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Workflow needs

Application Drivers

Applications that are many-task in nature: parameters sweeps, UQ, inverse modeling,
and data-driven applications

Analysis of capability application outputs

Analysis of stored or collected data

Increase productivity at major research instrumentation
Urgent computing

These applications are all many-task in nature

Requirements

Usability and ease of workflow expression

Ability to leverage complex architecture of HPC and HTC systems (fabric, scheduler,
hybrid node and programming models), individually and collectively

Ability to integrate high-performance data services and volumes
Make use of the system task rate capabilities from clusters to extreme-scale systems

Approach

— A programming model for programming in the large




When do you need HPC workflow?

Example application: protein-ligand docking for drug screening

O(100K)
O(10) proteins X drug
implicated in a disease candidates

=1M
docking
tasks...

...then hundreds of

detailed MD
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Expressing this many task workflow in Swift

For protein docking workflow:

foreach p, 1 i1n proteins {
foreach ¢, jJ 1n ligands {
(structure[i,]], log[i,]]) =
dock(p, ¢, minRad, maxRad);

}

scatter plot = analyze(structure)

To run:

swift —site tukey,blues dock.swift

S



Swift enables execution of simulation campaigns across
multiple HPC and cloud resources

<

Data servers

foresch g, 1 in geos
lorimage(i] = colorMonis(g)s
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Swift host: login node, laptop, ...

%

Google Compute Engine
Cloud resources

Petascale systems
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The Swift runtime system has drivers and algorithms to efficiently support and aggregate diverse runtime environments




Comparison of parallel programming models

MPI
— Each process has a persistent state for the life of the application
— Data is exchanged via messages
— Program an app by “domain decomposition”

Shared Memory
— Tasks need not be persistent
— Tasks initiated explicitly (eg pthreads) or implicitly (eg by OpenMP directives)
— Challenge is to assure mutual exclusion and avoid deadlock
— Limited to running within a single node, or use hybrid approach for multi-node
Workflow
— Tasks run to completion
— Data is exchanged on task initiation and completion
— Used to coordinate execution of multiple serial or parallel apps
Hybrid
— MPIl and/or OpenMPI apps within a many-task workflow



Swift in a nutshell

= Data types = Structured data
string s = “hello world”; image A[]<array mapper..>;
int i = 4; B
int A[];
= Loops
= Mapped data types foreach f,1 in A {
type image; B[1] = convert (A[1l]):
image filel<%“snapshot.jpg”>; }

= Mapped functions
app (file o) myapp(file f, int i) © Data flow
{ mysim *-s" 1 @f Go; | analyze (B[0], B[1]);

: - analyze (B[2], B[3]);
= Conventional expressions yze (BL2] [3])

1f (x == 3) {
y = X+2;
s = @strcat (“y: 7, vy);

Swift: A language for distributed parallel scripting, J. Parallel Computing, 2011
S



Encapsulation enables distributed
parallelism

Files expected
or produced
by application program

Encapsulation is the key to transparent distribution,
parallelization, and automatic provenance capture

Critical in a world of scientific, engineering, technical
and analytical applications

10



app( ) functions specify command line arg passing

To run:
psim -s 1ubq.fas -pdb p -t 100.0 -d 25.0 >log

25.0 In Swift code:

app (PDB pg, Text log) predict (Protein seq,
Float t, Float dt)
{

psim "-c" "-s" @pseq.fasta "-pdb" @pg
"_tll temp |I_dll dt;
PSim application }

Protein p <ext; exec="Pmap", id="1ubq">;
PDB structure;
Text log;

(structure, log) = predict(p, 100., 25.);



Implicitly parallel

= Swift is an implicitly parallel functional programming language for clusters,
grids, clouds and supercomputers

= All expressions evaluate when their data inputs are “ready”

(int r) myproc (int 1)
{

int £ = F(i);

int g = G(1);

r = f + g;
}

= F() and G() are computed in parallel

— Can be Swift functions, or leaf tasks (executables or scripts in shell, python, R,
Octave, MATLAB, ...)

