
An Introduction to
Python at NERSC

NERSC Data Day 2016

Rollin Thomas
Data & Analytics Services Group
2016-08-22

20 Questions! At NERSC...

1. Do you use Python?
2. Do you use Python 3 (yet)?
3. Do you use Anaconda Python?
4. Have you ever used numpy/scipy?
5. … multiprocessing?
6. … mpi4py?
7. … IPython/Jupyter?
8. … let’s make it 8 questions.

Python is Popular

bestprogramminglanguagefor.me

www.tiobe.com/tiobe-index

codeval.com

Why Python?

Clean, clear syntax makes it very easy to
learn.

Multi-paradigm interpreted language.

Extremely popular language for teaching
beginners...

… but stays useful beyond the beginner
phase of programming:

Powerful data structures and constructs
built into the language and standard
libraries. Leveraging of C/C++/Fortran.

Huge collection of useful open source
packages to re-use and extend.

Python at NERSC

Supporting Python is no longer optional at
HPC centers like NERSC.

Maximizing Python performance on systems
like Cori and Edison can be challenging:

● Interpreted, dynamic languages are
harder to optimize.

● Python’s global interpreter lock is an
issue for thread-level parallelism.

● Language design and implementation
choices made without considering an
HPC environment.

At the same time, users want NERSC to
provide a familiar and portable Python
environment.

Python Modules at NERSC

python/2.7.9

python/2.7-anaconda

Environment modules:
Environment modules project:
http://modules.sourceforge.net/

Always* “module load python”
Don’t use /usr/bin/python.
Using #!/usr/bin/env python: OK!

What is there?
module avail python

* Unless you install your own Python somehow.

http://modules.sourceforge.net/

Python Installations at NERSC

“NERSC-Built” Python
● Python “base” module.
● Add-on modules as desired.
● Meta-module simplifies setup.

Anaconda Python
● “Distribution” for large-scale data

analytics, and scientific computing.
● ~200 packages but there is also

“miniconda” bare-bones starter.
● Simplified package management

and deployment (conda tool).
● Monolithic module, some add-on

modules (h5py-parallel).

https://docs.continuum.io/anaconda/

Python Modules on Edison

python/2.7.9

NERSC-built:
module load python[/2.7.9] :

python_base/2.7.9
numpy/1.9.2
scipy/0.15.1
matplotlib/1.4.3
ipython/3.1.0

Anaconda:
module load python/2.7-anaconda
module load python/3.5-anaconda

Above are the only currently recommended
Python modules for Edison.

(default)

python/2.7-anaconda

Python Modules on Cori
NERSC-built:

There aren’t any.

Anaconda:
module load python[/2.7-anaconda]
module load python/3.5-anaconda

Above are the only currently recommended
Python modules for Cori.

Do-It-Yourself Python at NERSC
Anaconda Environment under Modules:

module load python/2.7-anaconda
conda create -p $PREFIX numpy…
conda create -n myenv numpy…

(won’t work for users without .condarc defining “envs_dirs”)
conda install basemap yt…

Your own Anaconda or Miniconda installation:
module unload python
wget https://repo.continuum.io/miniconda/Miniconda2-latest-Linux-x86_64.sh
/bin/bash Miniconda2-latest-Linux-x86_64.sh -b -p $PREFIX
export PATH=$PREFIX/bin:$PATH
conda install basemap yt…

Tips:
● Conda environments do not mix with virtualenv.
● Several ML environments via Anaconda at NERSC.

Node Parallelism: Threaded Libraries

Anaconda Python provides access to
Intel Math Kernel Library (MKL) for free:

numpy
scipy
scikit-learn
numexpr

MKL Service functions*:

*https://github.com/ContinuumIO/mkl-service

https://github.com/ContinuumIO/mkl-service
https://github.com/ContinuumIO/mkl-service

Intel Distribution for Python 2017 Beta
Available through Anaconda as well:

conda create -p $SCRATCH/idp \
-c intel intelpython2_core python=2

source activate $SCRATCH/idp

Features:
Leveraging Intel MKL, MPI, TBB, DAAL.
Intel-specific enhancements (FFT, threaded RNG, etc).

Multi-Node Parallelism: mpi4py

MPI support via mpi4py (2.0.0)
Added earlier this year.
Includes MPI-3 features.

Compiled against Cray libraries.

Built into Anaconda modules on
Edison and Cori.

Non-Anaconda route:
module load mpi4py

DIY mpi4py builders… see me.

MPI Start-up in Python Apps at Scale

● Python’s “import” statement is file metadata intensive (.py, .pyc, .so open/stat calls).
● Becomes more severe as the number of Python processes trying to access files increases.
● Result: Very slow times to just start Python applications at larger concurrency (MPI).
● BEST POSSIBLE PERFORMANCE IS SHIFTER:

○ Eliminates metadata calls off the compute nodes.
○ Paths to .so libraries can be cached via ldconfig.

● Other approaches:
○ Pack up software to compute nodes (python-mpi-bcast).
○ Install software to $SCRATCH or /global/common.

better

worse

https://github.com/rainwoodman/python-mpi-bcast/wiki/NERSC

Multiprocessing and Process Spawning

You can use multiprocessing
for on-node throughput jobs.

Combining multiprocessing
with mpi4py, mixed results.

Combining mpi4py and subprocess?
Works to spawn serial, compiled executables.
Just don’t compile those with Cray wrappers cc, CC, ftn.
Do module load gcc and use gcc, g++, gfortran.

Jupyter at NERSC and on Cori

Jupyter Notebook: “Literate Computing.”
Code, text, equations, viz in a narrative.

New way to interact with NERSC HPC resources:
Old: Use ssh or NX to get to command line.
New: Open a notebook, create a narrative.

Move to Cori:
● Access to $SCRATCH.
● Integration with SLURM.
● Eventually Burst Buffer.
● New ways of using Cori.

○ DASK, PySpark, IJulia...

Live Demo

SLURM Magic Commands

Python on Cori Phase II

Knights Landing (KNL)
2x cores per node
Slower clock rate
Less memory/core.

Single-thread or flat MPI
Python won’t be great.

Advice:
Leverage threaded, vectorized math/specialized libraries.
Consider writing Cython/C extensions you can vectorize?
Learn about Intel Python and Intel profiling tools.

Conclusion

Python is an integral element of NERSC’s Data Intensive
Science portfolio.

We want users to have a:
familiar Python environment
productive Python experience
performant Python software stack

Pursuing new ways to empower Python & data users.

Always looking for feedback, advice, and even help:
consult@nersc.gov or https://help.nersc.gov
rcthomas@lbl.gov

mailto:consult@nersc.gov

National Energy Research Scientific
Computing Center

