Adding OpenMP

Heidi Poxon Sr. Principal Engineer Cray Programming Environment

Legal Disclaimer

Information in this document is provided in connection with Cray Inc. products. No license, express or implied, to any intellectual property rights is granted by this document.

Cray Inc. may make changes to specifications and product descriptions at any time, without notice.

All products, dates and figures specified are preliminary based on current expectations, and are subject to change without notice.

Cray hardware and software products may contain design defects or errors known as errata, which may cause the product to deviate from published specifications. Current characterized errata are available on request.

Cray uses codenames internally to identify products that are in development and not yet publicly announced for release. Customers and other third parties are not authorized by Cray Inc. to use codenames in advertising, promotion or marketing and any use of Cray Inc. internal codenames is at the sole risk of the user.

Performance tests and ratings are measured using specific systems and/or components and reflect the approximate performance of Cray Inc. products as measured by those tests. Any difference in system hardware or software design or configuration may affect actual performance.

The following are trademarks of Cray Inc. and are registered in the United States and other countries: CRAY and design, SONEXION, URIKA and YARCDATA. The following are trademarks of Cray Inc.: CHAPEL, CLUSTER CONNECT, CLUSTERSTOR, CRAYDOC, CRAYPAT, CRAYPORT, DATAWARP, ECOPHLEX, LIBSCI, NODEKARE, REVEAL. The following system family marks, and associated model number marks, are trademarks of Cray Inc.: CS, CX, XC, XE, XK, XMT and XT. The registered trademark LINUX is used pursuant to a sublicense from LMI, the exclusive licensee of Linus Torvalds, owner of the mark on a worldwide basis. Other trademarks used on this website are the property of their respective owners.

Reveal

- Reduce effort associated with adding OpenMP to MPI programs
- Get insight into optimizations performed by the Cray compiler
- Add OpenMP as a first step to parallelize loops that will target GPUs
- Track requests to memory and evaluate the bandwidth contribution of objects within a program for loop tuning

Approach to Adding Parallelism

- 1. Identify key high-level loops
- 2. Perform parallel analysis and scoping
- 3. Add OpenMP directive layer of parallelism
- 4. Analyze performance for further optimization, specifically vectorization of innermost loops
- 5. Port parallel loops to GPU with OpenMP target directives

The Problem – How Do I Parallelize This Loop?

- How do I know this is a good loop to parallelize?
- What prevents me from parallelizing this loop?
- Can I get help building a directive?

```
do j = 1, js
 do i = 1, isz
   radius = zxc(i+mypez*isz)
   theta = zyc(j+mypey*js)
   do m = 1, npez
    do k = 1, ks
     n = k + ks*(m-1) + 6
     r(n) = recv3(1,j,k,i,m)
     p(n) = recv3(2,j,k,i,m)
     u(n) = recv3(5,j,k,i,m)
     v(n) = recv3(3,j,k,i,m)
     w(n) = recv3(4,j,k,i,m)
     f(n) = recv3(6,j,k,i,m)
    enddo
   enddo
   call ppmlr
   do k = 1, kmax
     \mathbf{n} = \mathbf{k} + \mathbf{6}
     xa(n) = zza(k)
     dx(n) = zdz(k)
     xaO(n) = zza(k)
     dxO(n) = zdz(k)
     e(n) = p(n)/(r(n)*gamm)+0.5 \&
        *(u(n) **2+v(n) **2+w(n) **2)
   enddo
   call ppmlr
```

enddo

enddo

```
subroutine ppmlr
```

```
call boundary
call flatten
call paraset(nmin-4, nmax+5, para, dx, xa)
```

```
call parabola(nmin-4,nmax+4,para,p,dp,p6,pl,flat)
call parabola(nmin-4,nmax+4, para,r,dr,r6,rl,flat)
call parabola(nmin-4,nmax+4,para,u,du,u6,u1,flat)
```

```
call remap < contains more calls
```

```
call volume(nmin,nmax,ngeom,radius,xa,dx,dvol)
```

```
call remap ← contains more calls
```

return end

subroutine sweepz

Loop Work Estimates

Gather loop statistics using the Cray performance tools and the Cray Compiling Environment (CCE) to determine which loops have the most work

- Helps identify high-level serial loops to parallelize
 - Based on runtime analysis, approximates how much work exists within a loop

Collect Loop Work Estimates

- Set up loop work estimates experiment with Cray compiler and Cray performance tools
 - user@login> module load PrgEnv-cray perftools-lite-loops
- Build program with Cray program library
 - -h pl=/full_path/program.pl
- Run program to get loop work estimates

