Software

INTEL DISTRIBUTION
FOR PYTHON

Oleksandr Pavlyk

Intel® