
Tips When Using
Cray MPI

1

Legal Disclaimer
Information in this document is provided in connection with Cray Inc. products. No license, express or implied, to any intellectual property rights is granted
by this document.

Cray Inc. may make changes to specifications and product descriptions at any time, without notice.

All products, dates and figures specified are preliminary based on current expectations, and are subject to change without notice.

Cray hardware and software products may contain design defects or errors known as errata, which may cause the product to deviate from published
specifications. Current characterized errata are available on request.

Cray uses codenames internally to identify products that are in development and not yet publically announced for release. Customers and other third
parties are not authorized by Cray Inc. to use codenames in advertising, promotion or marketing and any use of Cray Inc. internal codenames is at the sole
risk of the user.

Performance tests and ratings are measured using specific systems and/or components and reflect the approximate performance of Cray Inc. products as
measured by those tests. Any difference in system hardware or software design or configuration may affect actual performance.

The following are trademarks of Cray Inc. and are registered in the United States and other countries: CRAY and design, SONEXION, URIKA, and
YARCDATA. The following are trademarks of Cray Inc.: ACE, APPRENTICE2, CHAPEL, CLUSTER CONNECT, CRAYPAT, CRAYPORT, ECOPHLEX,
LIBSCI, NODEKARE, THREADSTORM. The following system family marks, and associated model number marks, are trademarks of Cray Inc.: CS, CX,
XC, XE, XK, XMT, and XT. The registered trademark LINUX is used pursuant to a sublicense from LMI, the exclusive licensee of Linus Torvalds, owner of
the mark on a worldwide basis. Other trademarks used in this document are the property of their respective owners.

Copyright 2018 Cray Inc.

June 2018 Copyright 2018 Cray Inc.
2

Agenda

● Introduction to Cray MPI

● Tips and useful environment variables for Cray
systems with Intel Xeon and Xeon-phi processors

● Hybrid MPI + OpenMP applications

● General Recommendations

June 2018 Copyright 2018 Cray Inc.
3

Brief Introduction to Cray MPI
● I/O, collectives, P2P, and one-sided all optimized for Cray

system architecture
● SMP-aware collectives
● High performance single-copy on-node communication via xpmem

(not necessary to program for shared memory)

● Highly tunable through environment variables
● Defaults should generally be best, but some cases benefit from fine

tuning

● Integrated within the Cray Programming Environment
● Compiler drivers manage compile flags and linking automatically
● Profiling through Cray performance tools

June 2018 Copyright 2018 Cray Inc.
4

Cray MPI Documentation

● Primary user resource for tuning and feature
documentation is the man page
● man intro_mpi
OR
● man MPI

● Standard function documentation available as well
● E.g., man mpi_isend

June 2018 Copyright 2018 Cray Inc.
5

MPI Rank Reorder – Two Interfaces Available

● CrayPat
● Available with sampling or tracing
● Include –g mpi when instrumenting program
● Run program and let CrayPat determine if communication is

dominant, detect communication pattern and suggest MPI rank
order if applicable

● grid_order utility
● User knows communication pattern in application and wants to

quickly create a new MPI rank placement file
● Available when perftools-base module is loaded

June 2018 Copyright 2018 Cray Inc.
6

Table 1: Profile by Function Group and Function

Time% | Time | Imb. | Imb. | Calls |Group
| | Time | Time% | | Function
| | | | | PE=HIDE

100.0% | 463.147240 | -- | -- | 21621.0 |Total
|--
| 52.0% | 240.974379 | -- | -- | 21523.0 |MPI
||---
|| 47.7% | 221.142266 | 36.214468 | 14.1% | 10740.0 |mpi_recv
|| 4.3% | 19.829001 | 25.849906 | 56.7% | 10740.0 |MPI_SEND
||===
| 43.3% | 200.474690 | -- | -- | 32.0 |USER
||---
|| 41.0% | 189.897060 | 58.716197 | 23.6% | 12.0 |sweep_
|| 1.6% | 7.579876 | 1.899097 | 20.1% | 12.0 |source_
||===
| 4.7% | 21.698147 | -- | -- | 39.0 |MPI_SYNC
||---
| 4.3% | 20.091165 | 20.005424 | 99.6% | 32.0 | mpi_allreduce_(sync)
||===
| 0.0% | 0.000024 | -- | -- | 27.0 |SYSCALL
|==

MPI Rank Order Observations

June 2018 Copyright 2018 Cray Inc.
7

MPI Grid Detection:

There appears to be point-to-point MPI communication in a 96 X 8
grid pattern. The 52% of the total execution time spent in MPI
functions might be reduced with a rank order that maximizes
communication between ranks on the same node. The effect of several
rank orders is estimated below.

