DA swarren@cray.com

Legal Disclaimer Suace

Information in this document is provided in connection with Cray Inc. products. No license, express or implied, fo any intellectual property rights is
granted by this document.

Cray Inc. may make changes to specifications and product descriptions at any time, without nofice.
All products, dafes and figures specified are preliminary based on current expectafions, and are subject to change without notice.

Cray hardware and soffware products may contain design defiects or errors known as errata, which may cause the product to deviate from
published specifications. Curment charactenzed emrata are available on request.

Cray uses codenames intemally to identify products thaf are in development and not yet publicly announced for release. Customers and other thind
parties are not authornized by Cray Inc. to use codenames in advertising, promotion or marketing and any use of Cray Inc. intemal codenames is at
the sole risk of the user.

Performance tests and ratings are measured using specific systems and/or components and reflect the approximate performance of Cray Inc.
products as measured by those tests. Any difference in system hardware or soffware design or configuration may affect actual performance.

The following are trademarks of Cray Inc. and are registered in the United Sfates and other countries: CRAY and design, SONEXION, URIKA and
YARCDATA. The following are trademarks of Cray Inc.: CHAPEL, CLUSTER CONNECT, CLUSTERSTOR, CRAYDOC, CRAYPAT, CRAYPORT,
DATAWARF, ECOPHLEX, LIBSCI, NODEKARE, REVEAL. The following system family marks, and associated model number marks, are
trademarks of Cray Inc.: CS, CX, XC, XE, XK, XMT and XT. The regisfered trademark LINUX is used pursuant to a sublicense from LMI, the
exclusive licensee of Linus Torvalds, owner of the mark on a worldwide basis. Other trademarks used on this website are the property of their

respective owners.

£ 2019 Cray Inc.

Outline cRas

 Make KNL run my code faster!
 Vectorization
« Cache blocking

e —-eXxclusive

© 2019 Cray Inc.

Optimizing for Intel Xeon Phi Knights Landing cRas

 Many KNL-specific optimizations involve MCDRAM in “Flat” mode
« Since Cori uses “cache” mode, these optimizations generally do not apply

* |f application can strong scale efficiently, can use enough nodes such that the
memory footprint/node is less than 16 GB and fit into MCDRAM

« KNL is an x86 processor, thus many of the things you would do for any x86
processor will apply

* |.e., work done to improve KNL performance will generally improve
performance on other modern processors as well

© 2019 Cray Inc.

KNL strengths and weaknesses cma~

 Strengths
« MCDRAM memory bandwidth
 Effectively a large L3 in “cache” mode (no dedicated L3 on KNL)
» Larger L2 per core (1 MB / 2-core tile)
* AVX512 vectors
 Allows more operations per cycle than previous generations of processors
« Weaknesses
* Clock GHz
 Affects scalar operations
« Optimization strategy
 Vectorize and/or cache block important kernels

© 2019 Cray Inc.

cCRANY

But first, a note about affinity...

Process / Thread / Memory Affinity SO

e Correct process, thread and memory affinity is the basis for
getting optimal performance on KNL. It is also essential for
guiding further performance optimizations.

— Process Affinity: bind MPI tasks to CPUs
— Thread Affinity: bind threads to CPUs allocated to its MPI process
— Memory Affinity: allocate memory from specific NUMA domains

e Our goal is to promote OpenMP standard settings for
portability. For example, OMP_PROC_BIND and OMP_PLACES
are preferred to Intel specific KMP_AFFINITY and
KMP_PLACE_THREADS settings.

The following NERSC slides
stolen from Helen. Thanks Helen!

DEPARTMENT OF Ofﬁce of

‘);1 ENERGY Science o

xthi.c SRas

« XTHI is a very useful application that will tell you whether or not you are getting
the expected placement behavior.

o https://github.com/olcf/XC30-Training/blob/master/affinity/Xthi.c

« Different compilers and MPI stacks have different affinity rules
* I.e., what works for Intel likely will not work for Cray or GNU

* Replace the call to your application binary to the xthi binary in your srun line to
check affinity.

