
Using Cray MPI:
Tips for Development
on the Cray XT5

Mark Fahey, Group Leader
mfahey@utk.edu

Glenn Brook
glenn-brook@tennessee.edu
NICS Scientific Computing Group

NERSC/OLCF/NICS
Joint Cray XT5 Workshop
February 1 – 3, 2010

Overview

• Assumes knowledge of MPI
• Assumes experience on a Cray XT (3, 4, or 5)

–  or a cluster with MPICH

• Suggests ways to improve MPI performance on Cray XT5
– Some examples from both Jaguarpf and Kraken
– No silver bullets

2 NERSC/OLCF/NICS Joint Cray XT5 Workshop

Outline

• MPT
• Environment

Variables
• Rank Placement
• MPI Programming

Techniques
• OpenMP
• Other

3 NERSC/OLCF/NICS Joint Cray XT5 Workshop

MPT – Cray’s MPI library

• Customization of MPICH-2 built atop Portals
– Message protocols: Eager for short & Rendezvous for long

• Performs best when every message is expected prior to
receipt, but ensuring such can be difficult or impossible

• Special handling of unexpected messages for both MPI
and Portals to maximize performance and scalability

• Excessively bad application behavior can exhaust
available resources for handling unexpected messages
and events, resulting in application termination.
– Short term fix: allocate additional resources via env variables
–  Long term fix: modify application to improve comm. behavior

4 NERSC/OLCF/NICS Joint Cray XT5 Workshop

MPT – Cray’s MPI library

• Use a recent version of MPT (default 3.5.0, current 4.0.1)
– Significant improvements (e.g. allgatherv in 4.0.0 and later)

• Many users continue to set environment variables
specifying buffer sizes due to previous versions of MPT
– Current versions attempt to set the right buffer sizes at launch

time based on job size rather than using static settings

• Suggestion: if you use env vars based on previous
versions, try using recent verisons w/o env vars

• Status:
– Kraken: default 3.5.0 Jaguar: default 3.5.0

5 NERSC/OLCF/NICS Joint Cray XT5 Workshop

Environment Variables
MPI
• Next few slides will cover environment variables that are

associated with MPI performance
• Find much of this information with “man mpi”

– Yes, you should read the MPI man page!

• Default settings generally focus on attaining the best
performance for most codes
– Some codes may benefit from alternative settings

• The MPI environment can change between MPT versions
–  It is important to re-read the MPI man pages and other related

documents provided by Cray

6 NERSC/OLCF/NICS Joint Cray XT5 Workshop

Environment Variables
MPICH_FAST_MEMCPY
• If set, enables an optimized memcpy routine in MPI. The

optimized routine is used for local memory copies in the
point-to-point and collective MPI operations.
–  This can help performance of some collectives that send large

(256K and greater) messages.
• Collectives are almost always faster
• Speedup varies by message size
• Example: If message sizes are known to be greater than 1 megabyte, then

an optimized memcpy can be used that works well for larges sizes, but may
not work well for smaller sizes.

– Default is not enabled (because there are a few cases that
experience performance degradation)

– Ex: PHASTA at 2048 processes: reduction from 262 s to 195 s

7 NERSC/OLCF/NICS Joint Cray XT5 Workshop

Environment Variables
MPICH_COLL_SYNC
• If set, a Barrier is performed at the beginning of each

specified MPI collective function. This forces all processes
participating in that collective to sync up before the
collective can begin.
–  To enable this feature for all MPI collectives, set the value to 1. Default is off.

• Can be enabled for a selected list of MPI collectives
• There are rare examples where this helps

–  If the code has lots of collectives and MPI profiling shows
imbalance (lots of sync time), this may help

– Ex: PHASTA (CFD-turbulent flows) many MPI_Allreduce calls
• At 2048 processes : reduction from 262 sec to 218 sec.

– Ex: But slowed down NekTarG (CFD-Blood Flow) by about 7%
8 NERSC/OLCF/NICS Joint Cray XT5 Workshop

Environment Variables
MPICH_MPIIO_HINTS
•  If set, overrides the default value of

one or more MPI-IO hints. This also
overrides any value set in the
application code with calls to the
MPI_Info_set routine.

• Hints are applied to the file when it
is opened with an MPI_File_open()
call.

