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The	  Schrödinger	  equa'on	  provides	  the	  
founda'on	  for	  computa'onal	  studies	  of	  
chemical	  systems.	  

Calcula'on	  of	  the	  molecular	  orbitals	  (MOs)	  of	  
the	  hydrogen	  atom	  is	  trivial.	  

Calcula'ons	  on	  many-‐electron	  systems	  are	  much	  more	  challenging:	  

“the	  underlying	  physical	   laws	  necessary	   for	   the	  mathema5cal	   theory	  of	  a	   large	  part	  of	  
physics	  and	  the	  whole	  of	  chemistry	  are	  thus	  completely	  known,	  and	  the	  difficulty	  is	  only	  
that	  the	  exact	  applica5on	  of	  these	  laws	  leads	  to	  equa5ons	  much	  too	  complicated	  to	  be	  
soluble.”	  	  	  -‐	  	  Paul	  Dirac,	  1929	  

Erwin	  Schrödinger	   Paul	  Dirac	  

Intro to Computational Chemistry�



Many	  wavefunc'on	  theory	  (WFT)	  
methods	  exist	  for	  approxima'ng	  the	  
solu'on	  to	  the	  Schrödinger	  equa'on.	  
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Because	  of	  the	  large	  computa'onal	  cost	  
of	  more	  accurate	  WFT	  calcula'ons,	  they	  
are	  only	  prac'cal	  for	  systems	  containing	  
approximately	  20	  atoms	  or	  fewer.	  

1	  Minute	  at	  the	  CCSD(T)	  level	  

20	  Years	  at	  the	  CCSD(T)	  level	  

The Scaling Problem�



A	  

B	  

A	  –	  higher	  level	  theory	  
B	  –	  lower	  level	  theory	  

•  Approximate implementations of the idea:
QM/MM, ONIOM, FMO,...

•  However, we will address this problem in a 
way that exactly describes the boundary 
between subsystems. 

Projection-Based Embedding�



A	  

B	  

A	  –	  higher	  level	  theory	  
B	  –	  lower	  level	  theory	  

•  Approximate implementations of the idea:
QM/MM, ONIOM, FMO,...
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An	  illustra've	  example:	  	  DFT-‐in-‐DFT	  for	  ethanol	  
1.	  Perform	  a	  KS-‐DFT	  calcula4on	  to	  obtain	  a	  set	  of	  MOs:	  

f = h+ J[�] + v
xc

[�]
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f = h+ J[�] + v
xc

[�]

2.	  Par44on	  the	  MOs	  into	  
two	  sets.	  
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3.	  Perform	  a	  calcula4on	  
on	  subsystem	  A.	  

fA = h+ J[�A + �B ] + v
xc

[�A + �B ] + µPB

PB
↵� ⌘ h↵|

(
X

i2B

|�B
i ih�B

i |
)
|�i = [S�BS]↵�

fA = h+ J[�A + �B ] + v
xc

[�A + �B ] + µPB

fA = h+ J[�A + �B ] + v
xc

[�A + �B ] + µPB
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way that exactly describes the boundary 
between subsystems. 

An	  illustra've	  example:	  	  DFT-‐in-‐DFT	  for	  ethanol	  

Energy	  /	  Eh	  
DFT	  on	  full	  system	   -‐154.827984885	  

DFT-‐in-‐DFT	  embedding	   -‐154.827984883	  

Error	   0.000000002	  
PBE	  func4onal,	  6-‐31G*	  basis	  set	  

Manby	  et	  al.,	  JCTC,	  8,	  2564	  (2012).	  
Barnes	  et	  al.,	  JCP,	  139,	  024103	  (2013).	  

The	  projec+on-‐based	  embedding	  calcula+ons	  do	  not	  
introduce	  any	  error	  associated	  with	  the	  boundary	  
between	  subsystems.	  

The	  projec4on-‐based	  embedding	  
method	  has	  been	  implemented	  in	  the	  
Molpro	  soaware	  package.	  

Projection-Based Embedding�



Parallelism Through MBE �
Many-‐Body	  Expansion:	  

...	  to	  es4mate	  the	  WFT	  energy	  of	  the	  full	  system.	  