« Can do this at any scale, but it's best to change the number of PEs to use a
single node to avoid confusion of the output.

© 2019 Cray Inc. 8

https://github.com/olcf/XC30-Training/blob/master/affinity/Xthi.c

“numactl -H” displays NUMA info 10 =

68-core Quad Cache node:
NUMA Domain 0: all 68 cores (272 logic cores)

yunhe@coriOl:> salloc -N 1 --qos=interactive -C knl,quad,cache -t 30:00
salloc: Granted job allocation 5291739

yunhe@nid02305:> numact! -H

available: 1 nodes (0)
nodeQOcpus:01234567891011121314151617 18192021 222324252627 282930313233343536373839404142A43
44 4546 47 48495051 5253 54555657 5859606162636465666768697071727374757677 78798081 828384858687
888990919293949596979899 100101 102103104105106107108109110111112113114115116117 118119120121 122
123124 125126 127 128 129130131 132133134 135136137 138139140141 142 143 144 145 146 147 148 149 150 151 152 153
154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170171172173 174175176177 178 179 180 181 182 183 184
185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210211 212 213 214 215
216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
247 248 248 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271

node O size: 96762 MB
node O free: 93067 MB
node distances:

e B » The quad,cache mode has only 1 NUMA node with all
0: 10 CPUs on the NUMA node O (DDR memory)
« The MCDRAM is hidden from the numactl -H
command (it is a cache).

U.S. DEPARTMENT OF Omce Of
6 EN ERGY Science -28=

Can We Just Do a Naive Srun?

Example: 16 MPI tasks x 8 OpenMP threads per task on a single 68-core KNL
quad,cache node:

% export OMP_NUM_THREADS=8

% export OMP_PROC_BIND=spread (other choice are “close”,”master”,”true”,”false”)

% export OMP_PLACES=threads (other choices are: cores, sockets, and various
ways to specify explicit lists, etc.)

% srun -n 16 ./xthi |sort -kd4n,6n

Hello from rank O, thread 0, on nid02304. (core affinity = 0)

Hello from rank O, thread 1, on nid02304. (core affinity = 144) (on physical core 8)
Hello from rank O, thread 2, on nid02304. (core affinity = 17)

Hello from rank O, thread 3, on nid02304. (core affinity = 161) (on physical core 25)
Hello from rank O, thread 4, on nid02304. (core affinity = 34)

Hello from rank O, thread 5, on nid02304. (core affinity = 178) (on physical core 42)
Hello from rank O, thread 6, on nid02304. (core affinity = 51)

Hello from rank O, thread 7, on nid02304. (core affinity = 195) (on physical core 59)
Hello from rank 1, thread 0, on nid02304. (core affinity = 0)

Hello from rank 1, thread 1, on nid02304. (core affinity = 144)

It is @ mess!

U.S. DEPARTMENT OF Ofﬁce of

EN ERGY Science - 29=

Importance of -c and --cpu_bind OptE:;’%?Il et

* The reason: 68 is not divisible by #MPI tasks!
— Each MPI task is getting 68x4/#MPI tasks of logical cores as the domain size
— MPI tasks are crossing tile boundaries

* Set number of logical cores per MPI task (-c) manually by wasting
extra 4 cores on purpose: 256/#MPIl_tasks per_node.

— Meaning to use 64 cores only on the 68-core KNL node, and spread the
logical cores allocated to each MPI task evenly among these 64 cores.

— Now it looks good!

— % srun -n 16 -c 16 --cpu_bind=cores ./xthi
Hello from rank 0, thread 0, on nid09244. (core affinity = 0)
Hello from rank 0, thread 1, on nid09244. {(core affinity = 136)

Hello from rank O, thread 2, on nid09244. {core affinity = 1)
Hello from rank O, thread 3, on nid09244. (core affinity = 137)

.-‘:"":-:_ U.5. DEPARTMENT OF Dﬂ-’iﬂe Df

. FENERGY scicnce Y

Now It Looks Good!

