
Steve Leak!
NERSC User Engagement Group!
July 2017

Introduction to
Cori

NERSC Cori

•  34	double-width	cabinets	
•  9,688	KNL	+	2,388	Haswell	

nodes	on	Aries	High-Speed	
Network	

•  658,784	KNL	cores	+	76,416	
Haswell	cores	

•  Top500	#6	(June	2017)	

Agenda

•  Cori	overview,	logging	in	
•  Run	a	simple	job		
•  Building	and	running	applicaRons	on	Cori	
–  Serial	
–  Parallel	(MPI)	
– Mul.threaded	(OpenMP)	

•  What	affects	performance?		
–  Bo7lenecks	
–  Task	placement	and	affinity	

•  Preparing	for	performance	analysis	

Cori overview, logging in

Before we start

•  The	training	materials	are	available	on	github:	
hZps://git.io/v7OuW	(and	hZps://git.io/v7LeY)	
–  And	also	on	Cori,	via:	

cd $SCRATCH
module load training/csgf-2017
git clone $TRAINING $SCRATCH/csgf-2017

•  The	slides	are	available	at	(
hZps://www.nersc.gov/users/training/events/
csgf-2017-hpc-workshop)	

•  This	is	a	very	hands-on	oriented	session	
–  (so	have	laptops	ready!)	

•  We	will	pause	for	Q&A	at	the	end	of	each	topic	

Cori Overview
•  Login	and	compute	nodes	

are	disRnct	

•  Large,	fast,	parallel	
$SCRATCH	filesystem	for	
running	jobs	

•  Smaller	$HOME,	
configured	for	building	
code	

•  Burst	buffer	filesystem	
integrated,	on	high-speed	
network	

What’s so special about it?

•  Your	quad-core	
desktop	CPU	looks	
something	like	this:	

•  Compared	to	a	Cori	
Haswell	node:		

16	cores	
x	2	sockets,	
128GB	RAM	

Images	courtesy	of	Google	Image	Search,	
Intel,	EnterpriseTech.com,	NextPlaQorm.com		

What’s so special about it?

•  And	then	there	are	the	KNL	nodes	
(68	cores,	MCDRAM,	…)	

What’s so special about it?

•  But	high-end	CPUs	don’t	make	a	supercomputer	
–  High	speed	interconnects	between	them	
–  Lightweight	compute	node	OS	
–  Very	large	(28,000	TB)	fast	parallel	filesystem	

•  …and	a	different	usage	model	
–  Subset	of	nodes	dedicated	to	a	single	task,	run	via	batch	
system	(no	interac.ve	GUI	/	desktop)	

What’s special about KNL?

•  Different	choice	of	compromise	between	die	space	
allocated	to	different	parts	of	the	CPU	

Instruc.on	fetch-and-
decode,	hyperthreading,	
branching	(important	for	
eg	compiling,	GUI	
applica.ons)	

Arithme.c,	vector	
and	floa.ng	point	
units	–	the	actual	
FLOPS		

Memory	access	–	
keeps	execu.on	
engine	busy	

What’s special about KNL?

•  Xeon	(eg	Haswell)	 •  Xeon	Phi	(KNL)	

Large	and	fast	
	-	power	
hungry,	hot	

Smaller	space,		
shorter	vectors	

Small	and	slow,	
cool,	efficient	

large	L3	cache	

Large	L2	cache,	no	
L3	(but	MCDRAM)	

Big	wide	vectors	

Why?

•  Exascale	challenges	–	power	and	heat	
–  CPU	frequency	plateaued	~15	years	ago	
–  Transistor	density,	feature	size	reaching	fundamental	
limits	

–  Power	consumpRon	and	heat	dissipaRon	are	now	the	key	
constraints	for	supercompuRng	

–  …	we	can’t	get	there	from	here!	