Calculate	  the	  
WFT	  energy	  
of	  each	  of	  the	  
monomers	  ...	  

...	  and	  each	  of	  
the	  dimers	  ...	  

+	  ...	  +	  

+	  ...	  +	  

First,	  divide	  a	  system	  into	  monomers.	  

Efficiency:	  

Accuracy:	  

The	  accuracy	  of	  projec4on-‐based	  embedding	  facilitates	  
very	  aggressive	  par44oning	  of	  the	  monomers:	  

Barnes	  et.	  al.,	  JCP,	  139,	  024103	  (2013).	  
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Lithium-Ion Batteries�

Structure	  of	  a	  lithium-‐ion	  ba=ery:	  

Proper'es	  of	  a	  good	  solvent:	  

Commercial	  Uses:	  

• 	  High	  dielectric	  constant	  
• 	  Liquid	  over	  a	  large	  temperature	  range	  
• 	  Inert	  with	  respect	  to	  the	  electrodes	  
• 	  Low	  viscosity	  

• 	  Forms	  an	  SEI	  
• 	  Stable	  against	  reduc4on/oxida4on	  
• 	  Non-‐toxic	  
• 	  Inexpensive	  



EC and DMC �

δ-‐	  δ+	  

δ+	   δ+	  

δ-‐	  

δ-‐	  

EC:	  
• 	  Molecular	  Dipole:	  7	  Debye	  
• 	  Dielectric	  Constant:	  90	  
• 	  Mel4ng	  Point:	  310	  K	  

DMC:	  
• 	  Molecular	  Dipole:	  1	  Debye	  
• 	  Dielectric	  Constant:	  3	  
• 	  Mel4ng	  Point:	  275	  K	  

Ethylene	  carbonate	  (EC)	  and	  dimethyl	  carbonate	  (DMC)	  are	  commonly	  used	  solvents	  in	  
commercial	  lithium-‐ion	  ba=eries.	  



Oxidative Decomposition�

Goal:	  Inves'gate	  the	  effect	  of	  solvent	  interac'ons	  on	  the	  oxida've	  stability	  of	  EC	  
and	  DMC.	  

Xing,	  Borodin,	  PCCP	  14,	  12838	  (2012)	  

When	  charging	  at	  high	  voltages,	  EC	  and	  DMC	  can	  
become	  oxidized	  by	  the	  cathode.	  	  This	  is	  o\en	  
followed	  by	  numerous	  oxida'on-‐induced	  
decomposi'on	  reac'ons:	  

Forma'on	  of	  a	  solid	  electrolyte	  
interphase	  (SEI)	  is	  necessary	  to	  prevent	  
excessive	  solvent	  decomposi'on.	  

Xu	  et	  al.,	  J.	  Phys.	  Chem.	  C	  111,	  7411	  (2007)	  



Why Not Use DFT?�

The	  B3LYP	  hole	  is	  delocalized	  across	  both	  molecules,	  while	  the	  HF	  hole	  
is	  localized	  on	  a	  single	  molecule.	  
	  
Other	  DFT	  func4onals	  (i.e.	  M05,	  M05-‐2X)	  also	  produce	  delocalized	  
holes.	  

B3LYP	  Electron	  Hole:	   HF	  Electron	  Hole:	  

The	  electron	  hole	  caused	  by	  oxida4on	  of	  a	  system	  of	  two	  EC	  molecules	  
is	  shown	  below,	  at	  both	  the	  B3LYP	  and	  HF	  levels	  of	  theory.	  



Embedding Strategy�

The	  embedding	  calcula'ons	  were	  performed	  
using	  NERSC’s	  Edison	  peta-‐flop	  system.	  

CCSD(T)–in–B3LYP–in–MM	  

128-‐Molecule	  Simula4on	  Cell:	   Overall	  Embedding	  Strategy:	  
1.  Run	  molecular	  dynamics	  simula4ons	  to	  

generate	  solvent	  configura4ons.	  
2.  Calculate	  the	  ver4cal	  ioniza4on	  energies	  for	  

many	  different	  solvent	  configura4ons	  using	  
CCSD(T)-‐in-‐B3LYP-‐in-‐MM	  embedding.	  