Example Loop Statistics

able 2: L	oop Stats b	y Function			
Loop	Loop	Loop	Loop	Loop	Function=/.LOOP[.]
Incl	Hit	Trips	Trips	Trips	PE=HIDE
Time		Avg	Min	Max	
Total					
8,995914	100	 25		25	Sweepy .LOOP.1.11.33
8.995604	2500	25		25	sweepy .LOOP.2.li.34
8.894750	50	25	0	25	sweepzLOOP.05.li.49
8.894637	1250	25	0	25	sweepzLOOP.06.li.50
4.420629	50	25	0	25	sweepx2LOOP.1.li.29
4.420536	1250	25	0	25	sweepx2LOOP.2.li.30
4.387534	50	25	0	25	sweepx1LOOP.1.li.29
4.387457	1250	25	0	25	sweepx1LOOP.2.li.30
2.523214	187500	107	0	107	riemannLOOP.2.li.63

View Source and Optimization Information

000 X Reveal 🔳 Reveal - Loopmark Legend (on g 🗕 🗆 🔀 <u>File Edit View Help</u> Loopmark Legend A Pattern Matched 🔻 vhone.pl 🐰 A loop nest has been collapsed into one loop Source - /home/users/heidi/reveal/parabola.f90--Navigation-Þ Þ Deleted Cloned D E Loop Performance \mathbf{T} Q Up D ⊳ G Accelerated Þ Inlined 4.0423 SWEEPX2@32 📩 📥 Not Inlined Þ 66 ÞL Loop 3.8576 SWEEPZ@51 🐋 Þ ✓ M Multithreaded 67 A loop or block of code is multi-threaded 3.8573 SWEEPZ@52 📩 ⊳ deltaa(n) = ar(n) - al(n)Region R 68 ⊳ s Scoping Analysis 2.2068 RIEMANN @63 対 Þ a6(n) = 6, * (a(n) - .5 * (al(n) + ar(n))) 69 ⊳ v Vectorized 1.2299 RIEMANN@64 Þ scrchl(n) = (ar(n) - a(n)) * (a(n) - al(n))70 Atomic Memory Operation 0.8068 PARABOLA@67 а ∇ scrch2(n) = deltaa(n) * deltaa(n)71 Blocked b 0.0146 Instance #1 Conditional and/or Computed C scrch3(n) = deltaa(n) * a6(n)72 ⊳ f Fused 0.0156 Instance #2 Partitioned 73 enddo g 0.0156 Instance #3 Interchanged 74 Non-blocking Remote Transfer n 0.0163 Instance #4 Partial D r Vr2 75 do n = nmin, nmax 0.0163 Instance #5 ⊳ r Unrolled ∇s Shortloop $if(scrchl(n) \le 0.0)$ then 76 0.0174 Instance #6 A loop was converted to a single vector iteration ar(n) = a(n)77 0.0167 Instance #7 \mathbf{T} Þ w Unwound ٠ 78 al(n) = a(n)...... 79 endif [X]Traceback-Close PARABOLA@67 PPMLR@51 **- Info** - Line 67sweepx1_.LOOP.2.li.32@53 A loop starting at line 67 was fused with the loop starting at line 53. sweepx1 .LOOP.1.li.31@32 SWEEPX1@31 VHONE@232 . vhone.pl loaded. vhone loops.ap2 loaded.

Scope Selected Loop(s)