•  KNL	emphasizes	vectorizaRon	and	parallelism	at	
lower	power	
–  Targets	scien.fic	compu.ng		

Cori Overview
•  Login	and	compute	nodes	

are	disRnct	

•  Large,	fast,	parallel	
$SCRATCH	filesystem	for	
running	jobs	

•  Smaller	$HOME,	
configured	for	building	
code	

•  Burst	buffer	filesystem	
integrated,	on	high-speed	
network	

Connecting to Cori
•  Best:	point	your	browser	at	https://nxcloud01.nersc.gov and	

start	an	NX	session	
–  Or	set	up	an	NX	player	on	your	worksta.on	by	following	the	instruc.ons	at	

h7p://www.nersc.gov/users/connec.ng-to-nersc/using-nx/	
	

•  If	you	have	a	UNIX-like	computer	(or	an	NX	session),	you	can	
directly	contact	NERSC	with	your	built-in	SSH	client	
1.  Open	a	new	terminal	
2.  %	ssh –Y -l <training_acct_username> cori.nersc.gov

•  Many	SSH	clients	exist	for	Windows	
–  A	very	popular	one	is	puZy		

•  hZp://www.puZy.org/	
–  Advanced	users	might	prefer	to	use	SSH	directly	within	minZy	(from	Cygwin	

distribu.on)	

-	14	-	

X-forwarding

•  Allows	you	to	access	GUI	programs	remotely	
•  We	will	need	it	this	apernoon!	

-	15	-	

Example:	
localhost% ssh –Y -l elvis cori.nersc.gov
…
e/elvis> module load matlab
e/elvis> matlab
<MATLAB starts up>

Example Session
localhost:~elvis> ssh –Y -l <training_account_name> cori.nersc.gov

 * *
 * NOTICE TO USERS *
 * --------------- *
 * *
 * Lawrence Berkeley National Laboratory operates this *
 * computer system under contract to the U.S. Department of *
 * Energy. This computer system is the property of the United *
 * States Government and is for authorized use only. *Users *
 * (authorized or unauthorized) have no explicit or implicit *
 * expectation of privacy.* *
 * *
 * Any or all uses of this system and all files on this system *
 * may be intercepted, monitored, recorded, copied, audited, *
 * inspected, and disclosed to site, Department of Energy, and *
 * law enforcement personnel, as well as authorized officials *
 * of other agencies, both domestic and foreign. *By using *
 * this system, the user consents to such interception, *
 * monitoring, recording, copying, auditing, inspection, and *
 * disclosure at the discretion of authorized site or *
 * Department of Energy personnel.* *
 * *
 * *Unauthorized or improper use of this system may result in *
 * administrative disciplinary action and civil and criminal *
 * penalties. _By continuing to use this system you indicate *
 * your awareness of and consent to these terms and conditions *
 * of use. LOG OFF IMMEDIATELY if you do not agree to the *
 * conditions stated in this warning._* *
 * *

Password: <enter your training account password here>

-	16	-	

Prompt	on	local	system	

No.fica.on	of	acceptable	
use.	

Password	prompt	

After logging in…
•  On	a	login	node	

–  cori01,	cori02,	…	
–  Shared	by	many	users	
–  Not	necessarily	the	same	
one	each	.me!	

–  But	same	access	to	
filesystems	

•  No	direct	access	to	
compute		nodes	
–  Only	via	batch	system	
(salloc,	sbatch)	

•  Haswell	(Xeon)	
architecture	

Hands-on exercise

•  First:	Q&A	?	
•  Exercise:	(check	README.md	at	hZps://git.io/v7LeY)	

1.  Log	in	to	Cori	
2.  Navigate	to	$SCRATCH	
3.  Load	the	module	“training/csgf-2017”,	this	will	set	

$TRAINING	to	the	loca.on	of	the	training	materials.	
•  Copy	(or	git-clone)	the	training	materials	to	your	$SCRATCH,	and	

browse	the	files	(especially	ex1-getting_started/
README.md)	

4.  Is	X	working?	Try	to	start	an	xterm	
 cori$ xterm &	

Agenda

•  Cori	overview,	logging	in	
•  Run	a	simple	job		
•  Building	and	running	applicaRons	on	Cori	
–  Serial	
–  Parallel	(MPI)	
– Mul.threaded	(OpenMP)	

•  What	affects	performance?		
–  Bo7lenecks	
–  Task	placement	and	affinity	

•  Preparing	for	performance	analysis	

Run a simple job

Running jobs – key points

•  HPC	work	is	via	batch	system	
–  Dedicated	subset	of	compute	resources	
–  Login	nodes	are	shared	resource	for	building	code,	edi.ng	scripts,	

etc.	Use	batch	jobs	for	real	work	
•  Key	commands:	