= rcomputed when they are done
= This parallelism is automatic
=  Works recursively throughout the program’s call graph



Pervasive parallel data flow

parent task a
spawns §
child task b ™

a writes data

d waits for
data

Q Task

Shared
] data item

..~ Tlask spawn
dependency

Data
dependency




Functional composition in Swift -
enables powerful parallel loops

Sweep(Protein pSet[ ])

{
int nSim = 1000;

int maxRounds = 3;
float startTemp[ ] =[ 100.0, 200.0 |;
floatdelT[]=[1.0, 1.5, 2.0, 5.0, 10.0 |;
foreach p, pnin pSet {
foreach t in startTemp {
foreach d in delT {
lterativeFixing(p, nSim, maxRounds, t, d);

}
} 10 proteins x 1000 simulations x

\ } 3 rounds x 2 temps x 5 deltas
= 300K tasks

14



Data-intensive example:
Processing MODIS land-use data

landU
1 ooooonooeEcnEnnsennes -
SEEEEEEEEEEEERENEEEEEE [

Swift loops process hundreds of images in parallel

analyze

Image processing pipeline for land-use data from the MODIS satellite instrument...




Processing MODIS land-use data

foreach raw,1 in rawFiles {
land[i1i] = (raw,1l);
colorFiles[1i] = (raw) ;
}
(topTiles, topFiles, topColors) =
(land, landType, nSelect);

gridMap = mark(topTiles);
montage =

assemble(topFiles,colorFiles,webDir);



Example of Swift’s implicit parallelism:
Processing MODIS land-use data

andUse
3;31;‘3 0000000000000000000000 ==
CEEEEEEEEEEEEEE e

Swift loops process hundreds of images in parallel

analyze




Dataset mapping example: deep fMRI directory tree

On-Disk
Data ..
Layout

—

2 DBIC
=45 Study
- =88 Group
- =-8 Subject
T
- =MRun
B volume
B volume
-~ volume
Bl volume
- =-Hy RN
=9 Subject
: =8 Subject
#-&F Study
#-45 Study

type Study { -

Group g[ |;
}
type Group {
Subject s[ |;
}
type Subject { -
Volume anat;L_ a\f"ﬂ °
Run run[ J; memory
} data
type Run { model
Volume V][ |;
}
type Volume {
Image img;
Header hdr;

}

18
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Spatial normalization of functional MRI runs

Dataset-level workflow

reorient
reorient
alignlinear

reslice

softmean

alignlinear

combine_warp

reslice_warp

strictmean

binarize

gsmooth

Expanded (10 volume

http://swift-lang.org

-

orkflow
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Complex scripts can be well-structured

programming in the large:

(Run or) reorientRun ( Run ir, string direction)
(Run snr) functional ( Run r, NormAnat a, { L
_ , foreach Volume iv, i inir.v {
Air shrink’) or.v[i] = reorient(iv, direction);
{ RunyroRun = reorientRun(r, "y"); }

Run roRun = reorientRun( yroRun , "x"); }

Volume std = roRun|[0];

Run rndr = random_select( roRun, 0.1 );

AirVector rndAirVec = align_linearRun( rndr, std, 12, 1000, 1000, "81 3 3" );
Run reslicedRndr = resliceRun( rndr, rndAirVec, "o", "k" );

Volume meanRand = softmean( reslicedRndr, "y", "null" );

Air mnQAAiIr = alignlinear( a.nHires, meanRand, 6, 1000, 4, "81 3 3" );
Warp boldNormWarp = combinewarp( shrink, a.aWarp, mnQAAir );

Run nr = reslice_warp_run( boldNormWarp, roRun );

Volume meanAll = strictmean( nr, "y", "null" )

Volume boldMask = binarize( meanAll, "y" );

snr = gsmoothRun( nr, boldMask, "6 6 6" );



Provenance graph from Swift log

e ~.

