
© 2018 Arm Limited

Ryan Hulguin

ryan.hulguin@arm.com

HPC Senior Applications Engineer

Arm Debugging
and Profiling Tools

Tutorial

Hosted By NERSC

July 15, 2020

© 2018 Arm Limited2

Agenda

• Arm Software for Debugging and Profiling

• Debugging with DDT

• Generating Performance Reports

• Profiling with MAP

• Using Arm tools with Python

© 2018 Arm Limited

Arm Software

© 2018 Arm Limited4

Arm Forge
An interoperable toolkit for debugging and profiling

The de-facto standard for HPC development
• Available on the vast majority of the Top500 machines in the world
• Fully supported by Arm on x86, IBM Power, Nvidia GPUs, etc.

State-of-the art debugging and profiling capabilities
• Powerful and in-depth error detection mechanisms (including memory debugging)
• Sampling-based profiler to identify and understand bottlenecks
• Available at any scale (from serial to parallel applications running at petascale)

Easy to use by everyone
• Unique capabilities to simplify remote interactive sessions
• Innovative approach to present quintessential information to users

Very user-friendly

Fully Scalable

Commercially supported
by Arm

© 2018 Arm Limited5

Arm Performance Reports
Characterize and understand the performance of HPC application runs

Gathers a rich set of data
• Analyzes metrics around CPU, memory, IO, hardware counters, etc.
• Possibility for users to add their own metrics

Build a culture of application performance & efficiency awareness
• Analyzes data and reports the information that matters to users
• Provides simple guidance to help improve workloads’ efficiency

Adds value to typical users’ workflows
• Define application behaviour and performance expectations
• Integrate outputs to various systems for validation (e.g. continuous integration)
• Can be automated completely (no user intervention)

Relevant advice
to avoid pitfalls

Accurate and astute
insight

Commercially supported
by Arm

© 2018 Arm Limited6

Run and ensure application correctness
Combination of debugging and re-compilation

• Ensure application correctness with Arm DDT scalable debugger
• Integrate with continuous integration system.
• Use version control to track changes and leverage Forge’s built-in VCS support.

Examples:
$> ddt --offline aprun –n 48 ./example
$> ddt --connect aprun –n 48 ./example

© 2018 Arm Limited7

Visualize the performance of your application

• Measure all performance aspects with Arm MAP parallel profiler
• Identify bottlenecks and rewrite some code for better performance

Examples:
$> map --profile -n 48 ./example

© 2018 Arm Limited

Debugging with DDT

© 2018 Arm Limited9

Arm DDT – The Debugger

Who had a rogue behaviour ?

• Merges stacks from processes and threads

Where did it happen?

• leaps to source

How did it happen?

• Diagnostic messages

• Some faults evident instantly from source

Why did it happen?

• Unique “Smart Highlighting”

• Sparklines comparing data across processes

Run

with Arm tools

Identify
a problem

Gather info
Who, Where, How,

Why

Fix

© 2018 Arm Limited10

Preparing Code for Use with DDT

As with any debugger, code must be compiled with the debug flag typically -g

It is recommended to turn off optimization flags i.e. –O0

Leaving optimizations turned on can cause the compiler to optimize out some variables and
even functions making it more difficult to debug

© 2018 Arm Limited11

Segmentation Fault

In this example, the application crashes with a segmentation error outside of DDT.

What happens when it runs under DDT?

© 2018 Arm Limited12

Segmentation Fault in DDT

DDT takes you to the exact line where Segmentation fault occurred, and you can pause and
investigate

© 2018 Arm Limited13

Invalid Memory Access

The array tab is a 13x13 array, but the application is trying to write a value to tab(4198128,0)
which causes the segmentation fault.

i is not used, and x and y are not initialized

© 2018 Arm Limited14

caption

Track Your Changes in a Logbook

© 2018 Arm Limited15

Ah… Integer
overflow!

© 2018 Arm Limited16

New Bugs from Latest Changes

© 2018 Arm Limited

Arm DDT Demo

© 2018 Arm Limited18

It works… Well, most of the time

A strange behaviour where the
application “sometimes” crashes is a
typical sign of a memory bug

Arm DDT is able to force the crash
to happen

•I am buggy
AND not
buggy. How
about that?

SCHRODIN
BUG !

© 2018 Arm Limited19

Advanced Memory Debugging

© 2018 Arm Limited20

Heap debugging options available

basic
•Detect invalid pointers
passed to memory
functions
(e.g. malloc, free,
ALLOCATE,
DEALLOCATE,...)

check-fence
•Check the end of an
allocation has not been
overwritten when it is
freed.

free-protect
•Protect freed memory
(using hardware
memory protection) so
subsequent read/writes
cause a fatal error.