•  MPICH_MPIIO_HINTS_DISPLAY
–  If set, causes rank 0 in the participating

communicator to display the names and
values of all MPI-IO hints that are set for
the file being opened with the
MPI_File_open call.

Default settings:
PE 0: MPIIO hints for

c2F.TILT3d.hdf5:!

 cb_buffer_size = 16777216!

 romio_cb_read = automatic!

 romio_cb_write = automatic!

 cb_nodes = #nodes/8!

 romio_no_indep_rw = false!

 ind_rd_buffer_size = 4194304!

 ind_wr_buffer_size = 524288!

 romio_ds_read = automatic!

 romio_ds_write = automatic!

 direct_io = false!

 cb_config_list = *:1!

9 NERSC/OLCF/NICS Joint Cray XT5 Workshop

Environment Variables
MPICH_MPIIO_HINTS (cont.)
Examples:
•  Syntax

–  export MPICH_MPIIO_HINTS=data.hdf5:direct_io=true!

•  For FlashIO at 5000 processes writing out 500MB per MPI thread, the following
improved performance:
romio_cb_write = "ENABLE"  
romio_cb_read = "ENABLE”  
cb_buffer_size = 32M !

–  When enаbled, аll collective reаds/writes will use collective buffering. When disаbled, аll collective reаds/writes
will be serviced with individuаl operаtions by eаch process. When set to аutomаtic, ROMIO will use heuristics
to determine when to enаble the optimizаtion.

•  For S3D at 10K cores:
romio_ds_write = ‘disable' - specifies if data sieving is to be done on read.
Dаtа sieving is а technique for efficiently аccessing noncontiguous regions of dаtа
romio_no_indep_rw = 'true' - specifies whether deferred open is used.

–  Romio docs say that this indicates no independent reаd or write operаtions will be performed. This cаn be used
to limit the number of processes thаt open the file.

10 NERSC/OLCF/NICS Joint Cray XT5 Workshop

Environment Variables
MPICH_MPIIO_CB_ALIGN
• If set to 1, new algorithms that take into account physical

I/O boundaries and the size of I/O requests are used to
determine how to divide the I/O workload when collective
buffering is enabled.
–  This can improve performance by causing the I/O requests of each

collective buffering node (aggregator) to start and end on physical
I/O boundaries and by preventing more than one aggregator
making reference to any given stripe on a single collective I/O call.

–  If set to zero or not defined, the algorithms used prior to MPT
release 3.1 are used.

– Default: not set

11 NERSC/OLCF/NICS Joint Cray XT5 Workshop

Environment Variables
MPICH_ENV_DISPLAY
• If set, causes rank 0 to display all MPICH environment

variables and their current settings at MPI initialization
time.

• Default: Not enabled.
• Useful for debugging purposes.

• MPICH_VERSION_DISPLAY - displays the version of cray
MPT being used

12 NERSC/OLCF/NICS Joint Cray XT5 Workshop

Environment Variables
MPICH_SMP_OFF
• If set, disable the on-node SMP device and use the

Portals device for all MPI message transfers
• Use in a rare cases where code benefits from using

Portals matching instead of MPI matching.
• Default: Not enabled.
• Useful for debugging reproducibility issues.

13 NERSC/OLCF/NICS Joint Cray XT5 Workshop

Environment Variables
Buffer Sizes
•  MPICH_UNEX_BUFFER_SIZE often runs out of space

–  When this buffer size cannot be increased sufficiently, MPICH_MAX_SHORT_MSG_SIZE should
be reduced.

–  Making this smaller switches the threshold for short vs long messages. Long messages are not
received unless they are expected (a receive is already posted).

–  There is a performance penalty due to reducing the max short message size, but it will get it
working.

•  MPICH_PTL_UNEX_EVENTS and MPICH_PTL_OTHER_EVENTS have a low
default value.

–  They are almost never adequate for large jobs. The following are good at O(10 thousand) cores.
MPICH_PTL_UNEX_EVENTS=400000  
MPICH_PTL_OTHER_EVENTS=100000!

•  When an error that says 'MPI_MSGS_PER_PROC' is not sufficient is received,
increase MPICH_MSGS_PER_PROC. It is an error in the error message.