–  sbatch	/	salloc	-	submit	a	job	
–  srun	-	start	an	(op.onally	MPI)	applica.on	within	a	job	
–  sqs	-	check	the	queue	for	my	job	status	

•  For	today,	we	have	a	reservaRon	
–  #SBATCH	–reserva.on=csgrrain	

	
www.nersc.gov/users/computa.onal-systems/cori/running-jobs/	
	

	

Running jobs – key points

•  HPC	work	is	via	batch	system	
–  Dedicated	subset	of	compute	resources	
–  Login	nodes	are	shared	resource	for	building	code,	edi.ng	scripts,	

etc.	Use	batch	jobs	for	real	work	
•  Key	commands:	

–  sbatch	/	salloc	-	submit	a	job	
–  srun	-	start	an	(op.onally	MPI)	applica.on	within	a	job	
–  sqs	-	check	the	queue	for	my	job	status	

•  For	today,	we	have	a	reservaRon	
–  #SBATCH	–reserva.on=csgrrain	

	
www.nersc.gov/users/computa.onal-systems/cori/running-jobs/	
	

	

All	of	this	is	
on	the	web!	

How jobs work

Desktop	/	login	node	
•  Timeslicing	

–  core	shared	by	mul.ple	
tasks	

–  Works	when	the	
computer	is	mostly	
wai.ng	for	you	

HPC	
•  You	are	wai.ng	for	

the	computer	
•  Subset	of	pooled	

resources	dedicated	
to	one	job	

	

How jobs work

•  Start	on	login	node	
–  shared	by	many	users,	

not	for	computa.onal	
work	

•  Access	compute	nodes	
with	sbatch	or	salloc	

•  Batch	script	
–  Copied	to	queue	
–  Has	direc.ves	for	

SLURM,	and	shell	
commands	to	perform	
on	first	compute	node	

•  Access	your	other	
allocated	nodes	with	srun	

•  stdout,	stderr	saved	to	file	
–  (when	running	in	

batch	mode)	

Nodes, cores, CPUs, threads, tasks -
some definitions
•  Node	is	the	basic	unit	of	allocaRon	at	NERSC	

–  Think	“one	host”	or	“one	server”	
–  Single	memory	space,	mul.ple	CPU	cores	(24	or	32	or	68	...	

•  And	a	core	might	support	hyperthreading	

Nodes, cores, CPUs, threads, tasks -
some definitions

With	
hyperthreading	

Without	
hyperthreading	

Hyperthreading	
•  Fast	.meslicing	

–  Good	when	arithme.c	units	frequently	
wait	on	memory	

•  Core	holds	state	of	2	(4	on	KNL)	processes,	
they	share	arithme.c	units	

•  SLURM	views	each	hyperthread	as	a	CPU	
•  But	most	HPC	jobs	perform	best	when	not	

sharing	a	core!	
•  Usually	best	to		reserve	2	(or	4)	CPUs	/	core	

Slurm tasks

•  First,	a	block	diagram	of	how	hyperthreads,	cores,	
cache,	and	sockets	relate	within	a	(haswell)	node	

• A	SLURM	task	is	a	reservaRon	of	CPUs	and	memory,	
up	to	one	full	node	
– A	job	has		
many	tasks	
– 1	task	typically	
corresponds	
to	1	MPI	rank	

srun -n <ntasks> ..
	

•  Eg:	3	possible	
tasks	on	2		
nodes	

	

Slurm tasks

So what must I request for my job?

What	the	batch	system	needs	to	know:	
•  How	many	nodes	(or	CPUs	or	tasks)	does	this	job	need?	
•  For	how	long	does	it	need	them?	