—— —— — —
frags MAT g4 _8.frags.INF

a Work of Luiz Gadelha and Maria Luiza Mondelli, LNCC
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app_exec_id

allvsall-run011-2683821486:w2hd-t667cadm
allvsall-run011-2683821486:w2hd-s667cadm
allvsall-run011-2683821486:w2hd-n667cadm
allvsall-run011-2683821486:w2hd-r667cadm
allvsall-run011-2683821486:w2hd-0667cadm
allvsall-run011-2683821486:w2hd-m667cadm
allvsall-run011-2683821486:w2hd-g667cadm
allvsall-run011-2683821486:w2hd-p667cadm
allvsall-run011-2683821486:w2hd-j667cadm
allvsall-run011-2683821486:w2hd-1667cadm
allvsall-run011-2683821486:w2hd-i667cadm
allvsall-run011-2683821486:w2hd-g667cadm
allvsall-run011-2683821486:w2hd-e667cadm
allvsall-run011-2683821486:w2hd-8667cadm
allvsall-run011-2683821486:w2hd-7667cadm
allvsall-run011-2683821486:w2hd-a667cadm
allvsall-run011-2683821486:w2hd-4667cadm
allvsall-run011-2683821486:w2hd-d667cadm
allvsall-run011-2683821486:hits-ra67cadm
allvsall-run011-2683821486:hits-ec67cadm
allvsall-run011-2683821486:hits-rc67cadm

Provenance data from log into SQL DB

real_secs

147.96
145.48
127.52
127.09
126.13
126.04
125.82
123.11
114.17
113.0
100.34
99.82
83.14
78.87
76.56
75.2
74.29
74.03
36.72
33.54
32.71

percent_cpu

max_rss

94 1984
96 1984
99 1984
99 1984
99 1984
99 1984
99 1968
99 1984
98 1984
99 1984
99 2000
98 1984
98 1968
98 1968
98 1984
98 1984
98 1984
98 1984
69 1564624
82 1564640
74 1564640

fs_writes

542968
542968
359376
367880
367880
367784
367792
359376
301560
301560
233912
233912
175488
175480
161960
161960
153936
153936
777904
1000608
1085016

Work of Luiz Gadelha and Maria Luiza Mondelli, LNCC



Use SQL to mine insight from provenance

1 select app name, real secs, fs writes
2 from app exec natural join resource usage;

= 1 ® Total rows loaded: 520
app__name real_secs | fs_writes

1 sortHits 15.08 2054096

2 sortHits 12.99 1995280

3 sortHits 10.07 1856472

4 sortHits 10.41 1796360

5 hits 32.71 1085016

S Work of Luiz Gadelha and Maria Luiza Mondelli, LNCC
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Domain-specific metadata on workflow results

filename

g0_1.fragsF.INF

g0_1.fragsF.INF

g0_1.fragsF.INF
g0_1.fragsF.INF
g0_1.fragsF.INF

g0_1.fragsF.IN
g0_1.fragsF.IN

key value
seqx_length 3886916
seqy_length 4847600
min_fragment_length 100
min_identity 65
tot_hits_seeds 493943
tot_hits seeds used 492470
total_fragments 288

Work of Luiz Gadelha and Maria Luiza Mondelli, LNCC



Swift’s distributed architecture is based on a
client/worker mechanism (internally named “coasters”)

Data servers < >
Petascale systems

\ @ XSEDE

Open Science Grid
National infrastructure

,C, SW/ftm

compuTae i

CENTER

‘ Local data \ PR Sad

Swift host: login node, laptop, ... / \ c|oudresou°;°§';°;”’”"'s"”'"°/

The Swift runtime system has drivers and algorithms to efficiently support and aggregate diverse runtime environments

25




Worker architecture handles diverse environments

"'“'"Scﬁ"pfé [ / t’

@ =

Swift host: login node, laptop, ... /

socket

Submit
Site

Coaster Service

St

Worker Worker Worker Worker

site

sites

Compute Remote

scheduler job

26



Summary of Swift main benefits

Makes parallelism more transparent
Implicitly parallel functional dataflow programming

Makes computing location more transparent

Runs your script on multiple distributed sites and
diverse computing resources (desktop to petascale)

Makes basic failure recovery transparent
Retries/relocates failing tasks
Can restart failing runs from point of failure

Enables provenance capture
Tasks have recordable inputs and outputs

27



BUT: Centralized evaluation can be a
bottleneck at extreme scales

Had this (Swift/K): For extreme scale, we need this (Swift/T):

