Python - lingua franca of data science

Kaggle ML and Data Science Survey, 2017

Tools used in work

Python

The Reality of “Data Centric Computing”

Performance Limited
- Software is slow and single-node for many organizations
- Only sample a small portion of data

Productivity Limited
- More performant/scalable implementations require significantly more development & deployment skills & time

Compute/Bandwidth Limited
- Performance bottleneck often in compute or in memory bandwidth

Our mission: Deliver Python technologies that scale-up/out entire data analytics pipeline in productive way
Performance of Python

Python

100x-1000x performance gap

C

Optimizing compiler
OpenMP*/TBB/pthreads
Unlocking parallelism is essential to make Python useful in production.
Performance of Python

Python + Numba*
http://numba.pydata.org/

Small % performance gap

@numba.jit(nopython=True, parallel=True)
def logistic_regression(Y, X, w0, step, iterations):
 """SGD solver for binary logistic regression."""
 w = w0.copy()
 for i in range(iterations):
 w += step * np.dot((1.0/(1.0 + np.exp(Y * np.dot(X, w)))) * Y, X)
 return w

High Performance Python

Python Libraries

Intel® Performance Libraries

Thin layer in Python or Cython

Native highly optimized libraries (Intel MKL, Intel DAAL, Intel IPP)

more nodes,
more cores,
more threads,
wider vectors, ...

(generations of processors)
Productivity with Performance via Intel® Python*

Intel® Distribution for Python*

Learn More: software.intel.com/distribution-for-python
Intel® Distribution for Python*
https://software.intel.com/en-us/distribution-for-python

Accelerated NumPy, SciPy
- Intel® MKL
- Intel® C and Fortran compilers
- Linear algebra, universal functions, FFT

Accelerated Scikit-Learn
- Intel® MKL
- Intel® C and Fortran compilers
- Intel® Data Analytics Acceleration Library (DAAL)

Solutions for efficient parallelism
- TBB4py
- github.com/IntelPython/smp
- Intel® MPI library

Python APIs for Intel® MKL functions
- github.com/IntelPython/mkl_fft
- github.com/IntelPython/mkl_random
- github.com/IntelPython/mkl-service

Python APIs for Intel® DAAL
- github.com/IntelPython/daal4py

Numba
- with upstreamed Intel contributions
- Parallel Accelerator
- support for SVML
- support for TBB/OpenMP threading runtimes

conda create --c intel intelpython3_full
docker pull intelpython/intelpython3_full
pip install intel-numpy intel-scipy intel-scikit-learn

Close to native code Umath Performance with Intel Python 2019

Compared to Stock Python packages on Intel® Xeon processors

- **Optimization Notice**: Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice. Notice revision #20110804.

- **Problem Size = 2.5M**

- **Performance Efficiency measured against native code with Intel® MKL**

- **Configuration**: Stock Python: python 3.6.6 hc3d631a_0 installed from conda, numpy 1.15, numba 0.39.0, llvmlite 0.24.0, scipy 1.1.0, scikit-learn 0.19.2 installed from pip; Intel Python: Intel Distribution for Python 2019 Gold: python 3.6.5 intel_11, numpty 1.14.3 intel_py36_5, mkl 2019.0 intel_11, mkl_fft 1.0.2 intel_mp114py36_6, mkl_intel_10, mkl_random 1.0.1 intel_mp114py36_6, numba 0.39.0 intel_mp114py36_6, llvmlite 0.24.0 intel_py36_0, scipy 1.1.0 intel_mp114py36_6, scikit-learn 0.19.1.1 intel_mp114py36_35; OS: CentOS Linux 7.3.1611, kernel 3.10.0-514.el7.x86_64; Hardware: Intel(R) Xeon(R) Gold 6140 CPU @ 2.30GHz (2 sockets, 18 cores/socket, HT:off), 256 GB of DDR4 RAM, 16 DIMMs of 16 GB @ 2666MHz

87% native efficiency on Black-Scholes Formula code with Intel numpy + numba.
NumPy sources/recipes

https://github.com/IntelPython/numpy/

Sources with IDP patches applied

conda recipes included
Accelerating Machine Learning

- Efficient memory layout via Numeric Tables
- Blocking for optimal cache performance
- Computation mapped to efficient operations (MKL)
- Vectorization
- Parallelization via TBB