–  Wallclock	.me	limit	
	

NERSC-specific	extras:	
•  What	type	of	CPU?		(-C	…)	

–  KNL	or	Xeon	(haswell/ivybridge)?	
•  Which	filesystems	will	this	job	use?		(-L	…)	

–  Usually	SCRATCH	

#SBATCH -N 64 # request 64 nodes
srun -N 32 ./my_app # start ./my_app on 32 of them
 # (default: 1 per node)
srun -n 128 ./my_app # start 128 instances of ./my_app,
 # across my 64 nodes (default is
 # to evenly distribute them in
 # block fashion)

	
	
One	MPI	rank	generally	corresponds	to	one	SLURM	Task	

	
	

Requesting nodes or tasks

Task	0:	./my_app	

Task	1:	./my_app	

Task	2:	./my_app	

Task	3:	./my_app	

Task	126:	./my_app	

Task	127:	./my_app	

Node	0	 Node	1	 Node	63	

Requesting time

#SBATCH -t 30 # 30 minutes
#SBATCH -t 30:00 # 30 minutes
#SBATCH -t 1:00:00 # 1 hour
#SBATCH -t 1-0 # 1 day
#SBATCH -t 1-12 # 1.5 days
	
• Wallclock	Rme,	ie	real	elapsed	Rme	
• Aper	this	much	Rme,	SLURM	can	kill	this	job	

Hands-on exercise: My first job

A	SLURM	job	script	has	two	secRons:	
1.   DirecRves	telling	SLURM	what	you	would	like	it	to	do	with	this	job	
2.   The	script	itself	-	shell	commands	to	run	on	the	first	compute	node	

How	many	
nodes?	

For	how	
long?	

$SCRATCH	
filesystem	

Xeon	nodes	on	
current	cluster	(set	by	
craype-
{haswell,ivybridge}	
module)	
	
Note:	cannot	use	env	
vars	in	direc.ves	-	but	
direc.ves	have	
equivalent	command-
line	op.on	

Hands-on exercise: My first job

A	SLURM	job	script	has	two	secRons:	
1.   DirecRves	telling	SLURM	what	you	would	like	it	to	do	with	this	job	
2.   The	script	itself	-	shell	commands	to	run	on	the	first	compute	node	

Make	star.ng	
environment	
like	my	login	
environment	

Run	from	
$SCRATCH		

Start	4	tasks	
across	my	
nodes		 “sbatch”	

submits	a	job	
script		

Running jobs – key points

•  HPC	work	is	via	batch	system	
–  Dedicated	subset	of	compute	resources	
–  Login	nodes	are	shared	resource	for	building	code,	edi.ng	scripts,	

etc.	Use	batch	jobs	for	real	work	
•  Key	commands:	

–  sbatch	/	salloc	-	submit	a	job	
–  srun	-	start	an	(op.onally	MPI)	applica.on	within	a	job	
–  sqs	-	check	the	queue	for	my	job	status	

•  Don’t	forget	we	have	a	reservaRon	
–  #SBATCH	–reserva.on=csgrrain	

	
www.nersc.gov/users/computa.onal-systems/cori/running-jobs/	
	

	

Where is my job?

elvis@nersc:~> sqs
JOBID ST REASON USER NAME NODES USED REQUESTED ...
2774102 R Prolog elvis myscript.q 2 0:00 30:00

 ... SUBMIT PARTITION RANK_P RANK_BF
 2016-11-18T11:24:20 debug N/A N/A

elvis@nersc:~> ls -lt
total 11280
-rw-r----- 1 elvis elvis 132 Nov 18 11:24 slurm-2774102.out
-rw-r----- 1 elvis elvis 208 Nov 18 11:24 myscript.q

Hands-on exercise

•  First:	Q&A	?	
	
•  Exercise:	running	a	simple	job	

–  (check	README.md	in	ex2-running_jobs/)	

Agenda

•  Cori	overview,	logging	in	
•  Run	a	simple	job		
•  Building	and	running	applicaRons	on	Cori	
–  Serial	
–  Parallel	(MPI)	
– Mul.threaded	(OpenMP)	

•  What	affects	performance?		
–  Bo7lenecks	
–  Task	placement	and	affinity	

•  Preparing	for	performance	analysis	

Building and running
applications on Cori

Cray compiler wrappers, ftn, cc and CC

•  Building	code	opRmally	for	Cori	requires	a	
complex	set	of	compiler	opRon	and	libraries	
– eg,	sta.c	linking	by	default	(important	for	
performance	at	scale)	

•  Compiler	wrappers	pn,	cc	and	CC	manage	this	
complexity	for	you	
– Using	environment	variables	set	by	the	modules	
you	have	loaded	

•  Also	provide	MPI	(so	eg	mpicc	is	not	required)	
	

-	39	-	

Wait .. “environment modules” ?