3.  Determine	  the	  adiaba4c	  oxida4on	  poten4als	  
and	  reorganiza4on	  energies	  using	  linear	  
response	  theory	  

More	  than	  3,000	  embedding	  calcula'ons	  were	  
performed,	  cos'ng	  approximately	  5,000,000	  CPU	  
hours.	  



Bulk Phase Results�
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FIG. 10. The IE of gas-phase EC (rMM = rDFT = rborder =
0.0) is plotted against R, the distance between the sp2 oxygen
and the mid-point between the two sp3 carbons. The calcu-
lations are performed in the aug-cc-pVTZ basis set using (a)
B3LYP theory and (b) CCSD(T) theory.

D. Bulk Calculations

Fig. 11 shows the results of electronically-
relaxed CCSD(T)-in-B3LYP-in-MM/aug-cc-pVTZ em-
bedding calculations on EC in both the EC and EC+

ensembles, using rborder = 2.5 Å, rDFT = 4.0 Å, and
rMM = 50.0 Å. The distribution of IEs is shown in
Fig. 11(a) for both ensembles, as well as Gaussian fits to
these ensembles. The standard deviations of the distri-
butions for the reduced and oxidized ensembles are 0.29
eV and 0.27 eV, respectively. These results are consis-
tent with linear response theory, which predicts that the
two distributions should follow Gaussian curves having
the same standard deviation.26 Because linear response
theory holds for this system, it is possible to use Eqs.
2 and 1 to construct Marcus parabolas corresponding to
transfer of an electron to the gas-phase; this is depicted
in Fig. 11(b).

Similarly, Fig. 12 shows the IE distributions for neat
DMC, EC in the EC:DMC mixture, and DMC in the
EC:DMC mixture. As shown in Table V, the oxidized
and reduced distributions for each of these systems have
standard deviations within approximately 10% of one an-
other. This small di�erence in standard deviations is
consistent with that of other systems that have been
identified as obeying linear response theory.26 We thus
conclude that, neglecting any oxidative decomposition
reactions, the oxidation of EC and DMC solvents can
be accurately treated using the assumptions of Marcus
theory.

Fig. 13(a) and Fig. 13(b) show the di�erence between
CCSD(T)-in-B3LYP-in-MM/aug-cc-pVTZ and B3LYP-
in-B3LYP-in-MM/aug-cc-pVTZ results for EC in the EC

  1

  2

P
ro

b
a

b
ili

ty (a)

10

12

0

2

7 8 9 10 11 12

F
(!

E
)

!E (eV)

(b)

"

!A

FIG. 11. (a) Equilibrium probability distributions, PM(�E),
of the IE of EC, �E, calculated using CCSD(T)-in-B3LYP-
in-MM/aug-cc-pVTZ electronically-relaxed embedding. “M”
corresponds either to the reduced state (R, black) or the oxi-
dized state (O, blue). The distributions have similar standard
deviations, implying that the linear response approximation is
accurate for this system. The best fit Gaussian distributions,
gM(�E), are indicated in solid lines. (b) Diabatic free energy
profiles constructed from the equilibrium distributions shown
in (a). The solid lines indicate the parabolas obtained from
�A and ⇤, which are determined by applying Eqs. 2 and 1.
The sets of data points near the minimum of each parabola
(i.e., the upper left and lower right sets of data points) were
obtained by applying FM(�E) = ���1ln (PM(�E)) + F ref

M ,
where F ref

M = ��1ln (gmax
M ) + ⇥MO�A, and gmax

M is the max-
imum of the Gaussian fit in (a). The linear free energy re-
lation FO(�E) � FR(�E) = �E was then applied to these
data points in order to obtain the other sets of data points
(i.e., the lower left and upper right sets of data points).

