
© 2019 Cray Inc.

Add ing OpenMP

Heidi Poxon
Sr. Principal Engineer

Cray Programming Environment

© 2019 Cray Inc.

Legal Disclaimer
Information in this document is provided in connection with Cray Inc. products. No license, express or implied, to any intellectual property rights is
granted by this document.

Cray Inc. may make changes to specifications and product descriptions at any time, without notice.

All products, dates and figures specified are preliminary based on current expectations, and are subject to change without notice.

Cray hardware and software products may contain design defects or errors known as errata, which may cause the product to deviate from
published specifications. Current characterized errata are available on request.

Cray uses codenames internally to identify products that are in development and not yet publicly announced for release. Customers and other third
parties are not authorized by Cray Inc. to use codenames in advertising, promotion or marketing and any use of Cray Inc. internal codenames is at
the sole risk of the user.

Performance tests and ratings are measured using specific systems and/or components and reflect the approximate performance of Cray Inc.
products as measured by those tests. Any difference in system hardware or software design or configuration may affect actual performance.

The following are trademarks of Cray Inc. and are registered in the United States and other countries: CRAY and design, SONEXION, URIKA and
YARCDATA. The following are trademarks of Cray Inc.: CHAPEL, CLUSTER CONNECT, CLUSTERSTOR, CRAYDOC, CRAYPAT, CRAYPORT,
DATAWARP, ECOPHLEX, LIBSCI, NODEKARE, REVEAL. The following system family marks, and associated model number marks, are
trademarks of Cray Inc.: CS, CX, XC, XE, XK, XMT and XT. The registered trademark LINUX is used pursuant to a sublicense from LMI, the
exclusive licensee of Linus Torvalds, owner of the mark on a worldwide basis. Other trademarks used on this website are the property of their
respective owners.

2

© 2019 Cray Inc.

Reveal
• Reduce effort associated with

adding OpenMP to MPI programs

• Get insight into optimizations
performed by the Cray compiler

• Add OpenMP as a first step to
parallelize loops that will target
GPUs

• Track requests to memory and
evaluate the bandwidth
contribution of objects within a
program for loop tuning

3

© 2019 Cray Inc.

1. Identify key high-level loops

2. Perform parallel analysis and scoping

3. Add OpenMP directive layer of parallelism

4. Analyze performance for further optimization, specifically vectorization of
innermost loops

5. Port parallel loops to GPU with OpenMP target directives

Approach to Adding Parallelism

4

© 2019 Cray Inc.

subroutine sweepz
…
do j = 1, js
do i = 1, isz
radius = zxc(i+mypez*isz)
theta = zyc(j+mypey*js)
do m = 1, npez
do k = 1, ks
n = k + ks*(m-1) + 6
r(n) = recv3(1,j,k,i,m)
p(n) = recv3(2,j,k,i,m)
u(n) = recv3(5,j,k,i,m)
v(n) = recv3(3,j,k,i,m)
w(n) = recv3(4,j,k,i,m)
f(n) = recv3(6,j,k,i,m)
enddo
enddo
…
call ppmlr
do k = 1, kmax
n = k + 6
xa (n) = zza(k)
dx (n) = zdz(k)
xa0(n) = zza(k)
dx0(n) = zdz(k)
e (n) = p(n)/(r(n)*gamm)+0.5 &

*(u(n)**2+v(n)**2+w(n)**2)
enddo
call ppmlr

…
enddo
enddo

subroutine sweepz
…
do j = 1, js
do i = 1, isz
radius = zxc(i+mypez*isz)
theta = zyc(j+mypey*js)
do m = 1, npez
do k = 1, ks
n = k + ks*(m-1) + 6
r(n) = recv3(1,j,k,i,m)
p(n) = recv3(2,j,k,i,m)
u(n) = recv3(5,j,k,i,m)
v(n) = recv3(3,j,k,i,m)
w(n) = recv3(4,j,k,i,m)
f(n) = recv3(6,j,k,i,m)
enddo
enddo
…
call ppmlr
do k = 1, kmax
n = k + 6
xa (n) = zza(k)
dx (n) = zdz(k)
xa0(n) = zza(k)
dx0(n) = zdz(k)
e (n) = p(n)/(r(n)*gamm)+0.5 &

*(u(n)**2+v(n)**2+w(n)**2)
enddo
call ppmlr

…
enddo
enddo

The Problem – How Do I Parallelize This Loop?
● How do I know this is a good loop to parallelize?
● What prevents me from parallelizing this loop?
● Can I get help building a directive?

subroutine ppmlr

call boundary
call flatten
call paraset(nmin-4, nmax+5, para, dx, xa)

call parabola(nmin-4,nmax+4,para,p,dp,p6,pl,flat)
call parabola(nmin-4,nmax+4, para,r,dr,r6,rl,flat)
call parabola(nmin-4,nmax+4,para,u,du,u6,ul,flat)

call states(pl,ul,rl,p6,u6,r6,dp,du,dr,plft,ulft,&
rlft,prgh,urgh,rrgh)

call riemann(nmin-3,nmax+4,gam,prgh,urgh,rrgh,&
plft,ulft,rlft pmid umid)

call evolve(umid, pmid) ß contains more calls

call remap ß contains more calls

call volume(nmin,nmax,ngeom,radius,xa,dx,dvol)

call remap ß contains more calls

return
end

5

© 2019 Cray Inc.

