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Introduction

Animation from business insider Particle colliders

https://www.businessinsider.com.au/what-happens-inside-a-particle-collider-2015-4


A generic collider physics workflow
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Picture from arXiv:1411.4085

Detector response

Data analysis

https://arxiv.org/pdf/1411.4085


A generic collider physics workflow
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Picture from arXiv:1411.4085

Detector response

Data analysis

Unfolding

Surrogate Anomaly detection

https://arxiv.org/pdf/1411.4085


Surrogate modeling for detector simulation
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▰ Detector simulation is computationally expensive:
▻ Full detector simulation of a particle can take up to a minute and we 

still need billions of particles simulated
▰ For previous LHC runs, detector simulation used around 40% of all 

computing resources and may go beyond the available budget for future 
runs



Surrogate modeling for detector simulation
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▰ Replace the calorimeter simulation with a surrogate model 
that learns to reproduce the detector response

▰ Use new state-of-the-art generative model based on 
diffusion models: data is slowly perturbed by a noise and 
the network learns how to perform denoising



Surrogate modeling for detector simulation
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▰ Train on Perlmutter using 16 GPUs at a time on datasets of 
different number of pixels:
▻ 300
▻ 6500
▻ 46000

▰ Approximately 4 hours to train the model
▰ Accurate representation of the full simulation
▰ Around 10 times faster than full simulation: can still get faster 

as speed is a general challenge for diffusion-based models

Full 
simulation

Generated



Detector unfolding
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▰ The opposite problem is how to report physics 
measurements that are corrected for detector 
effects: Unfolding

▰ Easier to compare between different theories:
▻ Don’t require theorists to have expert detector 

knowledge to compare their predictions
▻ Easier to maintain and incorporate new 

calibration routines for detector simulation
▰ Can also be seen as a deconvolution problem
▰ Standard methods require histograms of observables 

used as inputs
▻ Can only correct 1 distribution at a time
▻ The histogram cannot be modified without 

redoing the full measurement

J. High Energ. Phys. 2019, 149 (2019).

We have this But want this



Omnifold*
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ML is used to overcome these limitations
2 step iterative approach
▰ Simulated events after detector interaction are 

reweighted to match the data
▰ Create a “new simulation” by transforming 

weights to a proper function of the generated 
events

Machine learning is used to approximate 2 likelihood 
functions:
▰ reconstructed simulation to Data reweighting
▰ Previous and new generated reweighting

* Andreassen et al. PRL 124, 182001 
(2020)

* Andreassen et al. PRL 124, 
182001 (2020)
For unfolding using invertible 
networks see:

● SciPost Phys. 9 (2020) 
074 e-Print: 2006.06685

https://arxiv.org/abs/2006.06685


Experimental setup
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Using data collected by the H1 
Experiment during 2006 and 
2007
▰ Running on Perlmutter 

with 128 GPUs
▰ Takes about 2 hours to 

run
▰ Additional trainings 

required to estimate 
uncertainties: full 
measurement can be 
performed in a few days 

27.5 GeV e+-  (k) 920 GeV p (P)

Q2 = - q2

 y = Pq / pk

 P: incoming proton 4-vector
 k: incoming electron 4-vector
 q=k-k’ : 4-momentum transfer



Multi-differential

11V. Mikuni DIS2022

Simultaneous unfolding of 30 
observables!
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Picture from: https://www.symmetrymagazine.org/article/december-2013/four-things-you-might-not-know-about-dark-matter

https://www.symmetrymagazine.org/article/december-2013/four-things-you-might-not-know-about-dark-matter


Anomaly detection
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▰ How to look for new physics processes without knowing how they should look like?
▰ New physics should be rare: Anomaly detection
▰ Even if you are able to identify “anomalies”, how to interpret the observation?
▰ A good method of anomaly detection requires:

▻ A method that identifies particle collisions that seem to be anomalous
▻ Able to provide context: how should false positives look like?

