Introduction to Performance Analysis
for HPC

L

LLNL-PRES-508651

Analysis Process: Step by Step

1. Optimize single-node code

2. Fix any load imbalance — consider decomposition and rank order
3. Fix your hotspots
1. Communication
. Pre-post receives
. Overlap computation and communication
. Reduce collectives
. Adjust MPI environment variables
. Use rank reordering
2. Computation
. Examine the hardware counters and compiler feedback
. Adjust the compiler flags, directives, or code structure to improve performance
. Try other compilers (if available)
3. I/O

. Stripe files/directories appropriately
. Use I/O methods that scale
. MPI-IO or Sub-setting
At each step, check your results and performance.
Between each step, gather your data again.

L

LLNL-PRES-508651

Analysis Process

Tabulate Application & Architecture characteristics
Determine whether application is:

— Computation-bound

— Memory-bound

Determine application communication characteristics
Benchmark application on system

— use test and production data sets

— Weak-scaling study

— Strong-scaling study

Identify limits to scalability

— Single-node performance

— Communication
— 1/O

LLNL-PRES-508651

L

Analysis Process

* Levels of Parallel Performance
— Inter-Node
* Message-passing optimization
* Intra-Node
— Core
— Vector — vector width, SIMD instructions
— Pipeline — support for oo instructions, multiple pipes
— Instruction - max # in-flight instructions

— Multiple-core optimizations

L

LLNL-PRES-508651

BaSiC Of Performant‘n CvialiiAathAn
Determine what types of dat. |

you need and how much [CODE DEVELOPMENT }_
performance data you are

willing to (or need to) @

consume.
Select a performance tool to [PERFORMANCE]

. MEASUREMENT / ANALYSIS
instrument your code. l
Submit your jobs. o)
View the text report, or use ¢ l

visual tool (usually comes
with the performance tool
you pick) to observe the data.

[PRODUCTION]

L

LLNL-PRES-508651

MPI Performance Issues

L

LLNL-PRES-508651

MPI Performance Issues

* Know your MPI
— Understand features of specific MPI
implementation

* Focus on routines where most time is spent

* Understand how MPI library environment variables
affect performance

* XXX

L

LLNL-PRES-508651

. Sendlnglran"pu§ehor Message Eager PrOtOCOI

s'"message CElving ran
— Sender assumes receiver can handle message and blindly transmits to it
* If matching receive is posted, receiver
— routes incoming data directly into specified receive buffer
— posts notification event to other event queue
* If no matching receive is posted, receiver
— routes incoming data into unexpected message buffer
— posts two events to unexpected event queue
— copies data into specified receive buffer when matching receive is posted

L

LLNL-PRES-508651

MPI - Long Message Rendezvous
Protocol

Receiving rank "pulls" message from sending rank

Sender notifies receiver about waiting message via a small header packet
Receiver requests message from sender after matching receive is posted
Receiver routes incoming data directly into specified receive buffer

LLNL-PRES-508651

L

I}e/llwfl:e)rlas;u rlﬁecs)rgx.g/eMI?aSm§ean&ggeEa %gpﬁart.elyl? orwﬂlltrg?] uCeQ I

retransmission
— Sender blindly transmits data to receiver
If matching receive is posted, receiver
— routes incoming data directly into specified receive buffer
— sends completion acknowledgement to sender
If no matching receive is posted, receiver
— creates a long protocol match entry
— requests retransmission when matching receive is posted
— routes incoming data directly into specified receive buffer

LLNL-PRES-508651 LL

MPI| Environment

L

LLNL-PRES-508651

MPI| Environment Variables
* Many environment variables are available to

tune MPI performance
— Usually documented on the MPI man page — Read it!

— Default settings generally focus on attaining the best
performance for “most” cases — not necessarily your
application!

— May need to experiment to find optimum settings for
application, data set

L

LLNL-PRES-508651

MPI - Rank Placement

* In some cases, changing how the processes are laid out on the
machine may affect performance by relieving synchronization/
imbalance time.

e Often default is SMP-style placement. This means that for a
multi-node core, sequential MPI ranks are placed on the same
node.

— In general, MPI codes perform better using SMP placement - Nearest
neighbor

— Collectives have been optimized to be SMP aware

* Check your local MPI documentation for options

L

LLNL-PRES-508651

MPI Programming Techniques

Pre-posting receives

* |If possible, pre-post receives before the matching
sends

— Optimization technique for all MPICH installations (not
just MPT)

— Not sufficient to simply put receive immediately before
send

— Put significant amount of computation between receive-
send pair
* Do not go crazy pre-posting receives. You will
overrun the resources available MPI.
 Code example (From Glenn Brook)

— Halo update — with four buffers (n,s,e,w), post all receive requests as early as
possible. Makes a big difference on CNL.
L

LLNL-PRES-508651

MPI Programming Techniques
Examyples 9-pt stencil pseudo-code

Basic

*——0

9-pt compmtadio:
Update ghost cell

boundaries

East/West IRECV,
ISEND, WAITALL

North/South IRECV,
ISEND, WAITALL

Maximal Irecv preposting
Prepost all IRECV
9-pt computation

Update ghost cell
boundaries

East/West ISEND,
Wait on E/W IRECV
only

North/South ISEND,
Wait on the rest

*Makes use of temporary buffers

LLNL-PRES-508651

L

MPI Programming Techniques
Overlapping communication with

* Use non-blocking SSPW&%EQRBH% communication

with computation whenever possible

— Typical pattern:

Pre-post non-blocking receive

Compute a “reasonable” amount to ensure effective pre-posting

Post non-blocking send

o w NpoRe

Compute as much as possible to maximize overlap of comm. and
comp.