Review Scoping Results

Eile Edit View Help Navigation Loop Performance ↓ 4.0778 SWEEPY@35 ●★	Source - /home/users/heidi/reveal/sweet Source - /home/users/heidi/reveal/sweet Source - /home/users/heidi/reveal/sweet Source - /home/users/heidi/reveal/sweet Source - /home/users/heidi/reveal/sweet Source - /home/users/heidi/reveal/sweet Source - /home/users/heidi/reveal/sweet	
4.0773 SWEEPY@36	User assistance	
♦ 4.0529 SWEEPX1@31 ●★	52 do i = 1, isz	
4.0526 SWEEPX1@32	53 radius = zxc(i+mypez*isz)	
▶ 4.0425 SWEEPX2@31 ●★	54 theta = zyc(imyper is)	
▶ 4.0423 SWEEPX2@32	55 stheta = sin(theta)	
▶ 3.8576 SWEEPZ@51 🛑☆	56 radius = radius * stheta	
▶ 3.8573 SWEEPZ@52 ⊕★	57	_
▶ 2.2068 RIEMANN@63	58 ! Put state variables into 1D arrays, padding with 6 ghost zones	
▶ 1.2299 RIEMANN@64	-FS 59 do m = 1, ppez	
▶ 0.8068 PARABOLA@67	- Er.8 60 do $k - 1$ ks	
0.5429 PARABOLA@44	(1 - 1)	
◊ 0.5331 PARABOLA@75	$\frac{1}{10} = r_{1} + r_{2} + r_{3} + r$	
0.4244 REMAP @83	$\frac{1}{2}$ $\frac{1}$	
▶ 0.3341 PARABOLA@30	64 $\mu(n) = recv3(5, j, k, j, m)$	
0.2966 PARABOLA@84		
-	(1) (1) (5) $v(n) - recv3(3 i k i m)$	
▶ 0.2915 PARABOLA@53	65 v(n) = recv3(3, j, k, i, m)	-
 ▶ 0.2915 PARABOLA@53 ▶ 0.2287 RIEMANN@44 ★ 	65 v(n) = recv3(3,j,k,i,m) 66 w(n) = recv3(4.i.k.i.m)	-
 ▶ 0.2915 PARABOLA@53 ▶ 0.2287 RIEMANN@44 ★ ▶ 0.2028 PARABOLA@36 ▶ 0.2028 PARABOLA@312 	65 v(n) = recv3(3,],k,1,m) 66 w(n) = recv3(4,i,k,i,m) 	- -
 ▶ 0.2915 PARABOLA@53 ▶ 0.2287 RIEMANN@44 ★ ▶ 0.2028 PARABOLA@36 ▶ 0.2009 PARABOLA@117 ▶ 0.2009 PARABOLA@117 	65 v(n) = recv3(3,], k, 1, m) 66 w(n) = recv3(4, i, k, i, m) 106 - Line 51	
 ▷ 0.2915 PARABOLA@53 ▷ 0.2287 RIEMANN@44 ★ ▷ 0.2028 PARABOLA@36 ▷ 0.2009 PARABOLA@117 ▷ 0.1858 PARABOLA@24 ▷ 0.1854 PARABOLA@24 	<pre>65 v(n) = recv3(3, j, k, 1, m) 66 w(n) = recv3(4, i, k, i, m) Info - Line 51 A loop starting at line 51 was scoped with errors. See Scoping Tool for more information. "ppmtr" (called from "sweepz") was not inlined because I/O was detected in "volume".</pre>	
 ▷ 0.2915 PARABOLA@53 ▷ 0.2287 RIEMANN@44 ★ ▷ 0.2028 PARABOLA@36 ▷ 0.2009 PARABOLA@117 ▷ 0.1858 PARABOLA@24 ▷ 0.1847 SWEEPY@86 ★ 	<pre>65 v(n) = recv3(3, j, k, 1, m) 66 w(n) = recv3(4, i, k, i, m) 7/// 66 w(n) = recv3(4, i, k, i, m) 7/// 66 w(n) = recv3(4, i, k, i, m) 7/// 67 - Line 51 7/// 67 - Line 51 7/// 67 - Line 51 7/// (called from "sweepz") was not inlined because l/O was detected in "volume". 7/// (called from "sweepz") was not inlined because l/O was detected in "volume". 7/// (called from "sweepz") was not inlined because the enclosing loop body did not completely flatten</pre>	
 ▷ 0.2915 PARABOLA@53 ▷ 0.2287 RIEMANN@44 ★ ▷ 0.2028 PARABOLA@36 ▷ 0.2009 PARABOLA@117 ▷ 0.1858 PARABOLA@24 ▷ 0.1847 SWEEPY@86 ★ ▷ 0.1771 STATES@64 ★ 	<pre>65 v(n) = recv3(3, j, k, 1, m) 66 w(n) = recv3(4, i, k, i, m) 67 - Line 51 68 A loop starting at line 51 was scoped with errors. See Scoping Tool for more information. "ppmlr" (called from "sweepz") was not inlined because I/O was detected in "volume".</pre>	
 ▷ 0.2915 PARABOLA@53 ▷ 0.2287 RIEMANN@44 ★ ▷ 0.2028 PARABOLA@36 ▷ 0.2009 PARABOLA@117 ▷ 0.1858 PARABOLA@24 ▷ 0.1847 SWEEPY@86 ★ ▷ 0.1771 STATES@64 ★ ▷ 0.1723 EVOLVE@70 ★ 	<pre>65 v(n) = recv3(3, j, k, 1, m) 66 w(n) = recv3(4, i, k, i, m) 67 - Line 51 A loop starting at line 51 was scoped with errors. See Scoping Tool for more information. "ppmlr" (called from "sweepz") was not inlined because I/O was detected in "volume". "ppmlr" (called from "sweepz") was not inlined because the enclosing loop body did not completely flatten. A loop starting at line 105 is flat (contains no external calls). A loop starting at line 105 was not vectorized because the does not map well onto the target architecture</pre>	
 ▷ 0.2915 PARABOLA@53 ▷ 0.2287 RIEMANN@44 ★ ▷ 0.2028 PARABOLA@36 ▷ 0.2009 PARABOLA@117 ▷ 0.1858 PARABOLA@24 ▷ 0.1847 SWEEPY@86 ★ ▷ 0.1771 STATES@64 ★ ▷ 0.1723 EVOLVE@70 ★ ▷ 0.1638 REMAP@111 ★ 	<pre>65 v(n) = recv3(3, j, k, 1, m) 66 w(n) = recv3(4, i, k, i, m) 67 V(n) = recv3(4, i, k, i, m) 68 V(n) = recv3(4, i, k, i, m) 69 V(n) = recv3(4, i, k, i, m) 69 V(n) = recv3(4, i, k, i, m) 60 V(n) = recv3(4, i, k, i, m) 60 V(n) = recv3(4, i, k, i, m) 60 V(n) = recv3(3, j, k, 1, m) 60 V(n) = recv3(4, i, k, i, m) 60 V(n) = recv3(4, i, k, i</pre>	