•  Buffer size variables can be set using k, M and G - Instead of having to
type powers of 2 or count zeroes.
% export MPICH_UNEX_BUFFER_SIZE=1G #sets it to 1gigabyte !

14

Based on experience running S3D up to 150,000 cores

NERSC/OLCF/NICS Joint Cray XT5 Workshop

Environment Variables

MPICH_PTL_MATCH_OFF
•  If set, disables registration of receive requests with portals.

–  Setting this allows MPI to perform the message matching for the portals
device. It may be beneficial to set this variable when an application exhausts
portals internal resources and for latency-sensitive applications.

–  Example: Used for LS-DYNA

MPICH_PTL_SEND_CREDITS
• Enables flow control to prevent the Portals event queue from being

overflowed.
–  Value of ‘-1’ should prevent queue overflow in any situation
–  Should only be used as needed, as flow control will result in less optimal

performing code. If the Portals unexpected event queue can not be increased
enough, then flow control may need to be enabled.

15 NERSC/OLCF/NICS Joint Cray XT5 Workshop

Environment Variables
MPICH_PTL_MATCH_OFF
• Case where MPICH_PTL_MATCH_OFF fixed an MPI problem

[3683] : (/tmp/ulib/mpt/nightly/3.0/042108/xt/trunk/
mpich2/src/mpid/cray/src/adi/ptldev.c:2693)!

PtlMEMDPost() failed : PTL_NO_SPACE !

•  For this, try MATCH, OTHER_EVENTS or SEND_CREDITS env var
[43] MPICH PtlEQPoll error (PTL_EQ_DROPPED): An event
was dropped on the OTHER EQ handle. Try increasing
the value of env var MPICH_PTL_OTHER_EVENTS (cur
size is 2048).!

aborting job:!
PtlEQPoll/PtlEQGet error!

–  Attempts to increase OTHER_EVENTS did not help though (in this case)

16 NERSC/OLCF/NICS Joint Cray XT5 Workshop

Portals Errors

17 NERSC/OLCF/NICS Joint Cray XT5 Workshop

Error Description / Cause Suggested Fix
PTL_PT_NO_ENTRY Memory mapping error /

improper stack initialization
Request refund and
resubmit job

PTL_NAL_FAILED Network layer error / node
or network failure

Request refund and
resubmit job

PTL_EQ_DROPPED Event dropped from
queue / insufficient space
in queue

Increase resources with
environment variables,
change application
communication profile

PTL_SEGV	
 Invalid user address
supplied to portals

Fix invalid pointers in
application code

PTL_PT_VAL_FAILED 	
 Invalid address / invalid
buffer parameter in MPI

Fix invalid pointers in
application code (MPI)

PTL_NO_SPACE	
 Insufficient memory for
internal buffers

Reduce application memory
requirements on nodes, set
MPICH_PTL_MATCH_OFF

Rank Placement

•  In some cases, changing how the processes are laid out on the
machine may affect performance by relieving synchronization/
imbalance time.

•  The default is currently SMP-style placement. This means that for a
multi-node core, sequential MPI ranks are placed on the same node.
–  In general, MPI codes perform better using SMP placement - Nearest neighbor
–  Collectives have been optimized to be SMP aware

•  For example, a 12-process job launched on a XT5 node with 2 hex-
core processors would be placed as:

PROCESSOR 0 1
RANK 0,1,2,3,4,5 6,7,8,9,10,11

18 NERSC/OLCF/NICS Joint Cray XT5 Workshop

Rank Placement

•  The default ordering can be changed using the following
environment variable:

MPICH_RANK_REORDER_METHOD

•  These are the different values that you can set it to:
0: Round-robin placement – Sequential ranks are placed on the next node in the list.

 Placement starts over with the first node upon reaching the end of the list.
1: SMP-style placement – Sequential ranks fill up each node before moving to the next.
2: Folded rank placement – Similar to round-robin placement except that each pass

 over the node list is in the opposite direction of the previous pass.
3: Custom ordering. The ordering is specified in a file named MPICH_RANK_ORDER.

