffer

for
msgY Sh Sh Sh

Incoming
message

Unexpected long
message buffers

Portals Event
Queue events onlyApp

buffer
for

msgX

msgY Short un-
expected
buffer

Short un-
expected
buffer

Short un-
expected
buffer

Queue events only

Unexpected short message buffers

An unexpected message generates two
entries on the unexpected event Queue

Portals matches incoming messages with
pre-posted messages and delivers message
data directly into user buffer.

Unexpected EQ

Other EQ10/18/2010 5Cray Private

Cray XT MPI Tunables

MPICH_UNEX_BUFFER_SIZE
Overrides the size of the buffers that are allocated to the MPI
unexpected receive queue; default is 60 MBunexpected receive queue; default is 60 MB
If you increase MPICH_MAX_SHORT_MSG_SIZE, increase this
one as well; it is the total size of the buffers that hold
unexpected short messagesunexpected short messages

MPICH_PTL_UNEX_EVENTS
The number of event queue entries for unexpected MPI point-to-
point messages. Defaults to 20480

MPICH_PTL_OTHER_EVENTS
The number of entries in the event queue that is used to receiveThe number of entries in the event queue that is used to receive
all other (not unexpected point-to-point) MPI-related Portals
events

10/18/2010 6Cray Private

Cray XT MPI Tunables

MPICH_ALLTOALLVW_FCSIZE
The algorithm for flow-controlled versions of the
MPICH ALLTOALLV and MPICH ALLTOALLW is enabled when theMPICH_ALLTOALLV and MPICH_ALLTOALLW is enabled when the
size of the communicator is greater than this variable; default is
120

MPICH ALLTOALLVW SENDWINMPICH_ALLTOALLVW_SENDWIN,
MPICH_ALLTOALLVW_RECVWIN

When flow control is enabled, send and receive windows are
established that can allow maximums of 80 Isend operations
and 100 Irecv operations; use these variables to change these
numbers
Also applies to medium-size (256<n<32768 bytes)
MPI_ALLTOALL operations

10/18/2010 7Cray Private

Cray XT MPI Tunables

MPI_COLL_OPT_ON
Enables collective optimizations that use non default
architecture specific algorithms for some MPI collectivearchitecture-specific algorithms for some MPI collective
operations

MPICH_FAST_MEMCPY
Enables an optimized memcpy routine in MPI

MPICH_MAX_VSHORT_MSG_SIZE
Specifies in bytes the maximum size of a message to beSpecifies in bytes the maximum size of a message to be
considered for the vshort path; default is 1024

MPICH_VSHORT_BUFFERS
Specifies the number of 16,384 byte buffers to be preallocated
for the sending side buffering of messages for the vshort
protocol; default is 32

10/18/2010 8Cray Private

MPI Rank Reordering

– The default ordering for multi-core nodes is SMP
– MPICH_RANK_REORDER_METHOD is an environment

i bl hi h ll t l t lt tivariable which allows users to select an alternative
ordering.

– To display the MPI rank placement and launchingTo display the MPI rank placement and launching
information, set PMI_DEBUG to 1.

10/18/2010 9Cray Private

MPI Rank Reordering

• MPICH_RANK_REORDER_METHOD accepts the
following values:
R d bi1. Round-robin

2. Specifies SMP-style placement. For a multi-core node, this places
sequential MPI ranks on the same node. For example, for an 8-

MPI j b d l d th l t ld bprocess MPI job on dual-core nodes, the placement would be:
NODE 0 1 2 3
RANK 0&1 2&3 4&5 6&7

3. Specifies folded-rank placement. Instead of rank placement
starting over on the first node when half of the MPI processes
have been placed, this option places the N/2 process on the last
node going back to the initial node For example for an 8node, going back to the initial node. For example, for an 8-
process job on dual-core nodes, the placement would be:

NODE 0 1 2 3
RANK 0&7 1&6 2&5 3&4RANK 0&7 1&6 2&5 3&4

4. Specifies a custom rank placement defined in the file named
MPICH_RANK_ORDER.

10/18/2010 10Cray Private

MPI Reordering - sample program

#include <mpi.h>
#include <stdlib.h>
#include <stdio.h>
int main(int ac, char**av) {
int i, me ,np, nameSize;
char myProcName[MPI_MAX_PROCESSOR_NAME];
MPI Init(&ac, &av);_ (,);
MPI_Comm_rank(MPI_COMM_WORLD, &me);
MPI_Comm_size(MPI_COMM_WORLD, &np);
MPI_Get_processor_name(myProcName, &nameSize);
f (i 0 i< ++i) {for (i=0; i<np; ++i) {
if (i==me) {
printf("rank = %d processor = %s\n",me,myProcName);
fflush(stdout);

}
MPI_Barrier(MPI_COMM_WORLD);

}
MPI Finalize();MPI_Finalize();
exit(0);

}
10/18/2010 11Cray Private

MPI Rank Reordering - SMP rank

% export MPICH_RANK_REORDER_METHOD=1
% export PMI_DEBUG=1

% aprun -n 8 ./MPI_where
rank = 0 processor = nid00346

k 1 id00346rank = 1 processor = nid00346
rank = 2 processor = nid00347
rank = 3 processor = nid00347
rank = 4 processor = nid00348rank = 4 processor = nid00348
rank = 5 processor = nid00348
rank = 6 processor = nid00349
rank = 7 processor = nid00349a p ocesso d003 9

10/18/2010 12Cray Private

MPI Rank Reordering - folded rank

% export MPICH_RANK_REORDER_METHOD=2
% aprun -n 8 ./MPI wherep / _

rank = 0 processor = nid00346
rank = 1 processor = nid00347
rank = 2 processor = nid00348
rank = 3 processor = nid00349
rank = 4 processor = nid00349
rank = 5 processor = nid00348
rank = 6 processor = nid00347
rank = 7 processor = nid00346

10/18/2010 13Cray Private

MPI Rank Reordering - custom rank

% cat MPICH_RANK_ORDER
0,2,1,3,4,6,5,7

% export MPICH_RANK_REORDER_METHOD=3
% aprun -n 8 ./MPI_where
rank = 0 processor = nid00346
rank 1 processor nid00347rank = 1 processor = nid00347
rank = 2 processor = nid00346
rank = 3 processor = nid00347
rank = 4 processor = nid00348rank 4 processor nid00348
rank = 5 processor = nid00349
rank = 6 processor = nid00348
rank = 7 processor = nid00349p

10/18/2010 14Cray Private

Timing With MPI_Wtime

• Using MPI_WTIME

– You can compute the elapsed time between two points
i MPI b i MPI Wtiin an MPI program by using MPI_Wtime

– MPI_Wtime granularity is 0.000001 sec. (see
MPI Wtick). You cannot time any period that isMPI_Wtick). You cannot time any period that is
smaller than a microsecond with it.

– The clock in each node is independent of the clocks in
other nodes

– MPI_WTIME_IS_GLOBAL has value=1 if MPI_WTIME is
globally synchronizedglobally synchronized

Default is 0

10/18/2010 15Cray Private