Data flow program Data flow program
) ‘ x 1,000
| ] _ L

Data flow engine

L 500 tf-SkS/ S Control tasks

’ Task l Task | Task l Task l

L 500,000 tasks/s -

Engine Engine

g

Centralized evaluation Distributed evaluation

28



Two Swift implementations

= Swift/K: Classic, Java Swift with “Karajan” engine
— Portable, mature (2006)
— Runs script from single node
— Installs anywhere, instantly: just untar and run
— Runs any POSIX app — serial or parallel
— 500-1000 tasks/second
— Use for irregular workloads and flexible MPI app invocation
= Swift/T: HPC Swift (in C) with “Turbine” engine
— Faster, newer (2011)
— Runs script and apps from multinode MPI program
— Runs anywhere that MPI runs

— Runs both POSIX apps and and library functions
(C/C++, Fortran, Python, R, Julia)

— 1.5 billion tasks/s on 512K Blue Waters cores

— Use for fine-grained tasking, in-memory workflow and single-
core MPI apps

29
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Swift/T: productive extreme-scale scripting

| Parallel Swift worker process i
- |evaluator MPI
< 3
data store
python ’//"
i {1
powered oe 'ik,)t k

= Script-like programming with “leaf” tasks
— In-memory function calls in C++, Fortran, Python, R, ... passing in-memory objects
— More expressive than master-worker for “programming in the large”
— Leaf tasks can be MPI programs, etc. Can be separate processes if OS permits.

= Distributed, scalable runtime manages tasks, load balancing, data movement
= User function calls to external code run on thousands of worker nodes
S



Parallel tasks in Swift/T

Swift | Compiler Turbine
[ Load balancing / Data services (ADLB) ]

Leaf tasks l T Notifications

' Worker [Worker] [Worker] ' Worker [Worker]

{Worker [Worker] [Worker] . Worker [Worker]

comm comm
Dynamically-created Tasks may be placed
communicator with process or node

location constraints

= Swift expression: z = @par=32 f(x,V);
= ADLB server finds 8 available workers

— Workers receive ranks from ADLB server

— Performs comm = MPI Comm create group ()
=  Workers perform £ (x, y) communicating on comm



LAMMPS parallel tasks

foreach i1 in [0:20] {
t = 300+1i;
sed command = sprintf("s/ TEMPERATURE /%i/g", t);
lammps file name = sprintf ("input-%i.inp", t);
lammps args = "-1 " + lammps file name;
file lammps input<lammps file name> =
sed(filter, sed command) =>
@par=8 lammps (lammps args) ;

= LAMMPS provides a
convenient C++ API
= Easily used by Swift/T e )

pa rallel tasks Tasks with varying sizes packed into big MPI run
Black: Compute Blue: Message White: Idle




Swift/T-specific features

Task locality: Ability to send a task to a process
— Allows for big data —type applications
— Allows for stateful objects to remain resident in the workflow
— location L = find data(D);
int y = (@location=L f (D, x);
= Data broadcast
= Task priorities: Ability to set task priority
— Useful for tweaking load balancing

Updateable variables
— Allow data to be modified after its initial write

— Consumer tasks may receive original or updated values when they emerge
from the work queue

Wozniak et al. Language features for scalable distributed-memory
dataflow computing. Proc. Dataflow Execution Models at PACT, 2014.

33



Swift/T: scaling of trivial foreach { } loop
100 microsecond to 10 millisecond tasks
on up to 512K integer cores of Blue Waters

10000M ]
........................ 10ms
oMy LegET ideal
8 1OOM ----------------- - 10mS
Q 10M | e T | 1ms
TV [ fms
= 0.1M * ;n:s
---------------- . mS
0.01M | ideal
0.001M = 0.1ms
AL D AL (R q’L 6 1@ %‘b

CPU Cores

34
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All have published science r——
results obtained using M
Swift