Try it out! conda install -c intel scikit-learn
Intel® DAAL Algorithms supported by daal4py

Data Transformation and Analysis

- **Basic statistics for datasets**
 - Low order moments
 - Quantiles
 - Order statistics
 - Variance-Covariance matrix

- **Correlation and dependence**
 - Cosine distance
 - Correlation distance

- **Matrix factorizations**
 - SVD
 - QR
 - Cholesky

- **Dimensionality reduction**
 - PCA
 - Association rule mining (Apriori)
 - Optimization solvers (SGD, AdaGrad, LBFGS)

- **Outlier detection**
 - Univariate
 - Multivariate
 - Math functions (exp, log,...)

Other names and brands may be claimed as the property of others.
Intel® DAAL Algorithms supported by daal4py

Machine Learning

Regression
- Linear Regression
- Ridge Regression

Supervised learning
- Decision Tree
- Decision Forest
- GradientBoosting

Classification
- Decision Forest
- Linear Regression
- Decision Tree

Unsupervised learning
- K-Means Clustering
- EM for GMM

Collaborative filtering
- Alternating Least Squares

Ridge Regression
- Weak learner*
- Boosting* (Ada, Brown, Logit)

Naïve Bayes
- kNN

Support Vector Machine

*Expected with DAAL® 2020

Algorithms supporting batch processing

Algorithms supporting batch, online and/or distributed processing
Close to native code scikit-learn Performance with Intel Python 2019
Compared to Stock Python packages on Intel® Xeon processors

Performance Efficiency measured against native code with Intel® DAAL

<table>
<thead>
<tr>
<th>Function & Problem Size</th>
<th>Stock Python</th>
<th>Intel® Distribution for Python 2019</th>
</tr>
</thead>
<tbody>
<tr>
<td>cosine dist</td>
<td></td>
<td></td>
</tr>
<tr>
<td>correlation dist</td>
<td></td>
<td></td>
</tr>
<tr>
<td>kmeans.fit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>kmeans.predict</td>
<td></td>
<td></td>
</tr>
<tr>
<td>linear_reg.fit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>linear_reg.predict</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ridge_reg.fit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ridge_reg.predict</td>
<td></td>
<td></td>
</tr>
<tr>
<td>svm.fit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>svm.predict</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1K x 15K</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1M x 50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1M x 50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1M x 50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10K x 1K</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Configuration: Stock Python: python 3.6.6 hc3d631a_0 installed from conda, numpy 1.15, numba 0.39.0, llvmlite 0.24.0, scipy 1.1.0, scikit-learn 0.19.2 installed from pip; Intel Python: Intel Distribution for Python 2019 Gold: python 3.6.5 intel_11, numpy 1.14.3 intel_py36_5, mkl 2019.0 intel_101, mkl_fft 1.0.2 intel_np114py36_6, mkl_random 1.0.1 intel_np114py36_6, numba 0.39.0 intel_np114py36_0, llvmlite 0.24.0 intel_py36_0, scipy 1.1.0 intel_np114py36_6, scikit-learn 0.19.1 intel_np114py36_35; OS: CentOS Linux 7.3.1611, kernel 3.10.0-514.el7.x86_64; Hardware: Intel(R) Xeon(R) Gold 6140 CPU @ 2.30GHz (2 sockets, 18 cores/socket, HT:off), 256 GB of DDR4 RAM, 16 DIMMs of 16 GB@2666MHz

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. For more complete information visit www.intel.com/benchmarks. Source: Intel Corporation - performance measured in Intel labs by Intel employees. Optimization Notice: Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice. Notice revision #20110804.
Accelerating K-Means

Performance speedups for Intel® Distribution for Python* scikit-learn on Google Cloud Platform’s 96 vCPU instance Intel® Xeon™ Processors

- Stock scikit-learn
- Intel-optimized scikit-learn

- PCA-based: 23X faster
- random: 21X faster
- k-means++: 22X faster

System Configuration:
GCP VM, zone us-central1-c; 96 vCPU, Intel Skylake; 360 GB memory. Ubuntu 16.04.3 LTS; Linux instance-1 4.10.0-38-generic #42~16.04.1-Ubuntu SMP Tue Oct 10 16:32:20 UTC 2017 x86_64 x86_64 x86_64 GNU/Linux; Intel® Distribution for Python* from Docker image intelpython/intelpython3_full:latest (created 2017-09-12T20:10:42.8629655592); Stock Python*: pip install scikit-learn

