JGI Modules
Tutorial

Tony Wildish

Daniel Udwary
NERSC Data Science Engagement Group

November 30, 2017

~

- AY
https://bitbucket.org/TWildish/jgi-modules-tutorial.git -1- /\\

Introduction

 What’s a module?

 Why should you use them

 Why shouldn’t you use them

* Module structure

* How to build a simple module

* How to build a more complex module
* Best practices

* Exercises

https://bitbucket.org/TWildish/jgi-modules-tutorial.git -2-

Pre-requisites

* | assume you know basic module use:
— module load
— module unload
— module avail

— module swap

https://bitbucket.org/TWildish/jgi-modules-tutorial.git -3-

What’s a module?

A module is a way of using software

— It sets up the runtime environment for installed software

* Essentially it just sets/unsets environment variables:

* SPATH, SLD LIBRARY_PATH, SMANPATH, SPKG_CONFIG_PATH,
SPERLSLIB SPYTHONPATH, any others you may want

— It allows specifying and enforcing dependencies
* Modules X can’t load without module Y etc

— It allows specifying multiple versions of a piece of software
* Module XYZ/1.0, XYZ/1.2, XYZ/2.0...

— |t doesn’t describe how the software was built
— It doesn’t describe how the software was installed
— it’s not a version control system

— ~ A
https://bitbucket.org/TWildish/jgi-modules-tutorial.git -4- /_\|H

BERKELEY LAB

Why should you use modules?

* Reproducibility
— Guarantee that your runtime environment is controlled
properly

* Flexibility
— Use several applications, that are built/maintained
separately, in a coherent manner

e Simplicity

— Module files are easy to create

https://bitbucket.org/TWildish/jgi-modules-tutorial.git -5 -

Why shouldn’t you use modules?

* Reproducibility
— Software may be tied to the system it’s built on, may not
be easily portable

* Flexibility
— Software that has conflicting requirements is harder to
manage with modules than by other means

e Simplicity

— You still have to build and install the software yourself

https://bitbucket.org/TWildish/jgi-modules-tutorial.git -6-

Portability, Flexibility

Harder Install in base OS

Install in user-space (SHOME etc)
Modules
Conda environments

Docker/Shifter images

Virtual machines

Easier

>
A
rrrrrrr ""l

https://bitbucket.org/TWildish/jgi-modules-tutorial.git -7-

BERKELEY LAB

Module structure

* To use modules you need:
— A directory, added to your SMODULEPATH (see later)
— Subdirectories for each package
— Version-specific modulefiles in each package subdirectory

* E.g. on Denovo:

— SMODULEPATH contains fusr/common/jgi/Modules/
modulefiles, which contains, among others: falcon/1.8.8

denovol> module avail falcon
--------------------------- [usr/common/jgi/Modules/modulefiles ---------------------------
falcon/1.8.8

https://bitbucket.org/TWildish/jgi-modules-tutorial.git - 8-

denovol> cat /usr/common/jgi/Modules/modulefiles/falcon/1.8.8

#%Modulel.0
Hit

Required internal variables

set name falcon

set version 1.8.8

set root {/usr/common/jgi/assemblers/Sname/Sversion}

#t List conflicting modules here Module files are written
set mod_conflict { Sname } in Tcl

List prerequisite modules here L. . .
set mod_prereq_autoload { python/2.7-anaconda } N.B. This is a S|mpI|ﬁed
set mod_prereq { python/2.7-anaconda } version of the real file

Source the common modules code-base
source /usr/common/usg/Modules/include/usgModInclude.tcl

Software-specific settings exported to user environment

prepend-path PATH Sroot/fc_env/bin

prepend-path PYTHONPATH Sroot/fc_env/lib/python2.7/site-packages:Sroot/FALCON
setenv FALCON_DIR Sroot

setenv PYTHONUSERBASE Sroot/fc_env

setenv FALCON_PREFIX Sroot/fc_env

~

A
i

rreeeee

https://bitbucket.org/TWildish/jgi-modules-tutorial.git -9-

BERKELEY LAB

#%Modulel.0 Required header

Required internal variables

set name falcon
set version 1.8.8
set root {/usr/common/jgi/assemblers/Sname/Sversion}