EARS

MPI rank 0

MPI rank 1

MPI rank 2

MPIl rank 3

MPI rank 4

MPI rank 5

MPI rank 15

U.S. DEPARTMENT OF

ENERGY

Process/thread affinity are good! (Marked first 6 and last MPI tasks only)

83

“Zots, ¥ ST, P>
A AR AAQ 5
NS0 1939 N

| RN A "

18
86
154
222
36
104
172
240
52
120
188
256

Office of
Science

S R 22 23 24 25 26 27 28 29
155 156 157 158 159 160 161 170
238
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51
53 54 55 56 57 58 59 60 61 62 63
196 197 198 199
- T G

Essential Runtime Settings for Process/Thread
Affinity

e Use srun -c and --cpu_bind flags to bind tasks to CPUs

— -c <n> (or --cpus-per-task=n) allocates (reserves) n CPUs per task

(process). It helps to evenly spread MPI tasks, can use up to n
OpenMP threads per MPI task.

— Use --cpu_bind=cores (no hyperthreads) or --cpu_bind=threads (if
hyperthreads are used)

e Use OpenMP envs: OMP_PROC_BIND, OMP_PLACES to fine pin
each thread to a subset of CPUs allocated to the host task
— Different compilers may have different implementations

— The following provide compatible thread affinity among Intel, GNU and
Cray compilers:

OMP_PROC_BIND=true # Specifying threads may not be moved between CPUs
OMP_PLACES=threads # Specifying a thread should be placed on a single CPU

« Verify with XTHI before running your code!

- 32 -

cCRANY

But second... Dynamic vs Static linking on KNL

Dynamic vs Static Linking for Qbox on KNL Smas

 Lines 248 — 249 in gb.C require glibc, which is a collection of dynamic libraries in
many current operating systems

« iIf (getlogin() '=0)
cout << "<user> " << getlogin() << " </user>" << end];

« Performance can be greatly increased on KNL for statically linked executables.

© 2019 Cray Inc. 15

Options to link statically =mace

« Can statically link in Cray Libsci libraries (executable remains dynamic) to alleviate some
of the performance loss by setting:

« LIBS = -WI,-Bstatic -Isci_cray mpi_mp -Isci_cray mp \
-Ifftw3f_mpi -lfftw3f _omp -[fitw3f -Ifftw3_mpi
-Ifftw3 “omp -Ifftw3 -WI,-Bdynamic

« Or compile fully static but add extra compile flags to gb.C:

. '-Dmain_:stealth%/(){return 0;} char* stealth(){return getenv("USER");} int main' -
Dgetlogin=stealth

« Or one could simply modify the code in gb.C to use getenv() instead of getlogin() and
compile fully static.

© 2019 Cray Inc. 16

Dynamic vs Static Linking for Qbox on KNL Smas

* For a 256 node, 880 atom Qbox run using 32 MPI ranks/node and 2 OpenMP
threads/rank with nrowmax set to 256 yields the following results:

Dynamic Static Dynamic Linking
Linking Linking with Statically

Linked Cray
Libsci libraries

max time 330 s 198 s 215 s
(run time)

© 2019 Cray Inc. 17

Example
Analysis and
Optimizations:

Vectorization

© 2019 Cray Inc.

What Is vectorization? P

 Vectorization is the practice of converting an algorithm to work on a set of values
simultaneously instead of a single value one-by-one.

What prevents vectorization?