= or



Decorrelated autoencoders
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▰ Anomaly detection based on autoencoders: 
algorithm learns how to compress and 
decompress the data using background events

▰ Events that are poorly decompressed are often 
rare and point to anomalous events

R1(x) R2(x)

▰ Train multiple autoencoders such that 
their reconstruction is independent for the 
background



Anomaly detection performance
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Use the independent reconstructions to 
estimate the number of false positives
▰ Significance: how often your 

observation is compatible with the 
no new physics hypothesis

▰ 1: 1 in 3, 2: 1 in 22, 3: 1 in 140, 4: 1 
in 1M, 5: 1 in 3.5 million

No anomalies

Other colors: 
datasets with 
0.1% anomalies 
and 99.9% 
standard physics 
processes



Conclusions 
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▰ Machine learning unfolding overcomes the limitations of standard unfolding:
▻ No histogram dependence
▻ Able to use multiple variables at a time
▻ Showcase the method using real particle collisions
▻ More info here: H1prelim-22-034

▰ Design a method for anomaly detection using 
decorrelated autoencoders

▰ Provides a precise estimation of the false positive rate 
for observations that are considered anomalous

▰ More info here: Phys. Rev. D

▰ Full detector simulation is expensive and not easily scalable
▻ Surrogate models using ML can create simulations faster and with 

similar precision
▻ Use diffusion generative models for the first time in particle physics
▻ More info here: arXiv

https://www-h1.desy.de/h1/www/publications/htmlsplit/H1prelim-22-034.long.html
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.105.055006
https://arxiv.org/abs/2206.11898
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THANKS!
Any questions?
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BACKUP
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Picture from: https://www.symmetrymagazine.org/article/december-2013/four-things-you-might-not-know-about-dark-matter

https://www.symmetrymagazine.org/article/december-2013/four-things-you-might-not-know-about-dark-matter
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Surrogate model for 
detector simulation



Calorimeter shower generation
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Very simple U-NET model used to build the score function
▰ Lots of new developments over the years, adding attention between layers, 

additional skip connections, but kept it simple for this application
▰ Conditional information is added to convolutional layers as a bias term



Results

23Dataset 3

Dataset 2

Dataset 1

▰ Deposited energy (sum of voxels) 
vs. the conditional energy

▰ Good agreement between full 
simulation and different diffusion 
models

▰ VE shows the same shift observed 
for dataset 3



Results
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Dataset 3

Dataset 2

Full simulation

Weird shapes are a 
result of the coordinate 
transformation

VP SDE
subVP SDE

VE SDE
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Unfolding



Omnifold
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Reco level

Generator level

MC

MCData

Data



Omnifold
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Reco level

Generator level

MC

MCData

Data Step 1:
● Train a classifier to separate data from MC events
● Reweight reco level MC with weights:

W(reco) = 
pData(reco)/pMC(reco) 

Iteration 1



Omnifold
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Reco level

Generator level

MC

MCData

Data Step 2:
● Pull weights from step 1 to generator level events
● Train a classifier to separate initial MC at gen level 

from reweighted MC events
● Define a new simulation with weights that are a 

proper function of gen level kinematics

MC reweighted

W(gen) = pweighted 

MC(gen)/pMC(gen) 

Iteration 1



Omnifold
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Reco level

Generator level

MC

MCData

Data Start again from step 1 using the new simulation after 
pushing the weights from step 2
● Guaranteed convergence  to the maximum 

likelihood estimate of the generator-level 
distribution when number of iterations go to infinite

● In practice, less than 10 iterations are enough to 
achieve convergence

Iteration 1



Omnifold
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Reco level

Generator level

MC

MCData

Data Start again from step 1 using the new simulation after 
pushing the weights from step 2
● Guaranteed convergence  to the maximum 

likelihood estimate of the generator-level 
distribution when number of iterations goes to 
infinite

● In practice, less than 10 iterations are enough to 
achieve convergence

Iteration N



31

Anomaly detection



What is an anomaly anyway?
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▰ Anomaly detection is often associated to outlier detection
▰ Our application is a bit different: a single particle collision is not 

very informative, only an ensemble of events are!

▰ There are also examples of 
outlier detection in HEP such 
as detector quality monitoring



ABCD
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ABCD method is a popular choice of 
data-driven background estimation
▰ Requires 2 

background-independent 
distributions

▰ Both distributions should 
provide signal sensitivity to 
avoid contamination

▰ Background in the 
signal-enriched region is 
described by the other 
background-dominated regions

 SR=CR1*CR3/CR2