 ▷ 0.2915 PARABOLA@53 ▷ 0.2287 RIEMANN@44 ★ ▷ 0.2028 PARABOLA@36 ▷ 0.2009 PARABOLA@117 ▷ 0.1858 PARABOLA@24 ▷ 0.1847 SWEEPY@86 ★ ▷ 0.1771 STATES@64 ★ ▷ 0.1723 EVOLVE@70 ★ ▷ 0.1638 REMAP@111 ★ ▷ 0.1619 PARABOLA@129 ▷ 0.1670 PARABOLA@120 	<pre>65 v(n) = recv3(3, j, k, 1, m) 66 w(n) = recv3(4, i, k, i, m) 4 ////////////////////////////////////</pre>	
▷ 0.2915 PARABOLA@53 ▷ 0.2287 RIEMANN@44 ★ ▷ 0.2028 PARABOLA@36 ▷ 0.2009 PARABOLA@36 ▷ 0.2009 PARABOLA@117 ▷ 0.1858 PARABOLA@24 ▷ 0.1858 PARABOLA@24 ▷ 0.1771 STATES@64 ★ ▷ 0.1773 EVOLVE@70 ★ ▷ 0.1638 REMAP@111 ★ ▷ 0.1619 PARABOLA@129 ● ▷ 0.1070 PARABOLA@139 ●	 65 v(n) = recv3(3, j, k, 1, m) 66 w(n) = recv3(4, i, k, i, m) 66 w(n) = recv3(4, i, k, i, m) 7 Info - Line 51 A loop starting at line 51 was scoped with errors. See Scoping Tool for more information. "ppmlr" (called from "sweepz") was not inlined because I/O was detected in "volume". "ppmlr" (called from "sweepz") was not inlined because the enclosing loop body did not completely flatten. A loop starting at line 105 is flat (contains no external calls). A loop starting at line 105 was not vectorized because it does not map well onto the target architecture. A loop starting at line 51 was unrolled 8 times. A loop starting at line 51 was not vectorized because it contains a call to subroutine "ppmlr" on line 81. A loop starting at line 51 was not vectorized because it contains a call to subroutine "ppmlr" on line 81. 	
 ▷ 0.2915 PARABOLA@53 ▷ 0.2287 RIEMANN@44 ★ ▷ 0.2028 PARABOLA@36 ▷ 0.2009 PARABOLA@117 ▷ 0.1858 PARABOLA@24 ▷ 0.1847 SWEEPY@86 ★ ▷ 0.1771 STATES@64 ★ ▷ 0.1638 REMAP@111 ★ ▷ 0.1619 PARABOLA@129 ▷ 0.1070 PARABOLA@139 ▷ 0.0938 SWEEPZ@120 	 65 v(n) = recv3(3, j, k, 1, m) 66 w(n) = recv3(4, i, k, i, m) 66 w(n) = recv3(4, i, k, i, m) 7 Info - Line 51 A loop starting at line 51 was scoped with errors. See Scoping Tool for more information. "ppmlr" (called from "sweepz") was not inlined because I/O was detected in "volume". "ppmlr" (called from "sweepz") was not inlined because the enclosing loop body did not completely flatten. A loop starting at line 105 is flat (contains no external calls). A loop starting at line 105 was not vectorized because it does not map well onto the target architecture. A loop starting at line 51 was not vectorized because it contains a call to subroutine "ppmIr" on line 81. A loop starting at line 52 was not vectorized because it contains a call to subroutine "ppmIr" on line 81. 	
 ▷ 0.2915 PARABOLA@53 ▷ 0.2287 RIEMANN@44 ★ ▷ 0.2028 PARABOLA@36 ▷ 0.2009 PARABOLA@117 ▷ 0.1858 PARABOLA@24 ▷ 0.1847 SWEEPY@86 ★ ▷ 0.1771 STATES@64 ★ ▷ 0.1638 REMAP@111 ★ ▷ 0.1619 PARABOLA@129 ▷ 0.1070 PARABOLA@139 ▷ 0.0938 SWEEPZ@120 ★ ▷ 0.0936 SWEEPZ@121 ★ 	 65 v(n) = recv3(3, j, k, 1, m) w(n) = recv3(4, i, k, i, m) 66 v(n) = recv3(4, i, k, i, m) 7/nfo - Line 51 vas scoped with errors. See Scoping Tool for more information. "ppmlr" (called from "sweepz") was not inlined because I/O was detected in "volume". "ppmlr" (called from "sweepz") was not inlined because the enclosing loop body did not completely flatten. A loop starting at line 105 is flat (contains no external calls). A loop starting at line 105 was not vectorized because it does not map well onto the target architecture. A loop starting at line 105 was not vectorized because it contains a call to subroutine "ppmlr" on line 81. A loop starting at line 51 was not vectorized because it contains a call to subroutine "ppmlr" on line 81. A loop starting at line 59 is flat (contains no external calls). 	
 ▷ 0.2915 PARABOLA@53 ▷ 0.2287 RIEMANN@44 ★ ▷ 0.2028 PARABOLA@36 ▷ 0.2009 PARABOLA@117 ▷ 0.1858 PARABOLA@24 ▷ 0.1847 SWEEPY@86 ★ ▷ 0.1771 STATES@64 ★ ▷ 0.1618 REMAP@111 ★ ▷ 0.1619 PARABOLA@129 ▷ 0.1070 PARABOLA@139 ▷ 0.0938 SWEEPZ@120 ★ ▷ 0.0936 SWEEPZ@121 ★ ▷ 0.0935 SWEEPZ@122 	 65 v(n) = recv3(3, j, k, 1, m) w(n) = recv3(4, i, k, i, m) 66 v(n) = recv3(4, i, k, i, m) 7/nfo - Line 51 vas scoped with errors. See Scoping Tool for more information. "ppmlr" (called from "sweepz") was not inlined because I/O was detected in "volume". "ppmlr" (called from "sweepz") was not inlined because the enclosing loop body did not completely flatten. A loop starting at line 105 is flat (contains no external calls). A loop starting at line 105 was not vectorized because it does not map well onto the target architecture. A loop starting at line 105 was not vectorized because it contains a call to subroutine "ppmlr" on line 81. A loop starting at line 51 was not vectorized because it contains a call to subroutine "ppmlr" on line 81. A loop starting at line 59 was not vectorized because it contains a call to subroutine "ppmlr" on line 81. A loop starting at line 59 was not vectorized because a better candidate was found at line 60. A loop starting at line 50 was not vectorized because a better candidate was found at line 60. 	