• When is this useful?
–  Point-to-point communication consumes a significant fraction of program time and a

load imbalance detected
–  Also shown to help for collectives (alltoall) on subcommunicators (GYRO)
–  Spread out IO across nodes (POP)

19 NERSC/OLCF/NICS Joint Cray XT5 Workshop

Rank Order and CrayPAT

• One can also use the CrayPat performance measurement
tools to generate a suggested custom ordering.
– Available if MPI functions traced (-g mpi or –O apa)
–  pat_build –O apa my_program

• see Examples section of pat_build man page

• pat_report options:
– mpi_sm_rank_order

• Uses message data from tracing MPI to generate suggested MPI rank order.
Requires the program to be instrumented using the pat_build -g mpi option.

– mpi_rank_order
• Uses time in user functions, or alternatively, any other metric specified by

using the -s mro_metric options, to generate suggested MPI rank order.
20 NERSC/OLCF/NICS Joint Cray XT5 Workshop

Reordering Workflow

• module load xt-craypat
• Rebuild your code
•  pat_build –O apa a.out
• Run a.out+pat
•  pat_report –Ompi_sm_rank_order a.out+pat+…sdt/ > pat.report
• Creates MPICH_RANK_REORDER_METHOD.x file
•  Then set env var MPICH_RANK_REORDER_METHOD=3 AND
•  Link the file MPICH_RANK_ORDER.x to MPICH_RANK_ORDER
• Rerun code

21 NERSC/OLCF/NICS Joint Cray XT5 Workshop

CrayPAT example
Table 1: Suggested MPI Rank Order!

 Eight cores per node: USER Samp per node!

 Rank Max Max/ Avg Avg/ Max Node!

Order USER Samp SMP USER Samp SMP Ranks!

 d 17062 97.6% 16907 100.0% 832,328,820,797,113,478,898,600!

 2 17213 98.4% 16907 100.0% 53,202,309,458,565,714,821,970!

 0 17282 98.8% 16907 100.0% 53,181,309,437,565,693,821,949!

 1 17489 100.0% 16907 100.0% 0,1,2,3,4,5,6,7!

22

• This suggests that
1.  the custom ordering “d” might be the best
2.  Folded-rank next best
3.  Round-robin 3rd best
4.  Default ordering last

NERSC/OLCF/NICS Joint Cray XT5 Workshop

Reordering example
GYRO
• GYRO 8.0

–  B3-GTC problem with 1024 processes

• Run with alternate MPI orderings
–  Custom: profiled with with –O apa and used reordering file

MPICH_RANK_REORDER.d

23

Reorder method Comm. time
Default 11.26s

0 – round-robin 6.94s
2 – folded-rank 6.68s

d-custom from apa 8.03s

CrayPAT
suggestion
almost right!

NERSC/OLCF/NICS Joint Cray XT5 Workshop

Reordering example
TGYRO
• TGYRO 1.0

– Steady state turbulent transport code using GYRO, NEO, TGLF
components

• ASTRA test case
–  Tested MPI orderings at large scale
– Originally testing weak-scaling, but found reordering very useful

24

Reorder
method

TGYRO wall time (min)
20480 40960 81920

Default 99m 104m 105m
Round-robin 66m 63m 72m

Huge win!

NERSC/OLCF/NICS Joint Cray XT5 Workshop

MPI Programming Techniques
Pre-posting receives
• If possible, pre-post receives before the matching sends

– Optimization technique for all MPICH installations (not just MPT)
– Put as much computation as possible between receive-send pair

• Do not go crazy pre-posting receives. You can (and will)
overrun the resources available to Portals.

• Even an IBM manual states:
–  “well-written applications try to pre-post their receives.” And they also warn about posting too

many.

• Code example
–  Halo update – with four buffers (n,s,e,w), post all receive requests as early as

possible. Makes a big difference on CNL (not as important on Catamount).

25 NERSC/OLCF/NICS Joint Cray XT5 Workshop

MPI Programming Techniques
Overlapping communication with computation
•  Corollary of pre-posting receives
•  Use non-blocking send/recvs to overlap communication

with computation whenever possible
•  In some cases, it may be better to replace collective

operations with point-to-point communications to overlap
communication with computation
–  Caution: Do not blindly reprogram every collective by hand
–  Concentrate on the parts of your algorithm with significant

amounts of computation that can overlap with the point-to-point
communications when a [blocking] collective is replaced

26 NERSC/OLCF/NICS Joint Cray XT5 Workshop

MPI Programming Techniques
Example: 9-pt stencil pseudo-code
Basic

9-pt computation!