Molecule System Reduced ⌅ Oxidized ⌅
EC EC 0.29 0.27
DMC DMC 0.29 0.28
EC EC:DMC 0.33 0.31
DMC EC:DMC 0.29 0.33

TABLE V. Standard deviations, ⌅, of the IE distributions in
Fig. 11(a) and Fig. 12. All values are reported in eV.

ensemble and DMC in the DMC ensemble, respectively.
The black distributions are calculated in the gas-phase
(rborder = rDFT = rMM = 0.0 Å), while the blue distri-
butions are calculated in the condensed-phase (rborder =
2.5 Å, rDFT = 4.0 Å, rMM = 50.0 Å). These curves
average to about 0.4-0.5 eV, indicating that B3LYP-in-
B3LYP-in-MM embedding underestimates the IEs by a
relatively large amount relative to CCSD(T)-in-B3LYP-
in-MM embedding.

Although this di�erence is fairly substantial, one might
expect that the errors associated with treating subsystem
A at the DFT level could exhibit good cancellation of er-
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The black distributions are calculated in the gas-phase
(rborder = rDFT = rMM = 0.0 Å), while the blue distri-
butions are calculated in the condensed-phase (rborder =
2.5 Å, rDFT = 4.0 Å, rMM = 50.0 Å). These curves
average to about 0.4-0.5 eV, indicating that B3LYP-in-
B3LYP-in-MM embedding underestimates the IEs by a
relatively large amount relative to CCSD(T)-in-B3LYP-
in-MM embedding.

Although this di�erence is fairly substantial, one might
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Application of Linear Response Theory�
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eV and 0.27 eV, respectively. These results are consis-
tent with linear response theory, which predicts that the
two distributions should follow Gaussian curves having
the same standard deviation.26 Because linear response
theory holds for this system, it is possible to use Eqs.
2 and 1 to construct Marcus parabolas corresponding to
transfer of an electron to the gas-phase; this is depicted
in Fig. 11(b).
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EC:DMC mixture. As shown in Table V, the oxidized
and reduced distributions for each of these systems have
standard deviations within approximately 10% of one an-
other. This small di�erence in standard deviations is
consistent with that of other systems that have been
identified as obeying linear response theory.26 We thus
conclude that, neglecting any oxidative decomposition
reactions, the oxidation of EC and DMC solvents can
be accurately treated using the assumptions of Marcus
theory.
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FIG. 11. (a) Equilibrium probability distributions, PM(�E),
of the IE of EC, �E, calculated using CCSD(T)-in-B3LYP-
in-MM/aug-cc-pVTZ electronically-relaxed embedding. “M”
corresponds either to the reduced state (R, black) or the oxi-
dized state (O, blue). The distributions have similar standard
deviations, implying that the linear response approximation is
accurate for this system. The best fit Gaussian distributions,
gM(�E), are indicated in solid lines. (b) Diabatic free energy
profiles constructed from the equilibrium distributions shown
in (a). The solid lines indicate the parabolas obtained from
�A and ⇤, which are determined by applying Eqs. 2 and 1.
The sets of data points near the minimum of each parabola
(i.e., the upper left and lower right sets of data points) were
obtained by applying FM(�E) = ���1ln (PM(�E)) + F ref

M ,
where F ref

M = ��1ln (gmax
M ) + ⇥MO�A, and gmax

M is the max-
imum of the Gaussian fit in (a). The linear free energy re-
lation FO(�E) � FR(�E) = �E was then applied to these
data points in order to obtain the other sets of data points
(i.e., the lower left and upper right sets of data points).

Molecule System Reduced ⌅ Oxidized ⌅
EC EC 0.29 0.27
DMC DMC 0.29 0.28
EC EC:DMC 0.33 0.31
DMC EC:DMC 0.29 0.33

TABLE V. Standard deviations, ⌅, of the IE distributions in
Fig. 11(a) and Fig. 12. All values are reported in eV.

ensemble and DMC in the DMC ensemble, respectively.
The black distributions are calculated in the gas-phase
(rborder = rDFT = rMM = 0.0 Å), while the blue distri-
butions are calculated in the condensed-phase (rborder =
2.5 Å, rDFT = 4.0 Å, rMM = 50.0 Å). These curves
average to about 0.4-0.5 eV, indicating that B3LYP-in-
B3LYP-in-MM embedding underestimates the IEs by a
relatively large amount relative to CCSD(T)-in-B3LYP-
in-MM embedding.