-

Large-scale applications using Swift

Simulation of super- M=, '
cooled glass materials :b\; .
Protein and biomolecule 8 AT Lo

structure and interaction

Climate model analysis and
decision making for global
food production & supply

F,(k}=7.25.0

Materials science at the
Advanced Photon Source

° Latitude N

Multiscale subsurface
flow modeling

Modeling of power grid
for OE applications

Red indicates higher statistical
confidence in data




Benefit of implicit pervasive parallelism: Analysis

& visualization of high-resolution climate models
powered by Swift

= Diagnostic scripts for each climate
model (ocean, atmospehere, land,
ice) were expressed in complex
shell scripts

= Recoded in Swift, the CESM
community has benefited from
significant speedups and more
modular scripts

Work of: J Dennis, M Woitasek, S
Mickelson, R Jacob, M Vertenstein
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Boosting Light Source Productivity with Swift ALCF Data Analysis
H Sharma, J Almer (APS); J Wozniak, M Wilde, | Foster (MCS)
Impact and Approach

Accomplishments

ALCF Contributions

HEDM imaging and analy5|s
shows granular S
material structure,
non-destructively

APS Sector 1 scientists use
Mira to process data from live
HEDM experiments, providing
real-time feedback to correct
or improve in-progress
experiments

Scientists working with
Discovery Engines LDRD
developed new Swift analysis
workflows to process APS data
from Sectors 1, 6, and 11

Mira analyzes experiment in
10 mins vs. 5.2 hours on APS
cluster: > 30X improvement

Scaling up to ~ 128K cores
(driven by data features)

Cable flaw was found and
fixed at start of experiment,
saving an entire multi-day
experiment and valuable user
time and APS beam time.

In press: High-Energy Synchrotron X-
ray Techniques for Studying Irradiated
Materials, J-S Park et al, J. Mat. Res.
Big data staging with MPI-10 for
interactive X-ray science, ) Wozniak et
al, Big Data Conference, Dec 2014

Design, develop, support, and trial
user engagement to make Swift
workflow solution on ALCF
systems a reliable, secure and
supported production service

Creation and support of the Petrel
data server

Reserved resources on Mira for
APS HEDM experiment at Sector
1-1D beamline (8/10/2014 and

future sessions in APS 2015 Run 1)

ﬁ# v‘}:
.f“ "Q"s
82k 2a 83
Y I K- '.".:.".
o

confidence in data

Red indicates higher statistical



Conclusion: parallel workflow scripting is practical,
productive, and necessary, at a broad range of scales

= Swift programming model demonstrated feasible and
scalable on XSEDE, Blue Waters, OSG, DOE systems

= Applied to numerous MTC and HPC application domains
— attractive for data-intensive applications

— and several hybrid programming models

= Proven productivity enhancement in materials,
genomics, biochem, earth systems science, ...

= Deep integration of workflow in progress at XSEDE, ALCF

Workflow through implicitly parallel dataflow is
productive for applications and systems at many scales,
including on highest-end system



What’s next?

= Programmability

— New patterns ala Van Der Aalst et al (workflowpatterns.org)
" Fine grained dataflow — programming in the smaller?

— Run leaf tasks on accelerators (CUDA GPUs, Intel Phi)

— How low/fast can we drive this model?

= PowerFlow
— Applies dataflow semantics to manage and reduce energy usage
= Extreme-scale reliability
= Embed Swift semantics in Python, R, Java, shell, make
— Can we make Swift “invisible”? Should we?
= Swift-Reduce

— Learning from map-reduce
— Integration with map-reduce



GeMTC: GPU-enabled Many-Task Computing

Motivation: Support for MTC on all accelerators!

Goals: Approach:

1) MTC support  2) Programmability Design & implement GeMTC middleware:
3) Efficiency 4) MPMD on SIMD 1) Manages GPU 2) Spread host/device
5) Increase concurrency to warp level 3) Workflow system integration (Swift/T)

il J
| T ]

Server %\} Work Stealing L( Server ]

CPU Worker ] éPU Worker ] j j

CPU Worker ]

CPU Worker J CPU Worker ] j j j j CPU Worker J
GeMTC Worker] GeMTC Worker] a a a a GeMTC Worker]
GPU GPu ||| [/ GPU
Node O Node 1 Node N



Further research directions

= Deeply in-situ processing for extreme-scale analytics
= Shell-like Read-Evaluate-Print Loop ala iPython