A file named MPICH_RANK_ORDER.Grid was generated along with this
report and contains usage instructions and the Custom rank order
from the following table.

Rank On-Node On-Node MPICH_RANK_REORDER_METHOD
Order Bytes/PE Bytes/PE%

of Total
Bytes/PE

Custom 2.385e+09 95.55% 3
SMP 1.880e+09 75.30% 1

Fold 1.373e+06 0.06% 2
RoundRobin 0.000e+00 0.00% 0

MPI Rank Order Observations (2)

June 2018 Copyright 2018 Cray Inc.
8

Auto-Generated MPI Rank Order File
The 'USER_Time_hybrid' rank order
in this file targets nodes
with multi-core

processors, based on Sent
Msg Total Bytes collected for:

#

Program:
/lus/nid00023/malice/craypat/W
ORKSHOP/bh2o-
demo/Rank/sweep3d/src/sweep3d

Ap2 File: sweep3d.gmpi-
u.ap2

Number PEs: 768

Max PEs/Node: 16

#

To use this file, make a
copy named MPICH_RANK_ORDER,
and set the

environment variable
MPICH_RANK_REORDER_METHOD to 3
prior to

executing the program.

#

0,532,64,564,32,572,96,540,8,5
96,72,524,40,604,24,588

104,556,16,628,80,636,56,620,4
8,516,112,580,88,548,120,612

1,403,65,435,33,411,97,443,9,4
67,25,499,105,507,41,475

73,395,81,427,57,459,17,419,11
3,491,49,387,89,451,121,483

6,436,102,468,70,404,38,412,14
,444,46,476,110,508,78,500

86,396,30,428,62,460,54,492,11
8,420,22,452,94,388,126,484

129,563,193,531,161,571,225,53
9,241,595,233,523,249,603,185,
555

153,587,169,627,137,635,201,61
9,177,515,145,579,209,547,217,
611

7,405,71,469,39,437,103,413,47
,445,15,509,79,477,31,501

111,397,63,461,55,429,87,421,2
3,493,119,389,95,453,127,485

134,402,198,434,166,410,230,44
2,238,466,174,506,158,394,246,
474

190,498,254,426,142,458,150,38
6,182,418,206,490,214,450,222,
482

128,533,192,541,160,565,232,52
5,224,573,240,597,184,557,248,
605

168,589,200,517,152,629,136,54
9,176,637,144,621,208,581,216,
613

5,439,37,407,69,447,101,415,13
,471,45,503,29,479,77,511

53,399,85,431,21,463,61,391,10

9,423,93,455,117,495,125,487

2,530,34,562,66,538,98,522,10,
570,42,554,26,594,50,602

18,514,74,586,58,626,82,546,10
6,634,90,578,114,618,122,610

135,315,167,339,199,347,259,30
7,231,371,239,379,191,331,247,
299

175,363,159,323,143,355,255,29
1,207,275,183,283,151,267,215,
223

133,406,197,438,165,470,229,41
4,245,446,141,478,237,502,253,
398

157,510,189,462,173,430,205,39
0,149,422,213,454,181,494,221,
486

130,316,260,340,194,372,162,34
8,226,308,234,380,242,332,250,
300

202,364,186,324,154,356,138,29
2,170,276,178,284,210,218,268,
146

4,535,36,543,68,567,100,527,12
,599,44,575,28,559,76,607

52,591,20,631,60,639,84,519,10
8,623,92,551,116,583,124,615

3,440,35,432,67,400,99,408,11,
464,43,496,27,472,51,504

19,392,75,424,59,456,83,384,10
7,416,91,488,115,448,123,480

132,401,196,441,164,409,228,43
3,236,465,204,473,244,393,188,
497

252,505,140,425,212,457,156,38
5,172,417,180,449,148,489,220,
481

131,534,195,542,163,566,227,52
6,235,574,203,598,243,558,187,
606

251,590,211,630,179,638,139,62
2,155,550,171,518,219,582,147,
614

761,660,737,652,705,668,745,69
2,673,700,641,684,713,644,753,
724

729,732,681,756,721,716,764,67
6,697,748,689,657,740,665,649,
708

760,528,736,536,704,560,744,52
0,672,568,712,592,752,552,640,
600

728,584,680,624,720,512,696,63
2,688,616,664,544,608,656,648,
576

762,659,738,651,706,667,746,64
3,714,691,674,699,754,683,730,
723

722,731,763,658,642,755,739,67
5,707,650,682,715,698,666,690,
747

257,345,265,313,281,305,273,33
7,609,369,577,377,617,329,513,

529

545,297,633,361,625,321,585,53
7,601,289,553,353,593,521,569,
561

256,373,261,341,264,349,280,31
7,272,381,269,309,285,333,277,
365

352,301,320,325,288,357,328,30
4,360,312,376,293,296,368,336,