•  Sopware	on	Cori	(and	most	HPC	systems)	is	
managed	with	“environment	modules”	

•  Why?	
–  Cori	is	a	shared	resource	
–  Different	people	need	different	combina.ons	of	sorware,	
at	different	versions,	with	different	dependencies	(and	for	
different	jobs)	

•  Loading	and	unloading	a	module	updates	
environment	variables	(eg	$PATH,	
$LD_LIBRARY_PATH)	to	make	a	package	available	

Module Commands
module load <modulename> 				

–  Add	the	module	from	your	environment		
module unload <modulename> 				

–  Remove	the	module	from	your	environment		
module swap <module1> <module2>

–  Unload	one	module	and	replace	it	with	another						
 % module swap intel intel/16.0.3.210
							(replace	current	default	to	a	specific	version)	

module list 				
–  See	what	modules	you	have	loaded	right	now				

module show <modulename> 				
–  See	what	the	module	actually	does				

module help <modulename> 										
–  Get	more	informa.on	about	the	sorware	

-	41	-	

Key modules for compiling

•  PrgEnv-intel	/	PrgEnv-cray	/	PrgEnv-gnu	
– Which	underlying	compiler	the	wrappers	should	invoke	

•  craype-haswell	/	craype-mic-knl	
–  Remember,	login	nodes	are	haswell,	but	we	are	building	
for	KNL!	

module swap craype-haswell craype-mic-knl
– Wrappers	manage	cross-compiling	

Important	for	
today!	

What do compiler wrappers link by default?

•  Depending	on	the	modules	loaded,	MPI,	LAPACK/BLAS/
ScaLAPACK	libraries,	and	more	

-	43	-	

Compiling code

•  Very	similar	to	regular	Linux,	but	using	CC	/	cc	/	pn	
•  Do	this	bit	once:	

	module swap craype-haswell craype-mic-knl	

•  Then:	
	ftn –c hack-a-kernel.f90
 ftn –o hack-a-kernel.ex hack-a-kernel.o	

•  Note	that	the	module	looks	aper	CPU	target!	

Compiling parallel code

•  Compiler	wrappers	give	you	MPI	“for	free”	
CC –c hello-mpi.c++
CC –o hello-mpi.ex hello-mpi.o	

•  (Cray	MPICH	–	opRmized	for	Aries	HSN)	
	
•  OpenMP:	with	PrgEnv-intel	(NERSC	default):	

cc –qopenmp –c hello-omp.c
cc –qopenmp –o hello-omp.ex hello-omp.o	

	

MPI vs OpenMP

•  MPI	provides	explicit	communicaRon	between		
separate	processes	
–  Op.onally	on	separate	nodes	–	ie	packets	over	a	network	
– Most	parallel	development	in	last	2	decades	has	used	this	
approach	

•  OpenMP	provides	work-sharing	and	
synchronizaRon	between	threads	in	a	single	process	
–  Threads	share	the	same	memory	image	
–  To	make	the	most	of	a	KNL	node,	most	applica.ons	will	
need	to	use	OpenMP	

MPI vs OpenMP

•  An	MPI	applicaRon	can	
have	processes	on	
more	than	one	node	

	

•  An	OpenMP	applicaRon	
exists	enRrely	within	1	
node	

MPI	rank	0	

MPI	rank	1	

OpenMP	thread	0	
OpenMP	thread	1	

Why do we suddenly need OpenMP?

•  MulR-level	parallelism	
–  At	very	large	scale,	the	overheads	of	MPI	(or	any	parallel	
approach)	become	excessively	costly	

–  Combining	(nes.ng)	parallel	approaches	allows	us	to	
operate	each	at	lower	scale	
•  Sweet	spot	for	best	overall	efficiency	

– MPI	->	OpenMP	->	Vectoriza.on	

Why do we suddenly need OpenMP?

