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Reveal
• Reduce effort associated with 

adding OpenMP to MPI programs

• Get insight into optimizations 
performed by the Cray compiler

• Add OpenMP as a first step to 
parallelize loops that will target 
GPUs

• Track requests to memory and 
evaluate the bandwidth 
contribution of objects within a 
program for loop tuning
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1. Identify key high-level loops

2. Perform parallel analysis and scoping

3. Add OpenMP directive layer of parallelism

4. Analyze performance for further optimization, specifically vectorization of 
innermost loops

5. Port parallel loops to GPU with OpenMP target directives

Approach to Adding Parallelism
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subroutine sweepz
…
do j = 1, js
do i = 1, isz
radius = zxc(i+mypez*isz)
theta  = zyc(j+mypey*js)
do m = 1, npez
do k = 1, ks
n = k + ks*(m-1) + 6
r(n) = recv3(1,j,k,i,m)
p(n) = recv3(2,j,k,i,m)
u(n) = recv3(5,j,k,i,m)
v(n) = recv3(3,j,k,i,m)
w(n) = recv3(4,j,k,i,m)
f(n) = recv3(6,j,k,i,m)
enddo
enddo
…
call ppmlr
do k = 1, kmax
n = k + 6
xa (n) = zza(k)
dx (n) = zdz(k)
xa0(n) = zza(k)
dx0(n) = zdz(k)
e  (n) = p(n)/(r(n)*gamm)+0.5 &

*(u(n)**2+v(n)**2+w(n)**2)
enddo
call ppmlr

…
enddo
enddo

subroutine sweepz
…
do j = 1, js
do i = 1, isz
radius = zxc(i+mypez*isz)
theta  = zyc(j+mypey*js)
do m = 1, npez
do k = 1, ks
n = k + ks*(m-1) + 6
r(n) = recv3(1,j,k,i,m)
p(n) = recv3(2,j,k,i,m)
u(n) = recv3(5,j,k,i,m)
v(n) = recv3(3,j,k,i,m)
w(n) = recv3(4,j,k,i,m)
f(n) = recv3(6,j,k,i,m)
enddo
enddo
…
call ppmlr
do k = 1, kmax
n = k + 6
xa (n) = zza(k)
dx (n) = zdz(k)
xa0(n) = zza(k)
dx0(n) = zdz(k)
e  (n) = p(n)/(r(n)*gamm)+0.5 &

*(u(n)**2+v(n)**2+w(n)**2)
enddo
call ppmlr

…
enddo
enddo

The Problem – How Do I Parallelize This Loop?
● How do I know this is a good loop to parallelize?
● What prevents me from parallelizing this loop?
● Can I get help building a directive?

subroutine ppmlr

call boundary
call flatten
call paraset(nmin-4, nmax+5, para, dx, xa)

call parabola(nmin-4,nmax+4,para,p,dp,p6,pl,flat)
call parabola(nmin-4,nmax+4, para,r,dr,r6,rl,flat)
call parabola(nmin-4,nmax+4,para,u,du,u6,ul,flat)

call states(pl,ul,rl,p6,u6,r6,dp,du,dr,plft,ulft,&
rlft,prgh,urgh,rrgh)

call riemann(nmin-3,nmax+4,gam,prgh,urgh,rrgh,&
plft,ulft,rlft pmid umid)

call evolve(umid, pmid)  ß contains more calls

call remap ß contains more calls

call volume(nmin,nmax,ngeom,radius,xa,dx,dvol)

call remap ß contains more calls

return
end
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Gather loop statistics using the Cray performance tools and the Cray Compiling 
Environment (CCE) to determine which loops have the most work

• Helps identify high-level serial loops to parallelize
• Based on runtime analysis, approximates how much work exists within a loop

Loop Work Estimates
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• Set up loop work estimates experiment with Cray compiler and Cray performance 
tools