Update ghost cell
boundaries!
East/West IRECV,
ISEND, WAITALL!

North/South IRECV,
ISEND, WAITALL!

Maximal Irecv preposting
Prepost all IRECV!

9-pt computation!

Update ghost cell
boundaries!
East/West ISEND,
Wait on E/W IRECV
only!

North/South ISEND,
Wait on the rest!

 *Makes use of temporary buffers!
27 NERSC/OLCF/NICS Joint Cray XT5 Workshop

Example: 9-pt stencil update
!compute stencil!

…!

!update ghost cell boundaries.!

!East/West!

MPI_IRECV(XOUT(1,1), 1, mpi_ew_type, nbr_west,
mpitag_wshift, COMM_OCN, request(3))!

MPI_IRECV(XOUT(iphys_e+1,1), 1, mpi_ew_type,
nbr_east, mpitag_eshift, COMM_OCN, request(4))!

MPI_ISEND(XOUT(iphys_e+1-num_ghost_cells,1), 1,
mpi_ew_type, nbr_east, mpitag_wshift, COMM_OCN,
request(1))!

MPI_ISEND(XOUT(iphys_b,1), 1, mpi_ew_type,
nbr_west, mpitag_eshift, COMM_OCN, request(2))!

MPI_WAITALL(4, request, status)!

!North/South!

MPI_IRECV(XOUT(1,jphys_e+1), 1, mpi_ns_type,
nbr_north, mpitag_nshift, COMM_OCN, request(3))!

MPI_IRECV(XOUT(1,1), 1, mpi_ns_type, nbr_south,
mpitag_sshift, COMM_OCN, request(4))!

MPI_ISEND(XOUT(1,jphys_b), 1, mpi_ns_type,
nbr_south, mpitag_nshift, COMM_OCN, request(1))!

MPI_ISEND(XOUT(1,jphys_e+1-num_ghost_cells), 1,
mpi_ns_type, nbr_north, mpitag_sshift,
COMM_OCN, request(2))!

MPI_WAITALL(4, request, status)!

! Prepost receive requests!

MPI_IRECV(buf_west_rcv, buf_len_ew,
MPI_DOUBLE_PRECISION, nbr_west, &
mpitag_wshift, COMM_OCN, request(7))!

MPI_IRECV(buf_east_rcv, buf_len_ew,
MPI_DOUBLE_PRECISION, nbr_east, mpitag_eshift,
COMM_OCN, request(8))!

MPI_IRECV(XOUT(1,jphys_e+1), buf_len_ns,
MPI_DOUBLE_PRECISION, nbr_north, mpitag_nshift,
COMM_OCN, request(5))!

MPI_IRECV(XOUT(1,1), buf_len_ns,
MPI_DOUBLE_PRECISION, nbr_south, mpitag_sshift,
COMM_OCN, request(6))!

! compute stencil!

…!

! send east-west boundary info!

MPI_ISEND(buf_east_snd, buf_len_ew,
MPI_DOUBLE_PRECISION, nbr_east, mpitag_wshift,
COMM_OCN, request(1))!

MPI_ISEND(buf_west_snd, buf_len_ew,
MPI_DOUBLE_PRECISION, nbr_west, mpitag_eshift,
COMM_OCN, request(2))!

MPI_WAITALL(2, request(7), status_wait)  

! send north-south boundary info!

MPI_ISEND(XOUT(1,jphys_e+1-num_ghost_cells),
buf_len_ns, MPI_DOUBLE_PRECISION, nbr_north,
mpitag_sshift, COMM_OCN, request(3))!

MPI_ISEND(XOUT(1,jphys_b), buf_len_ns,
MPI_DOUBLE_PRECISION, nbr_south, mpitag_nshift,
COMM_OCN, request(4))!