Although this di�erence is fairly substantial, one might
expect that the errors associated with treating subsystem
A at the DFT level could exhibit good cancellation of er-
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on the union of subsystems A and B using a +1 charge
would often lead to the charge being localized outside of
subsystem A. As with the neutral case, the RCCSD(T)-
in-B3LYP embedding calculations use B3LYP reference
MOs obtained from the corresponding B3LYP-in-B3LYP
embedding calculations. To improve the convergence of
these initial B3LYP-in-B3LYP calculations, they are ini-
tialized with the B3LYP-in-B3LYPMOs from the neutral
case.

E. Selection of the Point Charge Representation of
Distant Atoms

Beyond the region treated at the DFT level of the-
ory, atoms are represented using point charges. These
calculations correspond to CCSD(T)-in-B3LYP-in-point
charge embedding. Here we describe the protocol for ob-
taining these point charges.

First, B3LYP-in-B3LYP/cc-pVDZ calculations were
performed on all molecules in an MD snapshot, using
the MD point charges for the point-charge region. The
Mulliken charges were then averaged across all molecules,
and were then scaled in such a manner as to reproduce
the average molecular dipole. Another set of B3LYP-
in-B3LYP/cc-pVDZ calculations were performed on the
same set of molecules, using these scaled Mulliken charges
for the point-charge region. The Mulliken charges result-
ing from this new set of calculations were similarly av-
eraged and scaled, and this procedure was iterated until
the magnitude of the scaled dipole changed by no more
than 0.01 Debye. Table 1 shows the point charges that
were obtained in this manner. These charges were used
for all molecules in the point-charge region, regardless of
the charge of subsystem A.

F. Electronic Relaxation of Subsystem B

When removing an electron from the embedded sub-
system A, it is important to allow the density of subsys-
tem B to relax in response. For this purpose, we perform
an iterative procedure as follows. First, a DFT-in-DFT
embedding calculation is performed on subsystem A with
a +1 charge, using the embedding potential correspond-
ing to the neutral system. The resulting density matrix is
then used to calculate an embedding potential for subsys-
tem B. A standard DFT-in-DFT embedding calculation
is then performed, but with subsystem B treated as the
active subsystem, and the oxidized subsystem A treated
as the environment subsystem. The above steps are then
repeated until the density of subsystem B is relaxed with
respect to the oxidation of subsystem A. The subsequent
CCSD(T)-in-DFT calculation on the oxidized subsystem
A is performed using the relaxed subsystem B density.

G. Acquiring Observable Quantities from the Embedding
Calculations

By applying the above embedding methodology to an
equilibrium ensemble of configurations, obtained via MD
simulation, it is possible to calculate the vertical ioniza-
tion potential. We denote this quantity as ⇥�E⇤0, where
�E is the vertical ionization energy of a single molecule
from a single MD configuration and the subscript indi-
cates that the configurations are sampled using an MD
force field in which all solvent molecules have a net neu-
tral charge.
The above quantity corresponds to the result of photo-

electron spectroscopy, and is thus a relevant experimental
observable; however, most oxidation experiments in the
liquid phase measure the adiabatic oxidation potential.12

This quantity can be calculated as

E =
�A

F
� Eref, (1)

where �A is the di⇥erence in Helmholtz free energies
between the neutral and oxidized systems, F is Faraday’s
constant, and Eref is the reference oxidation potential of
the Li+/Li electrode, 1.4 V. The value of �A can be
obtained from

�A =
1

2
(⇥�E⇤0 + ⇥�E⇤+1) , (2)

where ⇥�E⇤+1 is the vertical ionization energy averaged
over an ensemble in which the MD force field for the
molecule used for subsystem A has a net +1 charge.13

Additionally, we can calculate the Marcus reorganiza-
tion energy associated with oxidation of the solvent,

� =
1

2
(⇥�E⇤0 � ⇥�E⇤+1) , (3)

When an applied overpotential is much less than the re-
organization energy, the oxidation rate is under charge
transfer control, and when the overpotential is much
greater than the reorganization energy, the oxidation rate
is under mass transfer control. Thus the reorganization
energy indicates the overpotential range for which the
Tafel plot of the system is expected to exhibit a linear
slope.