= Debugging of extreme-scale workflows

Deeply in-situ analytics of a
climate simulation
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Join the Swift Community: explore, use, engage

SWI ’77” downloads documentation case studies papers support

A simple tool for fast, easy scripting on big machines. Try Swift online

Try Swift from your browser
SWIFT NEWS:

Oct. 5: LATEST SWIFT PROJECT REPORT details over 20 scientific engagements
= gag Get Started

=> Nov 6: Swift chapter in new PARALLEL PROGRAMMING MODELS TEXT available at SC15 )
Run tutorial examples today
—> Swift at the SC15 Supercomputing Conference

= Preview of new Swift Language Reference

Download Now

Current: 0.96.2, 2015/08/05

,/\ ’ k */\ q | - ‘1 -\k z\
el £y L e
. G . . ‘
¢ ¢ il i‘L { < B t Modeling the molecular structure Join the Swift community
: “ll i of glass materials using theoretical
e & € i ¢ i chemistry methods, on the Open :
o U~ CyA  Science Grid and UChicago’s Beagle Try Swift/T
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C read more
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Learning Swift

downloads documentation

Documentation

Swift Quickstart

This guide describes the steps needed to download, install, configure, and run the b:
for Swift.

o Quickstart Guide

Swift Tutorials

This hands-on tutorial gives a quick (~20 minute) taste of Swift. It shows you how to
workflows on computation resources such as :

Ad-hoc nodes

Beagle (UChicago)

Blues (LCRC)

Edison (NERSC)

Elastic Cloud Compute (Amazon)
Midway (UChicago)

Open Science Grid

Stampede (XSEDE/TACC)

Swan (Cray MPN)

°

°

o

°

°

°

°

°

°

For a complete list go here.

Swift User Guide

The User Guide provides more detailed reference documentation and background ir
swift. It is assumed that the reader is already familiar with the material in the Quickst
Tutorial documents.

o Latest (0.96) [html] [pdf]
o Interim (0.95) [html] [pdf]
o Trunk [html] [pdf]
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ABSTRACT
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Scripting

Dataflow

Scientists, engineers, and statisticians must execute domain-specific application programs
many times on large collections of file-based data. This activity requires complex orches-
tration and data management as data is passed to, from, and among application invoca-
tions. Distributed and parallel computing resources can accelerate such processing, but
their use further increases programming complexity. The Swift parallel scripting language
reduces these complexities by making file system structures accessible via language con-
structs and by allowing ordinary application programs to be composed into powerful par-
allel scripts that can efficiently utilize parallel and distributed resources. We present
Swift’s implicitly parallel and deterministic programming model, which applies external
applications to file collections using a functional style that abstracts and simplifies distrib-
uted parallel execution.

© 2011 Elsevier B.V. All rights reserved.
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Try Swift from your browser:
http://swift-lang.org/tryswift

Y

8 00 [ swift-lang.org/tryswift/ % ) Michael | 12"
€ - C M [3 swift-lang.org/tryswift/ w P =
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35 # Dynamically generated bias for simulation ensemble MuIti-stage workflows

36 file seedfile<"output/seed.dat">;

37 seedfile = genseed_app(l); This example expands the workflow pattern of the previous example by adding

38 additional stages to the workflow. Here, we generate a dynamic seed value that

39 1int seedval = readData(seedfile); will be used by all of the simulations, and for each simulation, we run an pre-

40 tracef("Generated seed=%i\n", seedval); processing application to generate a unique "bias file". This pattern is shown

41 below, followed by the Swift script.