344

258,338,266,346,282,314,274,37
0,766,306,710,378,742,330,678,
362

646,298,750,322,718,354,758,29
0,734,662,686,670,726,702,694,
654

262,375,263,343,270,311,271,35
1,286,319,278,342,287,350,279,
374

294,318,358,383,359,310,295,38
2,326,303,327,367,366,335,302,
334

765,661,709,663,741,653,711,66
9,767,655,743,671,749,695,679,
703

677,727,751,693,647,701,717,68
7,757,685,733,725,719,735,645,
759

June 2018 Copyright 2018 Cray Inc.
9

MPICH_RANK_REORDER_METHOD

● Vary your rank placement to optimize communication

● Can be a quick, low-hassle way to improve performance

● Use CrayPAT to produce a specific MPICH_RANK_ORDER
file to maximize intra-node communication

● Or, use grid_order utility with your application's grid
dimensions to layout MPI ranks in alignment with data grid

● To use:
● name your custom rank order file: MPICH_RANK_ORDER
● export MPICH_RANK_REORDER_METHOD=3

June 2018 Copyright 2018 Cray Inc.
10

MPI Rank Reorder (continued)
● A topology and placement-aware reordering method is

also available (uses node allocation information)

● Optimizes rank ordering for Cartesian decompositions
using the layout of nodes in the job

● To use:
● user@login> export MPICH_RANK_REORDER_METHOD=4
● user@login> export MPICH_RANK_REORDER_OPTS=\

“-ndims=3 -dims=16,16,8”
● See intro_mpi(1) man page for more information

11
June 2018 Copyright 2018 Cray Inc.

HUGEPAGES
● Linking and running with hugepages can offer a significant

performance improvement for many MPI communication sequences,
including MPI collectives and basic MPI_Send / MPI_Recv calls

● Most important for applications calling MPI_Alltoall[v] or performing
point-to-point operations with a similarly well connected pattern

● To use HUGEPAGES, load desired module at link and run time:
● module load craype-hugepages8M (many sizes supported)
● << re-link your app >>
● module load craype-hugepages8M
● << run your app >>

June 2018 Copyright 2018 Cray Inc.
12

Using DMAPP

● DMAPP optimizations not enabled by default because…
● May reduce resources MPICH has available (shared with DMAPP)
● Requires more memory (for DMAPP internals)
● DMAPP does not handle transient network errors

● These are highly-optimized algorithms which may result in significant performance gains, but user
has to request them

● Supported DMAPP-optimized functions
● MPI_Allreduce (4-8 bytes)
● MPI_Bcast (4 or 8 bytes)
● MPI_Barrier
● MPI_Put / MPI_Get / MPI_Accumulate

● To use, link with libdmapp and set the following environment variable
● Collective use: user@login> export MPICH_USE_DMAPP_COLL=1
● RMA one-sided use: user@login> export MPICH_RMA_OVER_DMAPP=1

June 2018 Copyright 2018 Cray Inc.
13

MPICH GNI Environment Variables

Used to optimize inter-node traffic using the Aries interconnect, the following are the most significant variables
to try (avoid significant deviations from the default if possible):

● MPICH_GNI_MAX_VSHORT_MSG_SIZE

● Controls max message size for E0 mailbox path (Default: varies)

● MPICH_GNI_MAX_EAGER_MSG_SIZE

● Controls max message size for E1 Eager Path (Default: 8K bytes)

● MPICH_GNI_NUM_BUFS

● Controls number of 32KB internal buffers for E1 path (Default: 64)

● MPICH_GNI_NDREG_MAXSIZE

● Controls max message size for R0 Rendezvous Path (Default: 4MB)

● MPICH_GNI_RDMA_THRESHOLD

● Controls threshold for switching to BTE from FMA (Default: 1K bytes)

See the MPI man page for further details

June 2018 Copyright 2018 Cray Inc.
14

Specific Collective Algorithm Tuning
● Different algorithms may be used for different message sizes in collectives (e.g.)