\ Set the name and version,

then set the root to point to the software installation area

~

https://bitbucket.org/TWildish/jgi-modules-tutorial.git -10- f\\

BERKELEY LAB

A
I}

List any module conflicts:

Most modules conflict with themselves -
List conflicting modules)V/ you won’t want to use module X/1.0 and
set mod_conflict { Sname X/2.0 at the same time

List prerequisite modules here
set mod_prereq_autoload { python/2.7-anaconda }
set mod_prereq { python/2.7-anaconda }

List any module dependencies:

Use mod_prereq to prevent the module loading
unless the dependencies are already loaded

Use mod_prereq_autoload to automatically
load those dependencies

~

A
i

rreeeee

https://bitbucket.org/TWildish/jgi-modules-tutorial.git - 11-

BERKELEY LAB

Set SPATH, SPYTHONPATH etc,
using variables defined earlier

prepend-path prefixes to
SPATH-like variables

Required library functions setenv simply sets a value

N.B. SPACKAGE DIR is set to

Source the common modules code-base point to the base of the
source /usr/common/usg/Modules/include/usgModinclude.tcl installation, by local convention

Software-specific settings exported to user environment L/

prepend-path PATH Sroot/fc_env/bin

prepend-path PYTHONPATH Sroot/fc_env/lib/python2.7/site-packages:Sroot/FALCON
setenv FALCON_DIR Sroot

setenv PYTHONUSERBASE Sroot/fc_env

setenv FALCON_PREFIX Sroot/fc_env

~

A
i

rreeeee

https://bitbucket.org/TWildish/jgi-modules-tutorial.git -12-

BERKELEY LAB

How to build a simple module

* First, create a directory to hold your module files

* Clone the repository

> git clone https://bitbucket.org/TWildish/jgi-modules-tutorial.git
> cd jgi-modules-tutorial
> export HERE="pwd"

* Create a subdirectory ‘Modules’, add it to your SMODULEPATH

> mkdir Modules
> module use SHERE/Modules

— ‘module use’ adds the module to your SMODULEPATH, don’t set it by hand
— Now, modules added under that directory can be used automatically

N
A
rrrrrrr "“l

https://bitbucket.org/TWildish/jgi-modules-tutorial.git - 13-

BERKELEY LAB

How to build a simple module: FastTree

* Run the build script
> cd examples/fasttree/build
> ./build-fasttree-2.1.10.sh

— That installs the binary in SHERE/examples/fasttree/2.1.10

* Now create the module file to point to that installation
— There’s a template file, ‘2.1.10’, in the same directory as the build script
— Editit, change the definition for root to point to the installation root

* ‘setroot{/.../jgi-modules-tutorial/examples/Sname/Sversion }
— N.B. give full pathname, don’t use environment variables in the module file

— Create a ‘fasttree’ subdirectory in your modules directory, copy this file there
e mkdir SHERE/Modules/fasttree
e cp 2.1.10 SHERE/Modules/fasttree/

N
A
rrrrrrr "“l

https://bitbucket.org/TWildish/jgi-modules-tutorial.git -14-

BERKELEY LAB

Recap: What did we just do?

We created a directory to hold module files
— SHERE/Modules

 Added that directory to our MODULEPATH
— With the ‘module use’ command

 Compiled & installed fasttree

* Created a module file to add the fasttree directory to the SPATH
environment variable

 Added that module file to the module directory, in a subdirectory
named for the software we installed

— SHERE/Modules/fasttree/2.1.10

* Now, ‘module avail fasttree’ will show our module!

& “1‘ EEEEEEEEEEEEEE Ofﬂ ce Of

= A
o) /_\‘ o
L0 ENERGY Science “15- ;L;;;JJ

A more complex module

* The ‘examples’ directory contains build scripts for
other tools

— last, mash, mummer, prodigal, vsearch, zlib

* There’s a template module file for last, you can do the others as an
exercise

* The actual module files aren’t more complex, it’s only the software
build procedure that is more involved

* The build scripts all run out-of-the-box on Denovo

— Several best-practices illustrated, please take a look at
them

— The ‘last’ build script, in particular, is well-documented

N
A
rrrrrrr "“l

https://bitbucket.org/TWildish/jgi-modules-tutorial.git - 16-

BERKELEY LAB

Best practices: module files

* Keep your build scripts and module templates together

— Can automate generating module files for most packages, ask
me later if you want to do that