▷ 0.2915 PARABOLA@53 ▷ 0.2287 RIEMANN@44 ★ ▷ 0.2028 PARABOLA@36 ▷ 0.2009 PARABOLA@117 ▷ 0.1838 PARABOLA@24 ▷ 0.1847 SWEEPY@86 ★ ▷ 0.1723 EVOLVE@70 ★ ▷ 0.1723 EVOLVE@70 ★ ▷ 0.1638 REMAP@111 ★ ▷ 0.1619 PARABOLA@129 ▷ 0.1619 PARABOLA@139 ▷ 0.0938 SWEEPZ@120 ★ ▷ 0.0936 SWEEPZ@122 ★ ▷ 0.0930 SWEEPZ@122 ★ ▷ 0.0925 SWEEPX1@59 ★	 65 v(n) = recv3(3, j, k, 1, m) w(n) = recv3(4, i, k, i, m) 66 w(n) = recv3(4, i, k, i, m) 7/nfo - Line 51 A loop starting at line 51 was scoped with errors. See Scoping Tool for more information. "ppmlr" (called from "sweepz") was not inlined because I/O was detected in 'volume". "ppmlr" (called from "sweepz") was not inlined because the enclosing loop body did not completely flatten. A loop starting at line 105 is flat (contains no external calls). A loop starting at line 105 was not vectorized because it does not map well onto the target architecture. A loop starting at line 51 was not vectorized because it contains a call to subroutine "ppmlr" on line 81. A loop starting at line 52 was not vectorized because it contains a call to subroutine "ppmlr" on line 81. A loop starting at line 59 is flat (contains no external calls). A loop starting at line 59 was not vectorized because a better candidate was found at line 60. A loop starting at line 60 is flat (contains no external calls). A loop starting at line 60 is flat (contains no external calls). 	
 ▷ 0.2915 PARABOLA@53 ▷ 0.2287 RIEMANN@44 ★ ▷ 0.2009 PARABOLA@36 ▷ 0.2009 PARABOLA@117 ▷ 0.1838 PARABOLA@24 ▷ 0.1847 SWEEPY@86 ★ ▷ 0.1723 EVOLVE@70 ★ ▷ 0.1619 PARABOLA@129 ▷ 0.1070 PARABOLA@129 ▷ 0.1070 PARABOLA@139 ▷ 0.0936 SWEEPZ@120 ★ ▷ 0.0930 SWEEPZ@122 ★ ▷ 0.0901 SWEEPZ@22 	 65 v(n) = recv3(3, j, k, 1, m) w(n) = recv3(4, i, k, i, m) 66 w(n) = recv3(4, i, k, i, m) 7/nfo - Line 51 A loop starting at line 51 was scoped with errors. See Scoping Tool for more information. "ppmlr" (called from "sweepz") was not inlined because I/O was detected in 'volume". "ppmlr" (called from "sweepz") was not inlined because the enclosing loop body did not completely flatten. A loop starting at line 105 is flat (contains no external calls). A loop starting at line 105 was not vectorized because it does not map well onto the target architecture. A loop starting at line 51 was not vectorized because it contains a call to subroutine "ppmlr" on line 81. A loop starting at line 52 was not vectorized because it contains a call to subroutine "ppmlr" on line 81. A loop starting at line 59 is flat (contains no external calls). A loop starting at line 59 was not vectorized because a better candidate was found at line 60. A loop starting at line 60 is flat (contains no external calls). A loop starting at line 60 was not vectorized because a better candidate was found at line 60. A loop starting at line 60 was not vectorized because it does not map well onto the target architecture. 	
 ▷ 0.2915 PARABOLA@53 ▷ 0.2287 RIEMANN@44 ★ ▷ 0.2009 PARABOLA@36 ▷ 0.2009 PARABOLA@117 ▷ 0.1888 PARABOLA@24 ▷ 0.1847 SWEEPY@86 ★ ▷ 0.1771 STATES@64 ★ ▷ 0.1638 REMAP@111 ★ ▷ 0.1619 PARABOLA@129 ▷ 0.1070 PARABOLA@129 ▷ 0.1070 PARABOLA@129 ▷ 0.0938 SWEEPZ@120 ★ ▷ 0.0930 SWEEPZ@121 ★ ▷ 0.0925 SWEEPZ@22 ★ ▷ 0.0898 SWEEPZ@23 ★ 	 65 v(n) = recv3(3, j, k, 1, m) w(n) = recv3(4, i, k, i, m) 66 v(n) = recv3(4, i, k, i, m) 7 Info - Line 51 vas scoped with errors. See Scoping Tool for more information. "ppmlr" (called from "sweepz") was not inlined because I/O was detected in "volume". * "ppmlr" (called from "sweepz") was not inlined because the enclosing loop body did not completely flatten. A loop starting at line 105 is flat (contains no external calls). A loop starting at line 105 was not vectorized because it does not map well onto the target architecture. A loop starting at line 51 was not vectorized because it contains a call to subroutine "ppmlr" on line 81. A loop starting at line 52 was not vectorized because it contains a call to subroutine "ppmlr" on line 81. A loop starting at line 59 is flat (contains no external calls). A loop starting at line 59 was not vectorized because a better candidate was found at line 60. A loop starting at line 60 is flat (contains no external calls). A loop starting at line 60 was not vectorized because it does not map well onto the target architecture. A loop starting at line 60 was not vectorized because a better candidate was found at line 60. A loop starting at line 60 was unrolled 8 times. A loop starting at line 60 was unrolled 8 times. A loop starting at line 60 was unrolled 8 times. A loop starting at line 60 was unrolled 8 times. A loop starting at line 60 was unrolled 8 times. A loop starting at line 60 was unrolled 8 times. 	
