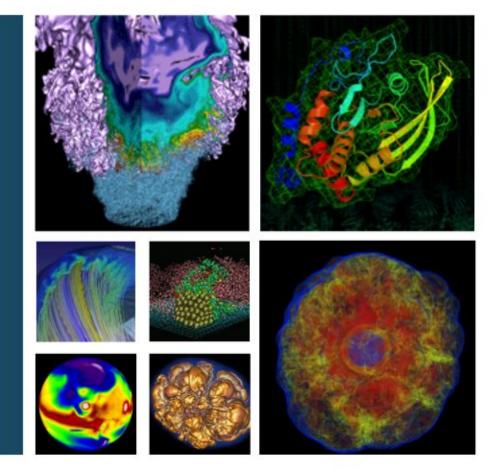
ML Tools @ NERSC (Plus A Science Example!)



Evan Racah NERSC 8/22/16

Available Tools

Deep Learning Frameworks

- **Theano** flexibility, not for beginners (good for research)
- Keras / Lasagne Theano-based but higher-level for ease of use
- **TensorFlow** ease of use and flexibility, large, growing community, some *multi-node support*
- **Caffe** high performance (IntelCaffe with performance highly optimised for KNL), *multinode (no programming necessary)*

General Machine Learning:

- Scikit-Learn great for non-image based machine learning, easy to use, support for wide range of algorithms
- **Spark -** *multinode*, great for data parallel, relatively easy to use, support for only a subset of ML algorithms

theano

How Do I Use These Tools at NERSC?

Deep Learning Module

- Python deep learning tools available under the deep learning module
- Just one module load call and then they are ready to be imported in your python script!

Scikit-Learn

• available in standard python module and deep learning

Caffe and Spark

• available as separate modules

Interactive computing:

Q: You a big Jupyter notebook fan?!

A: No problem. The iPython deeplearning kernel allows for interactively using the deep learning module python tools

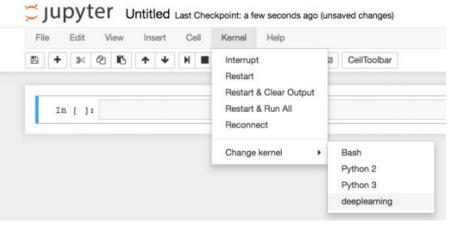
For more information visit

http://www.nersc.gov/users/data-analytics/data-analytics/deep-learning/

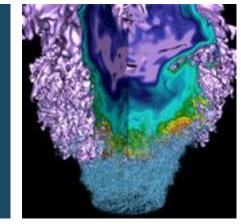
racah@cori04:~> module load deeplearning
racah@cori04:~> []

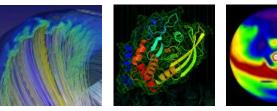
racah@cori03:~> module load caffe

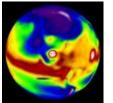
racah@cori03:~> module load spark

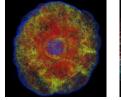


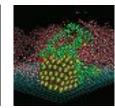
Science Problem! Daya Bay Antineutrino Detector Analysis











Daya Bay Reactor Neutrino Experiment

Goal:

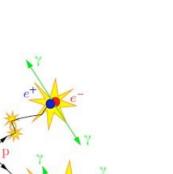
- Determine neutrino parameter, θ_{13} ,
- Will provide clues to extend Standard Model

Experiment

• Inverse Beta Decay (IBD)

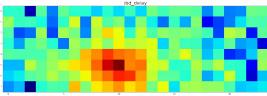
Office of Science

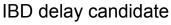
- o antrineutrino reacts with a proton, decays to a positron and neutron
- o Reaction measured by antineutrino detector

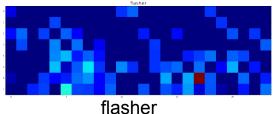


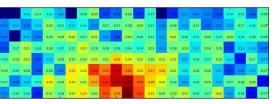
Experiment

- Detectors
 - o (192 PMT sensors in cylinder) measuring charge.
 - Events above a certain energy "trigger" a snapshot
- Snapshots (8x24 arrays of floats) analyzed in order to infer θ_{13}
- Signal events
 - o IBD prompt (positron)
 - o IBD delay (neutron)
 - § Occurs several microseconds after
- Non-neutrino events = backgrounds:
 - o Flasher (detector malfunction)
 - o Muon
 - o Other
 - § Everything else
 - § (contains false negatives?)









Other (potential false negative)

NERSC

Why Deep Learning?

Deep learning could help:

- More powerfully discriminate between signal and noise
- Identify new unexpected sources of noise
- Determine structure in the signal as well as in the different types of noise
- Would be interesting to see if deep learning could group together different physical phenomena

Our Approach

- Learn an *unsupervised* feature vector using a **convolutional autoencoder**
- This can help cluster related events, revealing patterns

Convolutional Autoencoder

What is a Convolutional AE?

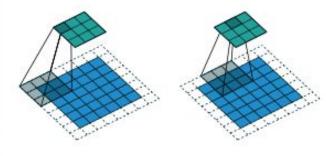
- neural network trained to reconstruct its input
- Encoder
 - Transforms input image into "feature" vector
- Decoder
 - Attempts to reconstruct input image from this vector
- When certain restrictions applied to network
 - forced to learn only the most important features of data

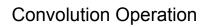
Why an autoencoder?

- Manifold Assumption
 - We assume most of the data sample images come from small number of physical events

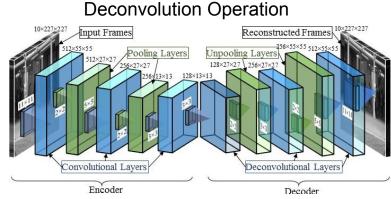
Why convolutional networks?

- We treat our data as images
 - Parameter sharing/Translation equivariance
 - Fewer parameters to learn
 - Translating a feature results in an identical but translated representation
 - Translation Invariance
 - whether feature is present important, not so much where it is
 - o Both important









National Energy Research Scientific Computing Center