42 file sims[]; # Array of files to hold each simulation output

43

44 foreach i in [@:nsim-1] {

45 file biasfile <single_file_mapper;

46 file=strcat("output/bias_",1,".dat")>;

47 file simout <single_file_mapper;

48 file=strcat("output/sim_",i,".out")>;

49 file simlog <single_file_mapper;

50 file=strcat("output/sim_",1i,".log")>; .
51  biasfile = genbias_app(1000, 20); calcBias

52 (simout,simlog) = simulation_app(steps, range, biasfile,

53 1000000, values);
54 sims[i] = simout; m
55 }

56
57 file stats_out<"output/average.out">;
i~d+] £31 ot h PLLPNEY ST S noao laa.
Execute || Reset || File outputs s | < || Multi-stage workflows % || > |

Swift run starting at 05:02:07
05:02:10

sim out

(0]

sims[1]

analyze

**% Script parameters: nsim=10 range=100 num values=10

nerated seed=66127
05:02:12 Ready:7 Active:3 Done:1l
05:02:13 Ready:6 Active:1 Done:14
05:02:14 Ready:4 Active:3 Done:14
05:02:15 Ready:1 Active:3 Done:17
05:02:16 Active:1 Done:20

inal status: 05:02:16 Done:22

nerated 22 file(s)
Swift completed

http://swift-lang.org




Appendix:

Examples of Swift Science Applications
(~ Sep 2014)
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Glass Structure Modeling
powered by Swift

This project models of aspects of glass structure at a theoretical chemistry
level. (Hocky/Reichman)

Recent studies of the glass transition in model systems have focused on
calculating from theory or simulation what is known as the “mosaic
length”. This project evaluated a new “cavity method” for measuring this
length scale. Correlation functions are calculated at the interior of cavities
of varying sizes and averaged over many independent simulations to
determine a thermodynamic length. Using Swift on Beagle, Hocky
investigated whether this thermodynamic length causes variations among
seemingly identical systems. ~1M Beagle CPU hours were used.

Results: Three simple models of glassy behavior were studied. All appear
the same (top, abc) but only two of which have particles relaxing at the
same rate for the same temperature (top, d). This would imply that the
glass structure does not dictate the dynamics. A new computational
technigue was used to extract a length scale on which the liquid is ordered
in an otherwise undetectable way. Results (bottom) showed that using this
length we can distinguish the two systems which have the same dynamics
as separate from the third which has faster dynamics than the other two.

Published in Physical Review Letters B.
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Powder diffraction experiment analysis workflow:
making a notable difference to APS users!

10s images 100s spectra 1000s peaks 10 parameters

Detector
characterization/
Instrument
parameters

Diffraction data Batch Binning / .
Y 1 —> ) —>| Peak fitting >
fromLaBg/CeO, correction Caking &
Learn something about

the material (strain /

D:ffrf(;?:::;df;a —> Batd:l —> Bmm.ng / —> Peak fitting [—>| texture)and error bar
i correction Caking associated with the

data

10000s images 100000s spectra 1000000s peaks

= Background-removal step extracted into separate step for Powder Diffraction

beamline (Sector 1)

= Used 210+ times by 30 users to process 50TB (90% of PD data at Sector 1) in

the past 6 months

= Enables Sector 1 users to test data quality at beam time, and to leave APS with

all their data, ready to analyze



SwiftSeq

Fast parallel annotation of next-generation
sequence data powered by Swift

C
or Genomes (fo(' »90ttgg 9cs . Ox
>

Work of Jason Pitt
and Kevin White,
UChicago IGSB

S http://swift-lang.org

urces Used
S =

Percent of Reso

... n samples

Resource

..cPU
— CPU_SwiltSeq
« “RAM

— RAM_SwiftSeq

Time (hours)

Efficiently and dynamically balances
RAM and CPU on 5K-15K cores

... nread sets

Pre-processing
&
Alignment

...  contigs

Post-processing
&

. n Genotyping
coordinates
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Protein structure prediction
powered by Swift

The laboratories of Karl Freed and Tobin Sosnick use Beagle to develop and validate ey G

methods to predict protein structure using homology-free approaches. (excluding tail region)

In this lab, Aashish Adhikari (now UC Berkeley) has developed new structure
prediction techniques based on Monte Carlo simulated annealing which

employ novel, compact molecular representations and innovative “moves” of the
protein backbone to achieve accurate prediction with far less computation then
previous methods. One of the applications of the method involves rebuilding local
regions in protein structures, called “loop modeling”, a problem which the group
tackled with considerable success in the CASP protein folding tournament(shown
right).They are now testing further algorithmic innovations using the computatior
power of Beagle.