Added goodiness
•Memory usage,
statistics, etc.

Fast free-blank
•Overwrite the bytes of
freed memory with a
known value.

alloc-blank
•Initialise the bytes of
new allocations with a
known value.

check-heap
•Check for heap
corruption (e.g. due to
writes to invalid
memory addresses).

realloc-copy
•Always copy data to a
new pointer when re-
allocating a memory
allocation (e.g. due to
realloc)

Balanced check-blank
•Check to see if space
that was blanked when
a pointer was
allocated/freed has
been overwritten.

check-funcs
•Check the arguments of
addition functions
(mostly string
operations) for invalid
pointers.

Thorough

See user-guide:

Chapter 12.3.2

© 2018 Arm Limited21

Guard pages (aka “Electric Fences”)

4 kBytes

(typically

)

MEMORY ALLOCATION
GUARD
PAGE

GUARD
PAGE

MEMORY ALLOCATION
GUARD
PAGE

GUARD
PAGE

• A powerful feature…:

• Forbids read/write on guard pages throughout the whole execution

(because it overrides C Standard Memory Management library)

• … to be used carefully:

• Kernel limitation: up to 32k guard pages max (“mprotect fails” error)

• Beware the additional memory usage cost

© 2018 Arm Limited22

Five great things to try with Allinea DDT

The scalable print
alternative

Stop on variable change
Static analysis warnings

on code errors

Detect read/write
beyond array bounds

Detect stale memory
allocations

© 2018 Arm Limited23

Arm DDT cheat sheet
Load the environment module

• $ module load allinea-forge

Prepare the code

• $ cc -O0 -g myapp.c -o myapp.exe

Start Arm DDT in interactive mode

• $ ddt srun -n 8 ./myapp.exe arg1 arg2

Or use the reverse connect mechanism

• On the login node:

• $ ddt &

• (or use the remote client) <- Preferred method

• Then, edit the job script to run the following command and submit:

• ddt --connect srun -n 8 ./myapp.exe arg1 arg2

© 2018 Arm Limited

Generating
Performance Reports

© 2018 Arm Limited25

Profiling
Profiling is central to understanding and improving application performance.

No

No

Profile
Yes

Yes

Yes

Refine the
Profile

File I/O

Memory

CPU

No

No

Buffers, data formats,
in-memory filesystems

Collectives, blocking,
non-blocking, topology,

load balance

Bandwidth/latency,
cache utilization

Vectors, branches,
integer, floating point

Yes

Identify Hotspots Focus Optimization

50x

10x

5x

2x

Communication

© 2018 Arm Limited26

Arm Performance Reports
High-level view of application performance shows low write rate.

© 2018 Arm Limited27

After the fix, write rate has improved 41.6x
Eliminating file open/close bottleneck has dramatically improved I/O performance.

© 2018 Arm Limited

Performance Reports
Demo

© 2018 Arm Limited29

caption

LAMMPS IO Performance Report Suggests Using MPI
Profiler

© 2018 Arm Limited30

Built-in Timers vs Arm MAP

© 2018 Arm Limited

Break

© 2018 Arm Limited

Profiling with MAP

© 2018 Arm Limited33

Small data files

<5% slowdown

No instrumentation

No recompilation

Arm MAP – The Profiler

© 2018 Arm Limited34

Glean Deep Insight from our Source-Level Profiler

Track memory usage across the
entire application over time

Spot MPI and OpenMP
imbalance and overhead

Optimize CPU memory and
vectorization in loops

Detect and diagnose I/O
bottlenecks at real scale

© 2018 Arm Limited35

Profile of 2d Laplace Solver with Jacobi Iteration

© 2018 Arm Limited36

Tracking Largest Change

// Compare newly computed value with old value

diff = fabs(grid2[i][j] – grid1[i][j]);

// Track largest change between new and old values

maxDiff = diff > maxDiff ? Diff : maxDiff;

If (diff > maxDiff)

then maxDiff= diff;

Else

maxDiff = maxDiff;

© 2018 Arm Limited37

Conditional Removal from Innermost Loop

20 % faster, also operation is now vectorized

© 2018 Arm Limited38

Initial profile of CloverLeaf shows surprisingly unequal I/O
Each I/O operation should take about the same time, but it’s not the case.