 ▷ 0.2915 PARABOLA@53 ▷ 0.2287 RIEMANN@44 ★ ▷ 0.2009 PARABOLA@36 ▷ 0.2009 PARABOLA@117 ▷ 0.1888 PARABOLA@24 ▷ 0.1847 SWEEPY@86 ★ ▷ 0.1771 STATES@64 ★ ▷ 0.1618 REMAP@111 ★ ▷ 0.1619 PARABOLA@129 ▷ 0.1070 PARABOLA@129 ▷ 0.1070 PARABOLA@129 ▷ 0.0938 SWEEPZ@120 ★ ▷ 0.0930 SWEEPZ@121 ★ ▷ 0.0901 SWEEPZ@22 ★ ▷ 0.0898 SWEEPZ@23 ★ ▷ 0.0892 STATES@50 	 65 v(n) = recv3(3, j, k, 1, m) w(n) = recv3(4, i, k, i, m) 66 v(n) = recv3(4, i, k, i, m) 7 Info - Line 51 vas scoped with errors. See Scoping Tool for more information. "ppmlr" (called from "sweepz") was not inlined because I/O was detected in "volume". "ppmlr" (called from "sweepz") was not inlined because the enclosing loop body did not completely flatten. A loop starting at line 105 is flat (contains no external calls). A loop starting at line 105 was not vectorized because it does not map well onto the target architecture. A loop starting at line 51 was not vectorized because it contains a call to subroutine "ppmlr" on line 81. A loop starting at line 52 was not vectorized because it contains a call to subroutine "ppmlr" on line 81. A loop starting at line 59 is flat (contains no external calls). A loop starting at line 59 was not vectorized because a better candidate was found at line 60. A loop starting at line 60 is flat (contains no external calls). A loop starting at line 60 was not vectorized because it does not map well onto the target architecture. A loop starting at line 60 was not vectorized because a better candidate was found at line 60. A loop starting at line 60 was not vectorized because it does not map well onto the target architecture. A loop starting at line 60 was unrolled 8 times. A loop starting at line 71 is flat (contains no external calls). A loop starting at line 71 is flat (contains no external calls). 	
▷ 0.2915 PARABOLA@53 ▷ 0.2287 RIEMANN@44 ★ ▷ 0.2028 PARABOLA@36 ▷ 0.2009 PARABOLA@117 ▷ 0.1858 PARABOLA@24 ▷ 0.1887 SWEEPY@86 ▷ 0.1771 STATES@64 ▷ 0.1773 EVOLVE@70 ▷ 0.1619 PARABOLA@129 ▷ 0.1619 PARABOLA@139 ▷ 0.1619 PARABOLA@129 ▷ 0.1070 PARABOLA@129 ▷ 0.0936 SWEEPZ@120 ▷ 0.0930 SWEEPZ@122 ▷ 0.0930 SWEEPZ@122 ▷ 0.0901 SWEEPZ@22 ▷ 0.0898 SWEEPZ@23 ▷ 0.0880 SWEFT@105	 65 v(n) = recv3(3, j, k, 1, m) w(n) = recv3(4, i, k, i, m) 66 v(n) = recv3(4, i, k, i, m) 7 Info - Line 51 was scoped with errors. See Scoping Tool for more information. "ppmlr" (called from "sweepz") was not inlined because I/O was detected in "volume". "ppmlr" (called from "sweepz") was not inlined because the enclosing loop body did not completely flatten. A loop starting at line 105 is flat (contains no external calls). A loop starting at line 105 was not vectorized because it does not map well onto the target architecture. A loop starting at line 51 was not vectorized because it contains a call to subroutine "ppmIr" on line 81. A loop starting at line 51 was not vectorized because it contains a call to subroutine "ppmIr" on line 81. A loop starting at line 59 is flat (contains no external calls). A loop starting at line 59 was not vectorized because a better candidate was found at line 60. A loop starting at line 60 is flat (contains no external calls). A loop starting at line 60 was not vectorized because it does not map well onto the target architecture. A loop starting at line 60 was not vectorized because a better candidate was found at line 60. A loop starting at line 60 was not vectorized because it does not map well onto the target architecture. A loop starting at line 60 was unrolled 8 times. A loop starting at line 60 was unrolled 8 times. A loop starting at line 71 is flat (contains no external calls). A loop starting at line 71 was vectorized because it does not map well onto the target architecture. A loop starting at line 71 was vectorized. 	