• user@login> module load PrgEnv-cray perftools-lite-loops

• Build program with Cray program library 
• –h pl=/full_path/program.pl

• Run program to get loop work estimates

Collect Loop Work Estimates 
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Example Loop Statistics

Table 2:  Loop Stats by Function

Loop  |    Loop  |   Loop  |  Loop  |  Loop  |Function=/.LOOP[.]
Incl |     Hit  |  Trips  | Trips  | Trips  | PE=HIDE
Time  |          |    Avg |   Min  |   Max  |

Total  |          |         |        |        |
|------------------------------------------------------------------------
| 8.995914 |      100 |      25 |      0 |     25 |sweepy_.LOOP.1.li.33
| 8.995604 |     2500 |      25 |      0 |     25 |sweepy_.LOOP.2.li.34
| 8.894750 |       50 |      25 |      0 |     25 |sweepz_.LOOP.05.li.49
| 8.894637 |     1250 |      25 |      0 |     25 |sweepz_.LOOP.06.li.50
| 4.420629 |       50 |      25 |      0 |     25 |sweepx2_.LOOP.1.li.29
| 4.420536 |     1250 |      25 |      0 |     25 |sweepx2_.LOOP.2.li.30
| 4.387534 |       50 |      25 |      0 |     25 |sweepx1_.LOOP.1.li.29
| 4.387457 |     1250 |      25 |      0 |     25 |sweepx1_.LOOP.2.li.30
| 2.523214 |   187500 |     107 |      0 |    107 |riemann_.LOOP.2.li.63
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View Source and Optimization Information
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Scope Selected Loop(s)

• Trigger dependence 
analysis 

• scope loops above 
given threshold
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Review Scoping Results

Parallelization 
inhibitor messages 

are provided to 
assist user with 

analysis

Loops with scoping 
information are 

flagged.  Red needs 
user assistance
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Review Scoping Results (continued)

Reveal identifies 
shared reductions 
down the call chain

Reveal identifies 
calls that prevent 

parallelization
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Review Scoping Results (continued)
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Review Scoping Results (continued)
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View Loops through Call Chain

Loop 
instances

Loop 
traceback
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! Directive inserted by Cray Reveal.  May be incomplete.
!$OMP  parallel do default(none)                                         &
!$OMP&   unresolved (dvol,dx,dx0,e,f,flat,p,para,q,r,radius,svel,u,v,w,  &
!$OMP&            xa,xa0)                                                &
!$OMP&   private (i,j,k,m,n,$$_n,delp2,delp1,shock,temp2,old_flat,       &
!$OMP&            onemfl,hdt,sinxf0,gamfac1,gamfac2,dtheta,deltx,fractn, &
!$OMP&            ekin)                                                  &
!$OMP&   shared  (gamm,isy,js,ks,mypey,ndim,ngeomy,nlefty,npey,nrighty, &
!$OMP&            recv1,send2,zdy,zxc,zya)
do k = 1, ks
do i = 1, isy
radius = zxc(i+mypey*isy)

! Put state variables into 1D arrays, padding with 6 ghost zones
do m = 1, npey
do j = 1, js
n = j + js*(m-1) + 6
r(n) = recv1(1,k,j,i,m)
p(n) = recv1(2,k,j,i,m)
u(n) = recv1(4,k,j,i,m)
v(n) = recv1(5,k,j,i,m)
w(n) = recv1(3,k,j,i,m)
f(n) = recv1(6,k,j,i,m)
enddo
enddo

do j = 1, jmax
n = j + 6

Generate OpenMP Directives

Reveal generates OpenMP
directive with illegal clause 
marking variables that need 

addressing  
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Validate User Inserted Directives 

User inserted directive 
with mis-scoped 

variable ‘n’ 

17



© 2019 Cray Inc.

Look For Vectorization Opportunities

Choose “Compiler 
Messages” view to 
access message 

filtering, then select 
desired type of 

message 

Choose “Compiler 
Messages” view to 
access message 

filtering, then select 
desired type of 

message 
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