•  Memory-per-core	is	trending	downwards	
–  Cori	Haswell:			128GB	for	32	cores	
–  Cori	KNL:		96GB	for	68	cores	(16GB	MCDRAM	for	68	cores)	
–  Parallelism	within	same	memory	footprint	is	necessary	

Hands-on exercise

•  First:	Q&A	?	
	
•  Exercise:	building	and	running	a	simple	serial,	
OpenMP	and	MPI	applicaRon	
–  (check	README.md	in	ex3-building_apps)	

Agenda

•  Cori	overview,	logging	in	
•  Run	a	simple	job		
•  Building	and	running	applicaRons	on	Cori	
–  Serial	
–  Parallel	(MPI)	
– Mul.threaded	(OpenMP)	

•  What	affects	performance?		
–  Bo7lenecks	
–  Task	placement	and	affinity	

•  Preparing	for	performance	analysis	

What affects performance?

Performance bottlenecks

•  Any	point	at	which	some	component	of	the	system	
or	applicaRon	is	stalled,	waiRng	on	some	other	
component,	is	a	boZleneck	

•  Eg	waiRng	for	MPI	call	to	complete	
–  Load	imbalance	or	communica.on	overhead	is	a	
bo7leneck	

•  BUT	for	today	we	are	interested	in	KNL	specifics	
–  Bo7lenecks	within	the	node	

Bottlenecks within the node – Affinity issues

•  Firstly:	Am	I	running	it	
right?	
–  Cori	KNL	has	68	
cores	per	node,		
arranged	on	a	mesh		
of	34	.les	

–  Each	.le	has	2	cores	and		
a	shared	L2	cache	

–  Each	core	has	4	
hyperthreads	sharing	2	
VPUs	and	an	L1	cache	

Bottlenecks within the node – Affinity issues

•  Where	are	my	threads?	
–  Is	each	using	a	different	
core	at	least?	

•  Linux	does	not	
always	choose	
best	placement	
–  Use	srun	op.ons	
to	ensure	op.mal		
thread/process	
placement	

SoluRon:	use	--cpu_bind:	
srun -n 64 -c 4 --cpu_bind=verbose,cores ./my_exec
srun -n 128 -c 2 --cpu_bind=verbose,threads ./my_exec

•  Controls	what	a	task	(MPI	rank)	is	bound	to	
– If	no	more	than	1	MPI	rank	per	core:	--cpu_bind=cores

	
	

–  If	more	than	1	MPI	rank	per	core:	--cpu_bind=threads

Process (task) affinity

Thread affinity (OpenMP)

export OMP_NUM_THREADS=2
export OMP_PROC_BIND=spread # or close
export OMP_PLACES=cores # or threads, or sockets
srun -n 32 -c 8 --cpu_bind=verbose,cores ./my_exec

...If	using	hyperthreads,	use	OMP_PLACES=threads	

Memory affinity

Linux	default	behavior	is	to	allocate	to	closest	NUMA-
node,	if	possible	

Not	always	opRmal:	
•  KNL	nodes:	DDR	is	“closer”	than	MCDRAM	

	
#SBATCH -C knl,quad,flat
export OMP_NUM_THREADS=4
srun -n16 -c16 --cpu_bind=cores --mem_bind=map_mem:1 ./a.out

•  NUMA	node	1	is	MCDRAM	in	quad,flat	mode	
•  “Mandatory”	mapping:	if	using	>16GB,	malloc	will	fail	

NOTE:	today’s	reservaRon	is	for	“cache-mode”	nodes,	so	
MCDRAM	is	invisible	

Bottlenecks within the node – Affinity issues
OMP_PROC_BIND=true
OMP_PLACES=cores (threads)
srun -c 4 --cpu_bind=cores …
	

Bottlenecks within the node
•  Performance	tends	to	be	dominated	by:	

•  BoZlenecks	are	usually	due	to	one	of	these	parts	
waiRng	on	the	other	

Doing	arithmeRc	
operaRons		
(#	FLOPS/cycle)	

Moving	data	
between	arithmeRc	
units	and	memory	

Bottlenecks within the node

•  Bandwidth!	
– MCDRAM	is	very	high	bandwidth	(~450	GB/s)	
–  ..	But	aggregate	bandwidth	is	not	the	same	as	bandwidth	
to	each	core!	