« Complexity in loops which the compiler can not interpret
* Indirect memory accesses
 Logical statements
« Recurrences on variables

© 2019 Cray Inc. 19

How To Know If Your Loops Are Vectorizing Smas

%%% Loopmar-rk Legend %%%
¢ CCE Can prOVide “Iis.ting” flles Wlth Primary Loop Type Modifiers
compilation which will give an easily
interpreted and detailed descripton T Tt o, Tt
Of every I|ne IN your source A - Pattern matched a - atomic memory operation
 -hlist=a b - blocked
. . C - Coll d - nditional and/or mputed
« Intel and GNU compiler provide T T TR one anren comenne
similar capabilities. D - Deleted
E - Cloned
o])] F - Flat - No calls f - fused
 Use the listing file to determine if 6 - mecelerated G partitioned
your changes allow the compiler to | -
apply better optimizations I - Inlined i - interchanged
M - Multithreaded m — partitioned

* You do NOT need to execute the
code to check if the Comp”el‘ n - non-blocking remote transfer

applies optimizations 0 bartian

R - Rerolling r — unrolled
s — shortloop
V - Vectorized w — unwound

+ - More messages listed at end of listing

© 2019 Cray Inc. 20

Example Loop

ftn-6254 ftn:
A loop starting at line 68 was not vectorized because a recurrence was found on "pf"

67.
68.
69.
70.
11.
2.
73.
4.
75.
76.
17 .
78.
79.

R e e e T = T e = S e S S S S G Rt

at line 71.

N NN NDDDNDNDDNDNDDDNDDNDNDDNDND

3
3
3
3
3
3
3
3
3
3
3
3

PF = 0.0
-—< DO 44030 I
AV = B(I
PB = PF
PF = C(I
IF ((D(I)
AA = E(I
1 + G(I
BB = R(I
1 - U(I
2 - W(I
A(I) = AV

--> 44030 CONTINUE

VECTOR LP44030,

File

D(I+1)) .LT
- E(I-1) +
+ G(I-1) -
+ S(I-1) +
- U(I-1) +
+ W(I-1) -
(AA + BB +
1p44030.1f,

 There is a recurrence on the scalar ‘PF’

9 X <=3 o -
HHHHHO
| ~— N S~ S~ ~—

g

Line

+ + 4+

68

» Use the ‘explain’ tool to learn more about what a recurrence is
> explain ftn-6254

© 2019 Cray Inc.

cCRANY

Example

© 2019 Cray Inc.

4500
4000
3500
3000

n
32500

= 2000
1500
1000

500

Baseline Performance
Single Core

knl hsw
m baseline

bdwl

cCRANY

What's Preventing Vectorization? cmacr

» Let's do a vector dependency analysis assuming VL=2

Compiler would promote

08. + 1 2 3—--< DO 44030 I = 2, N
scalars to vectors
70. 1 2 3 PR = PF
71. 1 2 3 PF = C(I)
72 1 2 3 IF ((D(I) + D(I+1)) .LT. 0.) PF = -C(I+1)
78. 1 2 3 A(I) = AV * (AA + BB + PF - PB + Y(I) - Z2(I)) + A(I)
Compiler will not promote
PF to a 3 element vector
2 1 2 2 2 1
PB X PF PF xC|3 A X PB,PF — PF| 2
3 2 3 4 3 3

* Vectorization may be possible with modification, but loop is not concurrent safe

© 2019 Cray Inc.

What can we do to vectorize this loop? SR

« Convert PF from a scalar to a vector (1-D array)

« Warning! Be cognizant of how changing this variable may affect other
regions of the code

* |Is PF a global or local variable? Is the final result of PF used
elsewhere?

 May need to use a temporary variable array for the loop and store
back into PF if needed

 Eliminates the need for the PB scalar variable in the loop

© 2019 Cray Inc.

Optimization changes

« What optimizations did the compiler apply to our new version?

66.
67.
68.
69.
70.
71.
2.
73.
74 .
75.
76.

A(I)

1.

ftn-6005

A loop

ftn-6204

A loop

Vr2--<
Vr?2
Vr?2
Vr2
Vr2
Vr2
Vr2
Vr2
Vr2
Vr2

el e e el e e
DN NDNDNDND NN

[
N

Vr2—-—>

ftn: SCALAR
starting at

ftn: VECTOR
starting at

VPEF (1) = 0.
DO 44031 I

=G X @E A

N
|
+ 1 4+ + 1+

p
[
I
i
<

44031 CONTINUE

LP44030, File = 1p44030.f, Line
line 67 was unrolled 2 times.