MPI_WAITALL(6, request, status_wait)

28 NERSC/OLCF/NICS Joint Cray XT5 Workshop

MPI Programming Techniques
Aggregating data
•  For very small buffers, aggregate data into fewer MPI calls

(especially for collectives)
–  1 all-to-all with an array of 3 reals is clearly better than 3 all-to-alls with 1 real
–  Do not aggregate too much. The MPI protocol switches from a short (eager)

protocol to a long message protocol using a receiver pull method once the
message is larger than the eager limit. This limit is by default 128000 bytes, but
it can be changes with the MPICH_MAX_SHORT_MSG_SIZE environment
variable. The optimal size for messages most of the time is less than the eager
limit.

•  Example – DNS
–  Turbulence code (DNS) replaced 3 AllGatherv’s by one with a larger message

resulting in 25% less runtime for one routine
29 NERSC/OLCF/NICS Joint Cray XT5 Workshop

MPI Programming Techniques
Aggregating data: Example from CFD

Original  

for (index = 0; index < No; index++){  
 double tmp;  
 tmp = 0.0;  
 out_area[index] = Bndry_Area_out(A,
labels[index]);  
 gdsum(&outlet_area[index],1,&tmp);  
}  
for (index = 0; index < Ni; index++){  
 double tmp;  
 tmp = 0.0;  
 in_area[index] = Bndry_Area_in(A,
labels[index]);  
 gdsum(&inlet_area[index],1,&tmp);  
} !

void gdsum (double *x, int n, double *work)  
{  
 register int i;  
 MPI_Allreduce (x, work, n, MPI_DOUBLE,
MPI_SUM, MPI_COMM_WORLD);  
 /* *x = *work; */  
 dcopy(n,work,1,x,1);  
 return;  
} !

Improved  

 for (index = 0; index < No; index++){  
 out_area[index] = Bndry_Area_out(A,
labels[index]);  
 }!

 /* Get gdsum out of for loop */  
 tmp = new double[No];  
 gdsum (outlet_area, No, tmp);  
 delete tmp;  

 for (index = 0; index < Nin; index++){  
 in_area[index] = Bndry_Area_in(A,
labels[index]);  
 }!

 /* Get gdsum out of for loop */  
 tmp = new double[Ni];  
 gdsum(inlet_area, Ni, tmp);  
 delete tmp; !

30 NERSC/OLCF/NICS Joint Cray XT5 Workshop

OpenMP

• When does it pay to add/use OpenMP in my MPI code?
– Add/use OpenMP when code is network bound
– As collective and/or point-to-point time increasingly becomes a

problem, use threading to keep number of MPI processes per
node to a minimum

– Be careful adding OpenMP to memory bound codes
• Can hurt performance

–  It is code/situation dependent!

31 NERSC/OLCF/NICS Joint Cray XT5 Workshop

OpenMP
aprun depth
• Must get “aprun –d” correct

–  -d (depth) Specifies the number of threads (cores) for each
process. ALPS allocates the number of cores equal to depth
times processes.

–  The default depth is 1. This option is used in conjunction with
the OMP_NUM_THREADS environment variable.

– Also used to get more memory per process
• Get 1 or 2 GB limit by default (machine dependent)

– Many have gotten this wrong, so it is important to understand
how to use it properly!
•  If you do not do it correctly, a hybrid OpenMP/MPI code can get multiple

threads spawned on the same core which can be disastrous.

32 NERSC/OLCF/NICS Joint Cray XT5 Workshop

OpenMP
aprun depth (cont.)
 % setenv OMP_NUM_THREADS 4

 % aprun -n 4 -q ./omp1 | sort
 Hello from rank 0, thread 0, on nid00291. (core affinity = 0)
 Hello from rank 0, thread 1, on nid00291. (core affinity = 0)
 Hello from rank 0, thread 2, on nid00291. (core affinity = 0)
 Hello from rank 0, thread 3, on nid00291. (core affinity = 0)
 Hello from rank 1, thread 0, on nid00291. (core affinity = 1)
 Hello from rank 1, thread 1, on nid00291. (core affinity = 1)
 Hello from rank 1, thread 2, on nid00291. (core affinity = 1)
 Hello from rank 1, thread 3, on nid00291. (core affinity = 1)
 Hello from rank 2, thread 0, on nid00291. (core affinity = 2)
 Hello from rank 2, thread 1, on nid00291. (core affinity = 2)
 Hello from rank 2, thread 2, on nid00291. (core affinity = 2)
 Hello from rank 2, thread 3, on nid00291. (core affinity = 2)
 Hello from rank 3, thread 0, on nid00291. (core affinity = 3)
 Hello from rank 3, thread 1, on nid00291. (core affinity = 3)
 Hello from rank 3, thread 2, on nid00291. (core affinity = 3)
 Hello from rank 3, thread 3, on nid00291. (core affinity = 3)