● Algorithm A might be used for Alltoall for messages < 1K
● Algorithm B might be used for messages >= 1K

● To optimize a collective, you can modify the cutoff points when different algorithms are used,
which may improve performance

● MPICH_ALLGATHER_VSHORT_MSG
● MPICH_ALLGATHERV_VSHORT_MSG
● MPICH_GATHERV_SHORT_MSG
● MPICH_SCATTERV_SHORT_MSG
● MPICH_GNI_A2A_BLK_SIZE
● MPICH_GNI_A2A_BTE_THRESHOLD
● MPICH_MAX_THREAD_SAFETY=multiple (for thread multiple support)

See the MPI man page for further details

June 2018 Copyright 2018 Cray Inc.
15

Using MPI + OpenMP

June 2018 Copyright 2018 Cray Inc.
16

MPI Thread Multiple Support

● Thread multiple support for
● point to point operations (optimized global lock)
● Collectives (optimized global lock)
● MPI-RMA (thread hot)

● All supported in default library

● user@login> export MPICH_MAX_THREAD_SAFETY=multiple

● Global lock optimization on by default (N/A for MPI-RMA)
● 50% better 8B latency than pthread_mutex() (OSU latency_mt, 32 threads

per node, Broadwell)
● export MPICH_OPT_THREAD_SYNC=0 falls back to pthread_mutex()

17
June 2018 Copyright 2018 Cray Inc.

Thread Hot Communication
“Thread hot”: high performance thread multiple support

● Design Objectives

● Contention Free progress and completion

● High bandwidth and high message rate

● Independent progress – thread(s) flush outstanding traffic, other threads make uninterrupted

progress

● Dynamic mapping between threads and network resources

● Locks needed only if the number of threads exceed the number of network resources

● MPI-3 RMA

● Epoch calls (Win_complete, Win_fence) are thread-safe, but not intended to be thread hot

● All other RMA calls (including request-based operations) are thread hot

● Multiple threads doing Passive Synchronization operations likely to perform best

June 2018 Copyright 2018 Cray Inc.
18

Multi-threading Optimizations in Cray MPI
● Easy way to hit the ground running on a KNL – MPI only mode

● Works quite well in our experience
● Scaling to more than 2-8 threads most likely requires a different application design approach

● “Bottom-Up” OpenMP development approach

● “Top-Down” SPMD model
● Increases the scope of code executed by OpenMP, allows for better load balancing and overall

compute scaling on KNL
● Allows multiple threads to call MPI concurrently
● In this model, performance is limited by the level of support offered by MPI for multi-threaded

communication
● MPI implementations must offer “Thread-Hot” communication capabilities to improve

communication performance for highly threaded use cases on KNL

June 2018 Copyright 2018 Cray Inc.
19

Examples of MPI + OpenMP Use

20

“SPMD”

! Move OpenMP near the top of the call stack

!#OMP PARALLEL

DO WHILE (t .LT. tend)

!#OMP DO

DO patch = 1, npatches

CALL update_patch()

…CALL MPI…

END DO

END DO

“bottom up”

! Keep OpenMP within a “compute” loop

DO WHILE (t .LT. tend)

DO patch = 1, npatches

CALL update_patch()

…CALL MPI…

END DO

END DO

SUBROUTINE update_patch()

!$OMP PARALLEL DO

DO i = 1, nx

…do work…

END DO

END SUBROUTINE

June 2018 Copyright 2018 Cray Inc.

Recommendations

● Using hugepages in MCDRAM can improve large message communication performance

● Using thread multiple with Cray’s Thread-Hot capabilities on Intel Xeon and Intel KNL
architectures is a key tool for hybrid applications

● Using asynchronous communication can hide/overlap communication overheads and
improve application scalability

● MPI-only works quite well on KNL
● Threading can be helpful, but unless SPMD with “thread-hot” MPI is used scaling to

more than 2-8 threads not recommended

● Collectives implemented with user pt2pt is strongly discouraged
● Especially for alltoall, bcast, and gather
● Very unlikely pt2pt will perform better
● If they do, please file a bug with Cray

June 2018 Copyright 2018 Cray Inc.
21