LP44030, File = 1p44030.f, Line
line 67 was vectorized.

67

67

+ Y (I)

z(I))

» How does the performance of this version compare with the original?

© 2019 Cray Inc.

|

cCRANY

Original vs Vectorized performance SR

bdw1l

Performance Single Core

11000
10000
9000
8000
7000
6000
5000

4000
3000
2000
1000 -
0
knl hsw

Hm baseline

Mflops

© 2019 Cray Inc.

Example
Analysis and
Optimizations:

Cache blocking

© 2019 Cray Inc.

Data Reuse will be important cma~

« Data reuse will be critical to performance
» Reuse out of MCDRAM will reduce requirements on main memory
» Reuse out of lower levels of cache will lower requirements on MCDRAM

* In order to know how to cache block properly we need to know the trip counts of
loops and the sizes of various arrays as accurately as possible

© 2019 Cray Inc. 28

A SIMPLE EXAMPLE

© 2019 Cray Inc.

C =AY
« 2D 5-point Laplacian
do j =1, 8
do i =1, 16
d(iJj) = U(i-l,j) + u(i+1Jj) &
- 4*u(i,j) &
+ u(i,j-1) + u(i,j+1)
end do
end do

« Simple cache structure for this example:
« Assume each cache line holds 4 array elements
* And cache can hold 12 lines of u data

* No cache reuse between outer loop iterations

BLOCKING = STRIPMINE + INTERCHANGE SRas

4 N 4 N

Interchange

doj =1, 8 do j =1, 8 s do IBLOCK = 1, 16, 4

do i =1, 16 ——" > do IBLOCK = 1, 16, 4 ———>do j =1, 8

d(i,j) = stencil [———> do i = IBLOCK, IBLOCK+3 do 1 = IBLOCK, IBLOCK+3

end do d(i,j) = stencil d(i,j) = stencil

end do end do end do
end do end do
end do end do
Blocked!

N N AN /

© 2019 Cray Inc.

BLOCKING TO INCREASE REUSE cRas

© 2019 Cray Inc.

 Block the inner loop

do IBLOCK = 1, 16, 4

do j =1, 8
do i = IBLOCK, IBLOCK + 3
d(i,j) = u(i-1,3j) + u(i+l,j) &
- 4*u(i,j) &
+ u(i,j-1) + u(i,j+1)
end do
end do
end do

 Now we have reuse of the j+1 data

31

EVEN BETTER! cRas

 [terate over 4x4 blocks for better spatial locality

do JBLOCK = 1, 8, 4
do IBLOCK = 1, 16, 4
do j = JBLOCK, JBLOCK + 3
do i = IBLOCK, IBLOCK + 3

d(i)j) = U(i—l,j) + U(i+1,j) &
- 4*u(i,j) &
+ u(i,j-1) + u(i,j+1)
end do
end do
end do

end do

e CCE has directives for this

e 1di i,
& Idir$ blockable(i,j)

« 1dir$ blockingsize(4)

© 2019 Cray Inc.

Example
Analysis and
Optimization:

miniGhost

© 2019 Cray Inc.

Example app: miniGhost cmas

* “‘mini-app” from the NERSC8 procurement.
« 27-point 3-D stencil application

 Simulates diffusion

 Like most stencil codes, it is main memory bandwidth bound
« Data reuse will lessen contention for memory accesses