 % setenv OMP_NUM_THREADS 4

 % aprun -n 4 -d 4 -q ./omp | sort
 Hello from rank 0, thread 0, on nid00291. (core affinity = 0)
 Hello from rank 0, thread 1, on nid00291. (core affinity = 1)
 Hello from rank 0, thread 2, on nid00291. (core affinity = 2)
 Hello from rank 0, thread 3, on nid00291. (core affinity = 3)
 Hello from rank 1, thread 0, on nid00291. (core affinity = 4)
 Hello from rank 1, thread 1, on nid00291. (core affinity = 5)
 Hello from rank 1, thread 2, on nid00291. (core affinity = 6)
 Hello from rank 1, thread 3, on nid00291. (core affinity = 7)
 Hello from rank 2, thread 0, on nid00292. (core affinity = 0)
 Hello from rank 2, thread 1, on nid00292. (core affinity = 1)
 Hello from rank 2, thread 2, on nid00292. (core affinity = 2)
 Hello from rank 2, thread 3, on nid00292. (core affinity = 3)
 Hello from rank 3, thread 0, on nid00292. (core affinity = 4)
 Hello from rank 3, thread 1, on nid00292. (core affinity = 5)
 Hello from rank 3, thread 2, on nid00292. (core affinity = 6)
 Hello from rank 3, thread 3, on nid00292. (core affinity = 7)

33

All on core 0
One thread
per core as
desired!!!

NERSC/OLCF/NICS Joint Cray XT5 Workshop

OpenMP – Scope all variables!

 int i, j, k;

 #pragma omp parallel shared(t, new, old,
nrl, dt, NR, NC, NITER) private(d)

 #pragma omp for schedule(runtime) nowait

 for (i = 2; i <= nrl-1; i++)

 for (j = 1; j <= NC; j++){

 t[*new][i][j] = 0.25 *

 (t[old][i+1][j] + t[old][i-1][j] +

 t[old][i][j+1] + t[old][i][j-1]);

 d = MAX(fabs(t[*new][i][j] –

 t[old][i][j]), d);

 int i, j, k;

#pragma omp parallel shared(t, new, old, nrl,
dt, NR, NC, NITER) private(d,i,j)

 #pragma omp for schedule(runtime) nowait

 for (i = 2; i <= nrl-1; i++)

 for (j = 1; j <= NC; j++){

 t[*new][i][j] = 0.25 *

 (t[old][i+1][j] + t[old][i-1][j] +

 t[old][i][j+1] + t[old][i][j-1]);

 d = MAX(fabs(t[*new][i][j] –

 t[old][i][j]), d);

34 NERSC/OLCF/NICS Joint Cray XT5 Workshop

In this particular case, the homb benchmark got wrong answers and
failed to scale well when using PGI and Pathscale.

Other
IO
• Also note that sometimes IO (especially at scale)

causes scalability issues
–  For example, cleaning up some writes improved weak scaling

of the CFD code NektarG from 70% to 95% at 1K to 8K cores

35 NERSC/OLCF/NICS Joint Cray XT5 Workshop

Conclusions/Last words

• Env vars are an easy way to improve performance
–  They may not always be applicable

• Good MPI programming practices are beneficial
–  Pre-posting receives important
–  Aggregating data

• Rank reordering can significantly improve performance
• Use depth option with OpenMP or for extra memory
• Be cognizant of how IO affects your overall scalability
• Some of this may not show a benefit at <1K processes, but it can

reap huge gains at 10K to 100K processes
•  This will become a “MPI Tips” webpage

36 NERSC/OLCF/NICS Joint Cray XT5 Workshop

References

• Best reference on MPT environment variables to date:
– Geir Johansen, “Managing Cray XT MPI Runtime Environment

Variables to Optimize and Scale Applications”, presentation
and paper, CUG 2008

• man mpi
• man aprun

37 NERSC/OLCF/NICS Joint Cray XT5 Workshop