			sweepz.f90: Loop@51
		Call or I/O a 4: /hor 3: /hor 2: /hor 1: /hor Call or I/O a	t line 81 of sweepz.f90 ne/users/heidi/reveal/volume.f90:34 ne/users/heidi/reveal/volve.f90:21 ne/users/heidi/reveal/ppmlr.f90:73 ne/users/heidi/reveal/sweepz.f90:81 t line 81 of sweepz.f90
Name	Туре	Scope	Info
wl@remap I	Scalar	Unresolved	FAIL: Possible recurrence involving this object.
			FAIL: Possible resolvable recurrence involving this object.
xa	Array	Unresolved	FAIL: Possible recurrence involving this object.
			FAIL: Possible resolvable recurrence involving this object.
			WARN: LastPrivate of array may be very expensive.
xa0	Array	Unresolved	FAIL: Possible recurrence involving this object.
			FAIL: Possible resolvable recurrence involving this object.
			WARN: LastPrivate of array may be very expensive.
i	Scalar	Private	N
j	Scalar	Private	
ĸ	Scalar	Private	
m	Scalar	Private	
n etheta	Scalar	Private	
theta	Scalar	Private	
gamm	Scalar	Shared	
isz	Scalar	Shared	
js	Scalar	Shared	Parallelization
ks	Scalar	Shared	inhibitor messages
mypey	Scalar	Shared	/ minutor messages
4			are provided to
First/Last Privat	e		
Enable First	rivate		assist user with
Enable Lasti	Private		analysis
Find Name:			