III. RESULTS: METHOD ROBUSTNESS

We now summarize the primary sources of error in
these calculations, relative to the full WFT calculation.
Where applicable, we demonstrate the convergence of our
calculations with respect to available convergence param-
eters.

A. Errors Associated with the Distant Point Charges

As Fig. 3(a) illustrates, the point charge region is of
considerable importance to the IE of EC. These calcula-
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From	  these	  distribu4ons,	  it	  is	  possible	  to	  calculate	  the	  solvent	  
reorganiza4on	  energy	  and	  the	  free	  energy	  of	  oxida4on:	  
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Importance of the DMC Quadrupoles�

EC	  intermolecular	  interac5ons	  are	  primarily	  dipolar,	  while	  DMC	  intermolecular	  
interac5ons	  are	  largely	  quadrupolar.	  	  Ignoring	  the	  quadrupolar	  interac5ons	  
leads	  to	  underes5ma5on	  of	  the	  DMC	  reorganiza5on	  energy.	  
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FIG. 3. Contribution of the electronic relaxation of subsystem
B to the ionization energy of subsystem A, calculated with
rDFT = 4.0 Å and rMM = 50.0 Å.

the advantage that the calculation on the active molecule
can be performed using any level of theory.

III. RESULTS

A. Extent of Delocalization of the Electron Hole

In the preceding sections, we described a method for
calculating the IE of a single solvent molecule, even if
other nearby solvent molecules are more readily liable to
oxidation. In principle, this allows for the calculation
of a number of statistical properties of the bulk system;
however, it also invokes the assumption that the electron
hole of the vertically oxidized system is reasonably well
localized on a single molecule. If the electron hole is
instead delocalized across many solvent molecules, the
strategy described above would require modification.

We now perform a number of calculations to exam-
ine the extent of delocalization of the electron hole in
the oxidized system. The blue squares in Fig. 4 demon-
strate that at the B3LYP/aug-cc-pVDZ level of theory,
the electron hole is strongly delocalized across di⇥erent
solvent molecules. These calculations are run on a se-
ries of two-molecule systems, taken from the EC ensem-
ble. The two molecules were chosen by taking the active
molecule and a randomly chosen molecule within 4.0 Å
of the active molecule, using snapshots that are 500 ps
apart. In every case, the largest Mulliken charge on ei-
ther of the two molecules, �max, is close to +0.5, indi-
cating that the electron hole is evenly split between the
two molecules. The black circles in Fig. 4 show that
HF theory produces qualitatively di⇥erent results: �max

is always close to +1.0, indicating that the electron hole
is well localized on a single molecule. Fig. 5 provides an
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FIG. 4. Largest Mulliken charge (�max) on either molecule
in several two-molecule EC systems, calculated at the HF
(black, circles), unrestricted-HF (black, pluses), B3LYP (blue,
squares), unrestricted-B3LYP (blue, crosses), M05 (red, hol-
low diamonds), and M05-2X (red, triangles) levels of theory.
All calculations employed the aug-cc-pVDZ basis set.
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FIG. 5. Isosurface of the oxidized electron hole of a two
molecule EC system at ⇥ = 0.005 and calculated at the (a)
B3LYP/aug-cc-pVDZ and (b) HF/aug-cc-pVDZ levels of the-
ory.

example of the isosurface of the electron hole produced
at the B3LYP and HF levels of theory for one of these
systems. The black pluses and blue crosses in Fig. 4
demonstrate that the unrestricted versions of these meth-
ods (UB3LYP and UHF, respectively) yield results that
are nearly identical to the restricted open-shell versions
of the methods. Shown by the hollow red diamonds, the
MO5 functional is found to exhibit somewhat more local-
ization than B3LYP, but a significant amount of charge
is still shared between molecules. The red triangles show
that the related MO5-2X functional typically produces
highly localized electron holes upon oxidation, although
in four of the sixteen test cases, the MO5-2X functional
produces relatively delocalized holes.
To determine which method is correct, we first define

the delocalization energy,

Edeloc ⇥ �EAB �min {�EA,�EB} , (7)

where A and B correspond to one of the molecules in the
two-molecule systems described above, min {x, y} repre-
sents the minimum of x and y, �EAB is the IE of the