9.1A

Results: The group developed a new iterative algorithm for predicting protein

structure and folding pathway starting only from the amino acid sequence.
I Initial
I OOPS modeling |
I Native

Protein loop modeling. Courtesy A. Adhikari



Protein-RNA interaction modeling

powered by Swift

M. Parisien (with T. Sosnick, T. Pan, and K. Freed) developed a novel algorithm for the prediction of the RNA-
protein interactome, on the UCHicago Beagle Cray XE6, powered by Swift.

Non-coding RNAs often function in cells through specific interactions with their protein partners. Experiments
alone cannot provide a complete picture of the RNA-protein interactome. To complement experimental methods,
computational approaches are highly desirable. No existing method, however, can provide genome-wide

predictions of docked RNA-protein complexes.

The application of computational predictions, together with experimental methods, provides a more complete
understanding on cellular networks and function of RNPs. The approach makes use of a rigid-body docking
algorithm and a scoring function custom- tailored for protein-tRNA interactions. Using Swift, Beagle screened ~300

proteins per day on 1920 cores.

Results: the scoring function can identify the native docking conformation in large sets of decoys (100,000) for
many known protein-tRNA complexes (4TRA shown here). (left) Scores for true positive complexes (.)(N=28) are
compared to true negative ones of low (v)(N=40) and high (a) (N=40) isoelectric points. (right) Because the
density curve of the true positives, which have pl < 7, has minimal overlap with the curve of the low pl true

negatives (blue area), the scoring function has the specificity to identify tRNA-binding proteins.
’ = Docked complexes: (L) tRNA dock '

d at

Systematic prediction and validation of RNA-protein interactome.
Parisien M, Sosnick TR, Pan T. Kyoto, June 12-19, 2011, RNA Society.

S
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Protein-RNA interaction. Courtesy M. Parisien
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RDCEP @

Center for Robu§£ Decision Making on Climate and Energy Policy

powered by Swift

The RDCEP project operates a large-scale integrated modeling framework
for decision makers in climate and energy policy, powered by Swift.
(lan Foster, Joshua Elliott, et al)

UChicago’s Midway research cluster is used to study land use, land cover,
and the impacts of climate change on agriculture and the global food
supply. Using a DSSAT 4.0 (“decision support system for agrotechnology
transfer”) crop systems model, a parallel simulation framework was
implemented using Swift. Simulation campaigns measure, e.g., yield and
climate impact for a single crop (maize) across the conterminous USA with
daily weather data and climate model output for 120 years (1981-2100)
and 16 different configurations fertilizer, irrigation, and cultivar.

Top two maps: maize yields across the USA with intensive nitrogen
application and full irrigation

Bottom two maps show results with no irrigation.
Each map is a RDCEP model run of ~120,000 DSSAT invocations.

Dldian of Prodised Coen Tl 19903909

DSSAT models of corn yield.
Courtesy J. Elliott and K. Maheshwari



Modeling climate impact on hydrology
powered by Swift

Projecting biofuel production impact on hydrology (E.
Yan)

This project studies the impact of global temperature
increase on the Upper Mississippi River Basin on water
and plant productivity. It is in the process of combining
future climate data obtained from a statistically
downscaled global circulation model (GCM) into the
Upper Mississippi River Basin model. The results from
these models will be used in the proposed study to
evaluate the relative performance of the proposed
coupling of climate and hydrology models.

Results of this research demonstrate that plausible
changes in temperature and precipitation caused by
increases in atmospheric greenhouse gas concentrations
could have major impacts on both the timing and
magnitude of runoff, soil moisture, water quality,

water availability, and crop yield (including energy
crops) in important

agricultural areas.

Visualization of multiple layers of SWAT
hydrology model. Courtesy E. Yan.



Work of: J Dennis, M Woitasek, S
Mickelson, R Jacob, M Vertenstein

-

Benefit of implicit pervasive parallelism: Analysis

& visualization of high-resolution climate models
powered by Swift

PTH (km)

DE

Diagnostic scripts for each climate
model (ocean, atmospehere, land,
ice) were expressed in complex
shell scripts

DEPTH (km)

Recoded in Swift, the CESM
community has benefited from
significant speedups and more
modular scripts

http://swift-lang.org
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