Gather loop statistics using the Cray performance tools and the Cray Compiling
Environment (CCE) to determine which loops have the most work

• Helps identify high-level serial loops to parallelize
• Based on runtime analysis, approximates how much work exists within a loop

Loop Work Estimates

6

© 2019 Cray Inc.

• Set up loop work estimates experiment with Cray compiler and Cray performance
tools

• user@login> module load PrgEnv-cray perftools-lite-loops

• Build program with Cray program library
• –h pl=/full_path/program.pl

• Run program to get loop work estimates

Collect Loop Work Estimates

7

© 2019 Cray Inc.

Example Loop Statistics

Table 2: Loop Stats by Function

Loop | Loop | Loop | Loop | Loop |Function=/.LOOP[.]
Incl | Hit | Trips | Trips | Trips | PE=HIDE
Time | | Avg | Min | Max |

Total | | | | |
|--
| 8.995914 | 100 | 25 | 0 | 25 |sweepy_.LOOP.1.li.33
| 8.995604 | 2500 | 25 | 0 | 25 |sweepy_.LOOP.2.li.34
| 8.894750 | 50 | 25 | 0 | 25 |sweepz_.LOOP.05.li.49
| 8.894637 | 1250 | 25 | 0 | 25 |sweepz_.LOOP.06.li.50
| 4.420629 | 50 | 25 | 0 | 25 |sweepx2_.LOOP.1.li.29
| 4.420536 | 1250 | 25 | 0 | 25 |sweepx2_.LOOP.2.li.30
| 4.387534 | 50 | 25 | 0 | 25 |sweepx1_.LOOP.1.li.29
| 4.387457 | 1250 | 25 | 0 | 25 |sweepx1_.LOOP.2.li.30
| 2.523214 | 187500 | 107 | 0 | 107 |riemann_.LOOP.2.li.63

8

© 2019 Cray Inc.

View Source and Optimization Information

9

© 2019 Cray Inc.

Scope Selected Loop(s)

• Trigger dependence
analysis

• scope loops above
given threshold

10

© 2019 Cray Inc.

Review Scoping Results

Parallelization
inhibitor messages

are provided to
assist user with

analysis

Loops with scoping
information are

flagged. Red needs
user assistance

11

© 2019 Cray Inc.

Review Scoping Results (continued)

Reveal identifies
shared reductions
down the call chain

Reveal identifies
calls that prevent

parallelization

12

© 2019 Cray Inc.

Review Scoping Results (continued)

13

© 2019 Cray Inc. 14

Review Scoping Results (continued)

© 2019 Cray Inc.

View Loops through Call Chain

Loop
instances

Loop
traceback

15

© 2019 Cray Inc.

! Directive inserted by Cray Reveal. May be incomplete.
!$OMP parallel do default(none) &
!$OMP& unresolved (dvol,dx,dx0,e,f,flat,p,para,q,r,radius,svel,u,v,w, &
!$OMP& xa,xa0) &
!$OMP& private (i,j,k,m,n,$$_n,delp2,delp1,shock,temp2,old_flat, &
!$OMP& onemfl,hdt,sinxf0,gamfac1,gamfac2,dtheta,deltx,fractn, &
!$OMP& ekin) &
!$OMP& shared (gamm,isy,js,ks,mypey,ndim,ngeomy,nlefty,npey,nrighty, &
!$OMP& recv1,send2,zdy,zxc,zya)
do k = 1, ks
do i = 1, isy
radius = zxc(i+mypey*isy)

! Put state variables into 1D arrays, padding with 6 ghost zones
do m = 1, npey
do j = 1, js
n = j + js*(m-1) + 6
r(n) = recv1(1,k,j,i,m)
p(n) = recv1(2,k,j,i,m)
u(n) = recv1(4,k,j,i,m)
v(n) = recv1(5,k,j,i,m)
w(n) = recv1(3,k,j,i,m)
f(n) = recv1(6,k,j,i,m)
enddo
enddo

do j = 1, jmax
n = j + 6

Generate OpenMP Directives

Reveal generates OpenMP
directive with illegal clause
marking variables that need

addressing

16

© 2019 Cray Inc.

Validate User Inserted Directives

User inserted directive
with mis-scoped

variable ‘n’

17

© 2019 Cray Inc.

Look For Vectorization Opportunities

Choose “Compiler
Messages” view to
access message

filtering, then select
desired type of

message

Choose “Compiler
Messages” view to
access message

filtering, then select
desired type of

message

18

QUEST IONS?