B3LYP:	   HF:	  

1.	  The	  projec'on-‐based	  embedding	  method	  
enables	  accurate	  mul'scale	  modeling.	  

2.	  This	  enables	  correc'on	  of	  errors	  from	  low-‐level	  
treatments:	  

3.	  It	  is	  essen'al	  to	  treat	  solvent	  interac'ons	  
accurately.	  
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FIG. 3. Contribution of the electronic relaxation of subsystem
B to the ionization energy of subsystem A, calculated with
rDFT = 4.0 Å and rMM = 50.0 Å.

the advantage that the calculation on the active molecule
can be performed using any level of theory.

III. RESULTS

A. Extent of Delocalization of the Electron Hole

In the preceding sections, we described a method for
calculating the IE of a single solvent molecule, even if
other nearby solvent molecules are more readily liable to
oxidation. In principle, this allows for the calculation
of a number of statistical properties of the bulk system;
however, it also invokes the assumption that the electron
hole of the vertically oxidized system is reasonably well
localized on a single molecule. If the electron hole is
instead delocalized across many solvent molecules, the
strategy described above would require modification.

We now perform a number of calculations to exam-
ine the extent of delocalization of the electron hole in
the oxidized system. The blue squares in Fig. 4 demon-
strate that at the B3LYP/aug-cc-pVDZ level of theory,
the electron hole is strongly delocalized across di⇥erent
solvent molecules. These calculations are run on a se-
ries of two-molecule systems, taken from the EC ensem-
ble. The two molecules were chosen by taking the active
molecule and a randomly chosen molecule within 4.0 Å
of the active molecule, using snapshots that are 500 ps
apart. In every case, the largest Mulliken charge on ei-
ther of the two molecules, �max, is close to +0.5, indi-
cating that the electron hole is evenly split between the
two molecules. The black circles in Fig. 4 show that
HF theory produces qualitatively di⇥erent results: �max

is always close to +1.0, indicating that the electron hole
is well localized on a single molecule. Fig. 5 provides an
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FIG. 4. Largest Mulliken charge (�max) on either molecule
in several two-molecule EC systems, calculated at the HF
(black, circles), unrestricted-HF (black, pluses), B3LYP (blue,
squares), unrestricted-B3LYP (blue, crosses), M05 (red, hol-
low diamonds), and M05-2X (red, triangles) levels of theory.
All calculations employed the aug-cc-pVDZ basis set.
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FIG. 5. Isosurface of the oxidized electron hole of a two
molecule EC system at ⇥ = 0.005 and calculated at the (a)
B3LYP/aug-cc-pVDZ and (b) HF/aug-cc-pVDZ levels of the-
ory.

example of the isosurface of the electron hole produced
at the B3LYP and HF levels of theory for one of these
systems. The black pluses and blue crosses in Fig. 4
demonstrate that the unrestricted versions of these meth-
ods (UB3LYP and UHF, respectively) yield results that
are nearly identical to the restricted open-shell versions
of the methods. Shown by the hollow red diamonds, the
MO5 functional is found to exhibit somewhat more local-
ization than B3LYP, but a significant amount of charge
is still shared between molecules. The red triangles show
that the related MO5-2X functional typically produces
highly localized electron holes upon oxidation, although
in four of the sixteen test cases, the MO5-2X functional
produces relatively delocalized holes.
To determine which method is correct, we first define

the delocalization energy,

Edeloc ⇥ �EAB �min {�EA,�EB} , (7)

where A and B correspond to one of the molecules in the
two-molecule systems described above, min {x, y} repre-
sents the minimum of x and y, �EAB is the IE of the

B3LYP:	   HF:	  

1.	  The	  projec'on-‐based	  embedding	  method	  
enables	  accurate	  mul'scale	  modeling.	  

2.	  This	  enables	  correc'on	  of	  errors	  from	  low-‐level	  
treatments:	  

3.	  Projec'on-‐based	  embedding	  facilitates	  
improved	  analysis	  of	  solvent	  interac'ons.	  
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