© 2019 Cray Inc. 34

Main compute loop

« Craypat suggests the following loop is about ~50% of the run time

2BB., 4+ Bo——————— - < DO K = 1, NZ
289. + b b————————— < DO J = 1, NY

290, b b Vb-————— < DO I =1, NX

291, b b Vb

292, b b Vb SLICE BACK = GRID(I-1,J-1,K-1) GRID(I-1,J,E-1) GRID(I-1,J+1,K-1)
293, b b Vb GRID(I ,J-1,E-1) GRID(I ,J,E-1) + GRID(I ,J+1,K-1)
204, b b Vb GRID(I+1,J-1,K-1) GRID(I+1,J,E-1) GRID(I+1,J+1,K-1)
295, b b Vb

296, b b Vb SLICE MINE = GRID{I-1,J-1,K) GRID{I-1,J,K) GRID({I-1,J+1,K) +
297, b b Vb GRID(I ,J-1,K) GRID(I ,J,K) + GRID(I ,J+1,K) +
298, b b Vb GRID(I+1,J-1,K) GRID(I+1,J,K) GRID(I+1,J+1,K)
299, b b Vb

300. b b Vb SLICE FRONT = GRID(I-1,J-1,E+1) GRID(I-1,J,K+1) GRID (I-1,J+1,K+1)
301. b b Vb GRID(I ,J-1,K+1) GRID(I ,J,E+1) GRID(I ,J+1,E+1)
302. b b Vb GRID(I+1,J-1,K+1) GRID(I+1,J,K+1) GRID (I+1, J+1,E+1)
303, b b Vb

304, b b Vb WORK(I,J,¥) = (SLICE BACK + SLICE MINE + SLICE FRONT } / 27.0

305, b b Vb

306. b b Vb-————- > END DO

307. b B > END DO

308, be——————— o > END DO

+ o+

o

+ 4+

cCRANY

» CCE does vectorize and also attempts to cache block the inner loop, but can we

do better?

© 2019 Cray Inc.

35

Listing file explanations =

 CCE may attempt to cache block for L2 based upon the targeted architecture.

* Generally, L1 is too small and L3 is too “slow”

ftn-6294
4 loop

ftn-6049
4 loop

ftn-6294
4 loop

ftn-60459
4 loop

ftn-&6049
4 loop

ftn-&204
4 loop

© 2019 Cray Inc

ftn: VECICE
starting at

ftn: SCALAR
starting at

frn: VECTOR
starting at

ftn: S5CRLAEE
starting at

ftn: SCALLE
starting at

frn: VECTOR
starting at

MG STENCIL 3DZ7PT, File = MG STENCIL COMPS.F, Line = 287
line 287 wa=s not vectorized because a better candidate was found at line 289,

HG_STEHCIL_BDETPT, File = HG_STEHCIL_CDHPS.F, Line = 287
line 287 was blocked with block =ize 8.
HG_STENCIL_EDE?PT, File = HG_STENCIL_CDHPS.F, Line = 288

line 288 was not vectorized because a better candidate was found at line 289,

cn
cn

MG STENCIL 3DZ7PT, File = MG STENCIL COMPS.F, Line = 2
line 288 was blocked with block =ize &.

MG STENCIL 3DZ7PT, File = MG STENCIL COMPS.F, Line = 289
line 289 was blocked with bBlock =ize Z56.
MG STENCIL 3DZ7PT, File = MG STENCIL COMPS.F, Line = 289

line 289 was wvectorized.

36

Blocking = Stripmine + Interchange S~

287. + lo———————— < DO KX = 1, NZ, block k
288, + 1 Z—————————— < DO JJ = 1, NY¥, block 3

289, + 1 2 3———————- < DO II = 1, NX, block i

290, + 1 2 3 4—————— < DO K = K, EE+(block k-1)

2891, + 1 2 3 4 5-———<¢ DO J = JJ, JJ+(block j-1)

292, 12345 V-—x DO I = II, II+(block i-1)

293, 123457V

294, 123457V SLICE BACK = GRID(I-1,J-1,KE-1) + GRID(I-1,J,¥-1) + GRID(I-1,J+1,K-1) + &
295, 123457V GRID(I ,J-1,K-1) + GRID(I ,J,K-1) + GRID(I ,J+1,K-1) + &