© 2018 Arm Limited39

Symptoms and causes of the I/O issues
Sub-optimal file format and surprise buffering.

• Write rate is less than 14MB/s.

• Writing an ASCII output file.

• Writes not being flushed until buffer is full.

• Some ranks have much less buffered data than others.

• Ranks with small buffers wait in barrier for other ranks to finish flushing their buffers.

© 2018 Arm Limited40

Solution: use HDF5 to write binary files
Using a library optimized for HPC I/O improves performance and portability.

© 2018 Arm Limited41

Solution: use HDF5 to write binary files
Using a library optimized for HPC I/O improves performance and portability.

• Replace Fortran write statements with HDF5 library calls.

• Binary format reduces write volume and can improve data precision.

• Maximum transfer rate now 75.3 MB/s, over 5x faster.

• Note MPI costs (blue) in the I/O region, so room for improvement.

© 2018 Arm Limited

Arm Map Handson

© 2018 Arm Limited43

Arm MAP: Python profiling

• Launch command
• $ python ./laplace1.py slow 100 100

• Profiling command
• $ map --profile python ./laplace1.py slow 100 100
• --profile: non-interactive mode
• --output: name of output file

• Display profiling results
• $ map laplace1.map

Laplace1.py

[…]
err = 0.0
for i in range(1, nx-1):
for j in range(1, ny-1):
tmp = u[i,j]
u[i,j] = ((u[i-1, j] + u[i+1, j])*dy2 +
(u[i, j-1] + u[i, j+1])*dx2)*dnr_inv

diff = u[i,j] - tmp
err += diff*diff

return numpy.sqrt(err)
[…]

© 2018 Arm Limited44

Naïve Python loop (laplace1.py slow 100 1000)

© 2018 Arm Limited45

Optimizing computation on NumPy arrays

Naïve Python loop

err = 0.0
for i in range(1, nx-1):
for j in range(1, ny-1):
tmp = u[i,j]
u[i,j] = ((u[i-1, j] + u[i+1, j])*dy2 +
(u[i, j-1] + u[i, j+1])*dx2)*dnr_inv
diff = u[i,j] - tmp
err += diff*diff

return numpy.sqrt(err)

NumPy loop

u[1:-1, 1:-1] =
((u[0:-2, 1:-1] + u[2:, 1:-1])*dy2 +
(u[1:-1,0:-2] + u[1:-1, 2:])*dx2)*dnr_inv

return g.computeError()

© 2018 Arm Limited46

NumPy array notation (laplace1.py numeric 1000 1000)
This is 10 times more iterations than was computed in the previous profile

© 2018 Arm Limited47

Arm MAP cheat sheet
Load the environment module (manually specify version)

• $ module load allinea-forge

Follow the instructions displayed to prepare the code

• $ cc -O3 -g myapp.c -o myapp.exe

• Edit the job script to run Arm MAP in “profile” mode

• $ map --profile -n 8 ./myapp.exe arg1 arg2

Open the results

• On the login node:

• $ map myapp_Xp_Yn_YYYY-MM-DD_HH-MM.map

• (or load the corresponding file using the remote client connected to the remote system or locally)

• $ map --connect myapp_Xp_Yn_YYYY-MM-DD_HH-MM.map

© 2018 Arm Limited48

Six Great Things to Try with Allinea MAP

Find the peak memory
use

Fix an MPI imbalance Remove I/O bottleneck

Make sure OpenMP
regions make sense

Improve memory access
Restructure for
vectorization

© 2018 Arm Limited

Cori Specific Settings

© 2018 Arm Limited50

Configure the remote client
Install the Arm Remote Client

https://developer.arm.com/products/software-development-tools/hpc/downloads/download-arm-forge

Connect to the cluster with the remote client

• Open your Remote Client

• Create a new connection: Remote Launch ➔ Configure ➔ Add

– Hostname: <username>@cori.nersc.gov

– Remote installation directory:

/usr/common/software/allinea-forge/20.1-Suse-15.0-x86_64

https://developer.arm.com/products/software-development-tools/hpc/downloads/download-arm-forge

© 2018 Arm Limited51

Examples for hands-on session

Examples are available at /global/cfs/cdirs/training/2020/arm-tools/

ddt/ddt_demo

ddt/memory_debugging

perf-report/

map/

python/

© 2018 Arm Limited

Questions?

5353 © 2018 Arm Limited

Thank You!
Danke!
Merci!
谢谢!
ありがとう!
Gracias!
Kiitos!
감사합니다
धन्यवाद