Hands-on exercise

•  First:	Q&A	?	
	
•  Exercise:	Gezng	the	affinity	sezngs	right	

–  (check	README.md	in	ex4-affinity)	
– We	have	two	jobs	in	this	exercise,	the	first	is	fast	and	
sufficient	to	demonstrate	the	effect	of	affinity	se|ngs.	The	
second	will	take	longer,	so	we’ll	con.nue	with	the	
presenta.on	without	wai.ng	for	it	to	complete	

Agenda

•  Cori	overview,	logging	in	
•  Run	a	simple	job		
•  Building	and	running	applicaRons	on	Cori	
–  Serial	
–  Parallel	(MPI)	
– Mul.threaded	(OpenMP)	

•  What	affects	performance?		
–  Bo7lenecks	
–  Task	placement	and	affinity	

•  Preparing	for	performance	analysis	

Preparing for performance
analysis

•  A	small,	short,	but	representaRve	test	case	for	your	
applicaRon	
–  Profiling	tends	to	be	costly	

•  Run.me	overhead	
•  Size	of	data	collected	

–  BUT:	must	cover	same	paths	through	code	as	“real”	
example	(or	at	least,	the	differences	must	be	understood)	
• What	could	go	wrong	with	this	test	case?	

Profiling prerequisite

-	65	-	

.me-stepping	

setup	

1	.mestep	

output	

Real	run:	

Test	case	for	profiling:	

…But my application just is big!

•  Start	with	a	low-overhead	profiling	method	
–  Eg	sampling-based	(gprof,	TAU,	CrayPat,	…)	
–  Iden.fy	hotspots	

•  Only	profile	part	of	a	run	
–  Some	tools	(eg	Vtune)	allow	you	to	start	the	run	“paused”	
and	“resume	collec.on”	via	an	API	call	

•  Only	profile	1	MPI	rank	
–  Via	srun	op.ons,	eg	run	Vtune	on	one	rank,	not	others	
(beyond	today’s	scope)	

•  Luckily,	our	hack-a-kernel	is	already	small!	J	

Today’s exercise

•  Hackathon	this	apernoon:	Using	Vtune	to	analyze	
hack-a-kernel	performance	on	KNL	

•  Vtune:	powerful	tool,	but	very	informaRon-dense	
–  Best	suited	to	node-level	performance	analysis	(OpenMP,	
vectoriza.on,	memory	bandwidth	..	Not	really	MPI)	

– Many	knobs	to	turn	
–  Command-line	interface:	used	at	“collect”	

•  Op.onally	can	use	to	“report”	too	
–  GUI	interface:	explore	performance	reports	

Performance Analysis Gotchas

•  Overhead!	
–  Your	job	will	(usually)	take	longer	while	profiling	

•  Performance	tools	open	don’t	play	nicely	together!	
–  Trying	to	use	same	resources	

•  Especially	(at	NERSC):	
–  Darshan	is	loaded	by	default,	collects	I/O	performance	
data	

– Must	unload	it	before	using	Vtune	(and	most	other	
performance	tools)	

Performance Analysis Gotchas

•  Many	tools	require	dynamically-linked	executable	
–  Including	Vtune	
–  NERSC/Cray:	applica.ons	are	sta.cally	linked	by	default,	
must	use	“-dynamic”	at	compile	.me	

•  “Uncore”	(eg	memory	related)	performance	
counters	usually	require	special	permissions	(eg	
kernel	module)	
–  NERSC/Slurm	supports	this	with	
						#SBATCH	–perf=vtune	
direc.ve	

Hands-on exercise

•  This	apernoon:	we	will	opRmize	hack-a-kernel	for	
KNL	

•  Exercise:	First,	we’ll	build	it	for	Vtune	and	run	an	
experiment,	so	we	have	results	ready	to	look	at	this	
apernoon	
–  check	README.md	in	ex5-vtune)	

Summary and Recap

•  Now	you	can:	
–  Log	in	
–  Build	an	applica.on	
–  Run	an	applica.on,	and	be	aware	of	how	and	where	it	is	
running	

–  Prepare	an	applica.on	for	performance	analysis	with	
Vtune	

•  Q	&	A?	