Accelerating scikit-learn through daal4py

```
> python -m daal4py <your-scikit-learn-script>
```

```
import daal4py.sklearn
daal4py.sklearn.patch_sklearn()
```

```
import daal4py.sklearn
daal4py.sklearn.linear_model.Ridge().fit(X, y)
```

Monkey-patch any scikit-learn on the command-line

Monkey-patch any scikit-learn programmatically

Use alongside scikit-learn

Scikit-learn with daal4py patches applied passes scikit-learn test-suite (run on public CI)
Use directly for
• Scaling to multiple nodes
• Streaming data
• Non-homogeneous dataframes

Scikit-Learn Equivalents
- PCA
- KMeans
- LinearRegression
- Ridge
- SVC
- pairwise_distances
- logistic_regression_path

Scikit-Learn API Compatible
- KNeighborsClassifier
- RandomForestClassifier
- RandomForestRegressor

daal4py

Intel® DAAL
Get to fly with daal4py

Fast & Scalable	- Close to native performance through Intel® DAAL
	- Efficient MPI scale-out
	- Streaming
Easy to use	- Intuitive usage model
	- Picklable
Flexible	- Plugs into scikit-learn
	- Plugs into HPAT/Numba
Open	- Open source: https://github.com/IntelPython/daal4py
Scaling Machine Learning Beyond a Single Node

Simple Python API Powers scikit-learn

Powered by DAAL

Scalable to multiple nodes

Try it out! conda install -c intel daal4py
import daal4py as d4p

daal4py accepts data as CSV files, numpy arrays or pandas dataframes
here we let daal4py load process-local data from csv files
data = "kmeans_dense.csv"

Create algob object to compute initial centers
init = d4p.kmeans_init(10, method="plusPlusDense")
compute initial centers
ires = init.compute(data)
results can have multiple attributes, we need centroids
centroids = ires.centroids
compute initial centroids & kmeans clustering
result = d4p.kmeans(10).compute(data, centroids)
Distributed K-Means using daal4py

```python
import daal4py as d4p

# initialize distributed execution environment
d4p.daalinit()

# daal4py accepts data as CSV files, numpy arrays or pandas dataframes
# here we let daal4py load process-local data from csv files
data = "kmeans_dense_{}.csv".format(d4p.my_procid())

# compute initial centroids & kmeans clustering
init = d4p.kmeans_init(10, method="plusPlusDense", distributed=True)
centroids = init.compute(data).centroids
result = d4p.kmeans(10, distributed=True).compute(data, centroids)

mpirun -n 4 python ./kmeans.py
```
Strong & Weak Scaling via daal4py

On a 32-node cluster (1280 cores) daal4py computed linear regression of 2.15 TB of data in 1.18 seconds and 68.66 GB of data in less than 48 milliseconds.

On a 32-node cluster (1280 cores) daal4py computed K-Means (10 clusters) of 1.12 TB of data in 107.4 seconds and 35.76 GB of data in 4.8 seconds.
Distributed K-Means Using DAAL (C++ API)

~400 LOC total
import daal4py as d4p

Configure a Linear regression training object for streaming
train_algo = d4p.linear_regression_training(interceptFlag=True, streaming=True)

assume we have a generator returning blocks of (X,y)...
rn = read_next(infile)

on which we iterate
for chunk in rn:
 algo.compute(chunk.X, chunk.y)

finalize computation
result = algo.finalize()
Scalable Python Solutions in Incubation

HPAT

Drop-in acceleration of Python ETL
(Pandas, Numpy & select custom Python)

- Statically compiles analytics code to binary
- Simply annotate with `@hpat.jit`
- Built on Anaconda Numba compiler

daal4py

Ease-of-use of scikit-learn + Performance of DAAL

- High-level Python API for DAAL
- 10x fewer LOC wrt DAAL for single node, 100x fewer LOC wrt DAAL for multi-node

Automatically scales to multiple nodes with MPI
Accelerating pandas CSV read

Patches merged to pandas mainline:

https://github.com/pandas-dev/pandas/pull/25804
https://github.com/pandas-dev/pandas/pull/25784