296, 123457V GRID(I+1,J-1,K-1) + GRID{I+1,J,E-1) + GRID(I+1,J+1,K-1)

297, 123457V

298, 123457V SLICE MINE = GRID(I-1,J-1,K) + GRID(I-1,J,E) + GRID(I-1,J+1,K) + &
299, 123457V GRID(I ,J-1,E) + GRID(I ,J,E) + GRID(I ,J+1,K) + &

300. 123457V GRID(I+1,J-1,K) + GRID(I+1,J,K) + GRID(I+1,J+1,K)

301. 123457V

302. 123457V SLICE FRONT = GRID(I-1,J-1,E+l) + GRID(I-1,J,E+1l) + GRID(I-1,J+1,H+1l) + &
303. 123457V GRID(I ,J-1,E+1) + GRID(I ,J,E+1) + GRID(I ,J+1,E+1) + &

304, 123457V GRID(I+1,J-1,K+1) + GRID{I+1,J,E+l) + GRID(I+1,J+1,K+1)

305. 123457V

306. 123457V WORK (I,J,K) = (SLICE BACK + SLICE MINE + SLICE FRONT) / 27.0

307. 123 4c¢5

308. 12345 V--3> END DO

309. 123 4 5-—-3> END DO

310. 12 3 4-cn > END DO

311. 12 3——————— > END DO

312. 1 Zommmm - > END DO

313. y > END DO

© 2019 Cray Inc. 37

Listing file explanations

ftn-6306
L loop

ftn-6306
A loop

ftn-6303
A loop

ftn-6303
L loop

ftn-6303
L loop

ftn-6204
L loop

ftn: VECICR
starting at

ftn: VECTOR
starting at

ftn: VECTCR
starting at

ftn: VECTCR
starting at

ftn: VECICR
starting at

ftn: VECICR
starting at

© 2019 Cray Inc.

MG STENCIL 3D27PT, File = MG STENCIL CCOMPS5.F, Line = 287

line 287 was not wvectorized because the iteration space i=s too irregular.

MG STENCIL 3D27PT, File = MG STENCIL COMP5.F, Line = 288

line 288 was not wvectorized because the iteration space i=s too irregular.

MG STENCIL 3D27PT, File = MG STENCIL COMPS5.F, Line = 289
line 289 was not vectorized because an inter-loop dependence relation is

MG STENCIL 3D27PT, File = MG STENCIL COMPS.F, Line = 200
line 290 was not vectorized because an inter-loop dependence relation is

MG STENCIL 3D27PT, File = MG STENCIL COMPS5.F, Line = 201
line 2591 was not wvectorized because an inter-loop dependence relation is

HG_STEHCIL_SDETPT, File = HG_STEHCIL_CDHPS.F, Line = 2892
linme 292 was wvectorized.

cCcCRANY”

conmplicated.

complicated.

complicated.

38

How to set the correct block sizes cmas

 Typically, you want a larger amount of the inner iteration with smaller amounts in
the other loops

» Depends on the loop characterization and what data should be / could be /
need to be reused

« Powers of 2 generally are best if full index can not be held in cache

» Depending on the particular problem size, a proper cache blocking can provide a
50% speed-up for this particular loop on KNL

 May see smaller impact on earlier Xeon processors since L2 misses are
supported by an L3 cache.

© 2019 Cray Inc. 39

Summary SRas

« Code Characterization is an important first step in preparing for KNL
» Target Science
« Target Scaling
» Hotspot identification

Process affinity is critical for run performance

Statically linked binaries likely to perform better than dynamically linked binaries.

KNL node is different from XEON node
« Single node optimizations will be an early focus
» A properly designed kernel will help with optimization efforts
» Vectorization is important and will become even more so with future processors

Data reuse is important, but how important will depend on memory footprints and access patterns

© 2019 Cray Inc. 40

QUESTIONS?

cray.com &)
@cray _inc ¥

linkedin.com/company/cray-inc-/ in