 Make sure you define all the environment variables
your package needs
— PATH, PYTHONPATH, MANPATH, package-specific variables etc

 Keep them under version control

— Knowing how a module was built is essential for reproducible
science

— Makes your environment more (likely to be) portable to new
platforms

N
A
rrrrrrr "“l

https://bitbucket.org/TWildish/jgi-modules-tutorial.git -17-

BERKELEY LAB

Best practices: building software

* Build scripts require a lot of care to do well

— It’s not difficult to do properly, but it is necessary for reproducibility
* Build-scripts should be self-documenting

— Prefer building from source over installing binaries
* Controls dependencies better, not relying on the system so much

e Can make a huge difference in performance, optimizing for modern CPU
architecture (anyone using 32-bit or i386 binaries?)

— Record the original location of the source code (the URL), so you can
refer back there for more information etc

 Document where you got the package, and how
» Keep the source after you download it, it may disappear from the web

— Make your scripts abort on error
* Don’t assume they will work every time

— READ THE BUILD INSTRUCTIONS for each package

* Don’tjust accept defaults without understanding what they do

N
A
rrrrrrr "“l

https://bitbucket.org/TWildish/jgi-modules-tutorial.git - 18-

BERKELEY LAB

Best practices: building software

— Clean the build environment, then build it up from scratch
* Minimize dependencies on the OS (GCC, Perl, Python, graphics libraries...)

— Don’t hardwire the location of the build or the installation
* That reduces portability and flexibility, makes development harder

— Remove the installation & working directories before building
* Don’t risk incorporating stale artifacts from previous builds

— Clean up after building too, so you don’t leave cruft

— If the package has built-in tests, run them before installing
* Look for ‘make check’ or ‘make test’ targets
* If there are no built-in tests, can you provide something minimal?

— Bonus points: add SGCC_RECORD_SWITCHES to your compilation flags
» Set for compilers that support it, records compile options in the build products
* Read the options back with ‘readelf’:
— > readelf -p .GCC.command.line SSPADES_DIR/bin/spades

N
A
rrrrrrr "“l

https://bitbucket.org/TWildish/jgi-modules-tutorial.git -19-

BERKELEY LAB

Best practices: building software

* Building a library? Be kind to your users!

— Build it for all available compilers
* Don’t force the user to use a specific compiler unnecessarily

* Use ‘mod_variations’ in your module file to load the right flavor
* See examples/zlib/build/build-zlib-1.2.11.sh

— Add extra environment variables in your module file to
make it easier to use the library
* See examples/zlib/1.2.11, which sets ZLIB_INC, ZLIB_LIB, & others
* See the examples for mash and vsearch for how to use them

N
A
rrrrrrr "“l

https://bitbucket.org/TWildish/jgi-modules-tutorial.git -20-

BERKELEY LAB

Final comments

 That’s a lot to remember, is it worth it?

— Binary-only installs are OK if you can trust the person who built the
software
* Fine with Anaconda, there’s a strong community

* Docker images vary in quality, some good, some not so good

* If you really care about the results from your applications, and the
performance you get running them, you should build them yourself

e So you’ve built your module, what next?
— You're one step away from building a container, why not try it!
* Much less work for the container than for the original software

* Can make the base container look like the OS you build the s/w on, then your
build script should work out of the box

* Gives you a migration path to other platforms (cloud etc) for only a little extra
investment

U.S. DEPARTMENT OF Ofﬂce Of

ENERGY Science -21- E.;Eﬂ\‘%“?

N
A
rrrrrrr "“l

)"hmm“‘\“

Exercises

* Build and install a module for each of the examples
— Follow the recipe from slide 14 (after preliminaries on slide 13)

— Run the build scripts in the examples directory for each package
e Just cd into the directory and execute the script

— Create a module file for each package, install it
» ../Modules/S{package}/S{version}

— Verify that you can ‘module load’ the package and run the software

e Bonus exercise:

— One of my recommended practices isn’t followed by any of the
example scripts. Can you fix them?

— The example for metabat only provides the download link, create the
build script and module file yourself.

N
A
rrrrrrr "“l

https://bitbucket.org/TWildish/jgi-modules-tutorial.git -22-]

https://bitbucket.org/TWildish/jgi-modules-tutorial.git -23-