5. Wait on communication to finish only when absolutely necessary

L

LLNL-PRES-508651

MPI Programming Techniques
Overlapping communication with

* In some cases, iFR%FB‘ét@eﬁt@Pto replace

collective operations with point-to-point
communications to overlap communication with

computation

— Caution: Do not blindly reprogram every collective
by hand

— Concentrate on the parts of your algorithm with
significant amounts of computation that can overlap
with the point-to-point communications when a
[blocking] collective is replaced

L

LLNL-PRES-508651

MPI Programming Techniques

Reduce Collective Communications

* Avoid using collective communications whenever possible
— MPI collectives are blocking, leading to large sync times
— Collective communication can cripple scalability

e Use algorithms that only require local data where possible
— Consider duplicating computation to reduce communication
* When an algorithm must communicate “globally”:
— Use MPI collectives that have been optimized in library
— Minimize the scope of the collective operation
— Minimize the number of collectives through aggregation

— Consider implementing a non-blocking collective only if
justified after careful analysis

L

LLNL-PRES-508651

MPI Programming Techniques
Aggregating data

* For very small buffers, aggregate data into fewer
MPI calls (especially for collectives)
— 1 all-to-all with an array of 3 reals is clearly better than 3 all-to-alls with 1
real

— Do not aggregate too much. The MPI protocol switches from a short (eager)
protocol to a long message protocol using a receiver pull method once the
message is larger than the eager limit. The optimal size for messages most

of the time is less than the eager limit.

 Example — DNS
— Turbulence code (DNS) replaced 3 AllGatherv’s by one with a larger message

resulting in 25% less runtime for one routine

L

LLNL-PRES-508651

MPI Programming Techniques
Aggregating data: Example from CFD

xQriginal o Improved: =
d for (index =.0; index_< No; index++)£
[ind ??t_area[lndex] = Bndry Area out(A, labels
index]);
for (index = 0; index < No; index++){ }
double tmp; /* Get gdsum out of for loop */
tmp = new double[No];
tmp = 0.0; gdsum (outlet area, fo, tmp) ;
. . elete tmp; —
out area[index] = Bndry Area out(A, labels[index]); for (index.= 0; index < Nin; index++){
gdsum(&outlet area[index],1,&tmp); in area[index] = Bndry Aréa in(A, 1abels[index]);

}

. . . /* Get gdsum out of for loop */
for (index = 0; index < Ni; index++){

tmp = new double[Ni];
gdsum(lnlet_area, Ni, tmp);
elete tmp;

double tmp;
tmp = 0.0;
in area[index] = Bndry Area in(A, labels[index]);

gdsum(&inlet area[index],1,&tmp);

void gdsum (double *x, int n, double *work)
{
register int i;
MPI_Allreduce (X, work, n, MPI_DOUBLE, MPI_ SUM,
MPI_COMM_WORLD);
/* *x = *work; */
dcopy(n,work,1,x,1);

return;

L

LLNL-PRES-508651

Hybrid — MPI + OpenMP

L

LLLLLLLLLLLLLLLL

* When does it pay toMc!:/)ulse-lépQIpP%rr]nMIl:l)application?

— Add/use OpenMP when code is network bound

— As collective and/or point-to-point time increasingly becomes a
problem, use threading to keep number of MPI processes per
node to a minimum

— Be careful adding OpenMP to memory bound codes — can hurt
performance

— Be careful to match memory affinity to thread affinity
* Pre-touch memory from correct thread after allocation
— It is code/situation dependent!

— Consider one MPI process on each CPU and one OpenMP thread
per available core within each process

e Often gives results almost as good as a fully optimized one-
process-per-node code (with OpenMP threads across all of the
cores on the node) with significantly less development

overhead L
LLNL-PRES-508651 LL

Closing Remarks

L

LLNL-PRES-508651

Vendor MPI libraries provide op 'mem%hrFerormance communication

— Sometimes requires guidance and tuning — also patience and
perseverance

— Must understand effect of default parameter choices on performance
Environment variables may be easy way to improve performance

— Familiarize yourself with ‘man mpi’ and remain up-to-date
The is no replacement for good MPI programming practices

— Pre-posting receives, overlap computation and communication, reduce
collective communications, aggregate data for communication

Rank reordering may significantly improve performance
Remember your parallel I/O — it can be crippling

Some of this may not show a benefit at <1K processes, but it can reap huge

gains at 10K to 100K processes

Thanks to Jeff Larkin , Glenn Brook for permission to use their slides

LLNL-PRES-508651 LL

. summary (cantinu d) - Input/Output

mes causes scalabflity is

— For example, cleaning up some writes improved weak
scaling of the CFD code NektarG from 70% to 95% at

1K to 8K cores
e Set file striping appropriately
— The default stripe count will almost always be
suboptimal
— The default stripe size is usually fine.

— Once a file is written, the striping information is set
 Stripe input directories before staging data
 Stripe output directories before writing data

— Stripe for your I/O pattern
* Many-many — narrow stripes Many-one — wide stripes
* Reduce output to stdout

— Remove debugging reports in production runs (e.g. UL_
uHe”O frOm rank N Of Nn) LLNL-PRES-508651

References

Vendor Documentation
— manuals — invaluable source of information
— man pages
High Performamnce Computing, J. Levesque & G. Wagenbreth

Intoduction to High Performance Computing for Scientists and Engineers,
G. Hager & G. Wellein, 2011

Performance Tuning for Scientific Applications, D. bailey, R. Lucas & S.
Williams

LLNL-PRES-508651 LL