Intel(R) Xeon(R) CPU E5-2699 v4: 2.20GHz; 1 thread per core; 22 cores per socket; 2 sockets
Intel(R) Xeon(R) Platinum 8175M CPU: 2.50GHz; 2 threads per core; 24 cores per socket; 2 sockets
Skylake 8180 S2P2C01B: 2.5GHz; 1 thread per core; 28 cores per socket; 2 sockets
import pandas as pd
import hpat

@hpat.jit
def process_times():
 df = pq.read_table('data.parquet').to_pandas();
 df['event_time'] = pd.DatetimeIndex(df['event_time'])
 df['hr'] = df.event_time.map(lambda x: x.hour)
 df['minute'] = df.event_time.map(lambda x: x.minute)
 df['second'] = df.event_time.map(lambda x: x.second)
 df['minute_day'] = df.apply(lambda row: row.hr*60 + row.minute, axis = 1)
 df['event_date'] = df.event_time.map(lambda x: x.date())
 df['indicator_cleaned'] = df.indicator.map(lambda x: -1 if x == 'na' else int(x))

$ mpirun -n 4 python ./process_times.py
HPAT’s Scope of Functionalities (Technical Preview)

Operations
- Python/Numpy basics
- Statistical operations (mean, std, var, …)
- Relational operations (filter, join, groupby)
- Custom Python functions (apply, map)

Data
- Missing values
- Time series, dates
- Strings, unicode
- Dictionaries
- Pandas

Interoperability
- I/O integration (CSV, Parquet, HDF5, Xenon)
- Daal4py integration

Extend Numba to support
Intel® Distribution for Python*

https://anaconda.org/intel
https://software.intel.com/en-us/distribution-for-python
https://intelpython.github.io/daal4py
https://github.com/IntelLabs/hpat

Questions?
Backup
New in Intel Distribution for Python 2019 Update 3

- Updated version of scikit-learn (0.20.2)
- All scikit-learn patches are now in daal4py, see daa4lpy.sklearn
- Algorithmically:
 - daal4py.sklearn.neighbor.KNeighborsClassifier (DAAL’s nearest neighbor classifier based on KDTrees)
 - Patched scikit-learn passes upstream’s full test suite, with a few documented exceptions.
Logistic Regression acceleration

- Presently accelerated .fit method for solver='lbfgs' only (is to become the default in scikit-learn 0.21)
- Acceleration applies
 - for any number of classes
 - for multiclass='multinomial' or 'ovr'
 - to LogisticRegression, LogisticRegressionCV, logistic_path
RandomForest

- daal4py.sklearn.ensemble.RandomForestClassifier
- daal4py.sklearn.ensemble.RandomForestRegressor

- only support dense features, and single response
- produce similar output to scikit-learn’s own classes, i.e. populate estimators_ attribute, so that it can be used in existing Python viz. pipeline.
- prediction is using DAAL’s model, rather than estimators_
INTEL® DISTRIBUTION FOR PYTHON®

ACCELERATE PYTHON® PERFORMANCE
POWERED BY Anaconda®

Supercharge Python® applications and speed up core computational packages with this performance-oriented distribution.

Choose & Download

Available on conda®, pip®, APT GET, YUM, and Docker®

Using Intel® Distribution for Python

You can:
• Achieve faster Python® application performance—right out of the box—with minimal or no changes to your code
• Accelerate NumPy®, SciPy®, and scikit-learn® with integrated Intel® algorithms

Who Needs This Product
• Machine Learning Developers, Data Scientists, and Analysts

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.
On Cori

module load/python3.6-anaconda-4.4

conda create -n idp -c intel python=3.6 numpy scipy scikit-learn

source activate idp
Legal Disclaimer & Optimization Notice

The benchmark results reported above may need to be revised as additional testing is conducted. The results depend on the specific platform configurations and workloads utilized in the testing, and may not be applicable to any particular user’s components, computer system or workloads. The results are not necessarily representative of other benchmarks and other benchmark results may show greater or lesser impact from mitigations.

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. For more complete information visit www.intel.com/benchmarks.

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO THIS INFORMATION INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Copyright © 2018, Intel Corporation. All rights reserved. Intel, Pentium, Xeon, Xeon Phi, Core, VTune, Cilk, and the Intel logo are trademarks of Intel Corporation in the U.S. and other countries.

Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel architecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice.

Notice revision #20110804