Review Scoping Results (continued)

000		2	Reveal OpenMP Scoping				
Scope Loops Scoping Results							
			sweepy.f90: Loop@35				
	Call or I/O at line 62 of sweepy.f90 4: /home/users/heidi/reveal/volume.f90:34 3: /home/users/heidi/reveal/evolve.f90:21						
Name	Туре	Scope	Info				
ks	Scalar	Shared					
mypey	Scalar	Shared	Reveal identifies				
ndim	Scalar	Shared	calls that prevent				
npey	Scalar	Shared					
recv1	Array	Shared	paraliciization				
send2	Array	Shared					
svel RI	Scalar	Shared	WARN: atomic reduction operator required unless reduction fully				
zdy	Array	Shared					
ZXC	Array	Shared					
zya	Array	Shared					
First/Last Private Enable FirstP Enable La Find Name:	Reve share down	eal identifies ed reduction the call cha	Reduction None				
Insert Directive	Show	Directive	Close				

Review Scoping Results (continued)

• • •			X Reveal OpenMP Scoping	
Scope Lo	oops Sco	ping Resu	ts Footnote	
			m_mat_an.c: Loop@39	
Name	Туре	Scope	Info	
a0i	Scalar	Private		
a0r	Scalar	Private		😑 😑 💿 🛛 📉 Reveal OpenMP Scoping
a1i	Scalar	Private		Constants Constant Desuter Fastants
a1r	Scalar	Private		Scope Loops Scoping Results Footnote
a2i	Scalar	Private		Scoping Footnote
a2r	Scalar	Private		
bOi	Scalar	Private		
bOr	Scalar	Private		
b1i	Scalar	Private		
b1r	Scalar	Private		
b2i	Scalar	Private		Assume no overlap between lattice[*].mom[*] and tempmom[*][*]
b2r	Scalar	Private		
j	Scalar	Private		
a	Scalar	Shared	WARN: Assuming no overlap with other objects.	
	Sealar	Charad	INFO, additional detail.	
U	Stalar	Silareu	INFO: additional dotail	
c	Scalar	Shared	WARN' Assuming no overlan with other objects	
6	Scalar	Shared	INFO: additional detail	
First/Las	t Private—		Reduction	
Enab	le FirstPriv	/ate	None	
Enab	le LastPriv	/ate		
Find Nan	ne:			
, ma nan				
Insert D	irective	Show Dire	ctive	Close

CRA

Review Scoping Results (continued)

Comparison of the second								
Scope Loops Scoping Results								
fluxk.f: Loop@28								
Name	Туре	Scope	Info					
fsk	Array	Private	WARN: LastPrivate of array may be very expensive.					
			FAIL: FirstPrivate/Shared Scope Conflict.					
fsk ^I	Array	Private	FAIL: FirstPrivate/Shared Scope Conflict.					
i	Scalar	Private						
j	Scalar	Private						
k	Scalar	Private						
I	Scalar	Private	FAIL: Ambigous store conflict.					
qs	Array	Private	WARN: LastPrivate of array may be v	very expensive.				
			FAIL: Last defining iteration not kno	wn for variable that may be live on exit.				
qsp	Scalar	Private						
qspk	Scalar	Private						
dq	Array	Shared						
dtv	Array	Shared						
ind	Scalar	Shared	FAIL: conflicting requirements, unable to scope.					
jcmax	Scalar	Shared						
kadd -First/Last	Scalar Private	Shared		Reduction				
Enable	e FirstPriva	ate						
				None				
Enable LastPrivate								
Find Name:								
Insert Directive Show Directive Close								

View Loops through Call Chain

Generate OpenMP Directives

! Directive inserted by Cray Reveal. May be incomplete. **!\$OMP** parallel do default(none) & **!\$OMP&** unresolved (dvol,dx,dx0,e,f,flat,p,para,q,r,radius,svel,u,v,w, **!\$OMP&** xa,xa0) & !\$OMP& private (i,j,k,m,n,\$\$ n,delp2,delp1,shock,temp2,old flat, & onemfl,hdt,sinxf0,gamfac1,gamfac2,dtheta,deltx,fractn, & !\$OMP& !\$OMP& ekin) !\$OMP& shared (gamm,isy,js,ks,mypey,ndim,ngeomy,nlefty,npey,nrighty, & !\$OMP& recv1,send2,zdy,zxc,zya) do k = 1. ks do i = 1, isy radius = zxc(i+mypey*isy) ! Put state variables into 1D arrays, padding with 6 ghost zones do m = 1, npey do j = 1, js $n = j + js^{*}(m-1) + 6$ r(n) = recv1(1,k,j,i,m)p(n) = recv1(2,k,j,i,m)u(n) = recv1(4,k,j,i,m)v(n) = recv1(5,k,j,i,m)w(n) = recv1(3,k,j,i,m)f(n) = recv1(6,k,j,i,m)enddo enddo do j = 1, jmax n=j+6

Reveal generates OpenMP directive with illegal clause marking variables that need addressing

Validate User Inserted Directives

Look For Vectorization Opportunities

QUESTIONS?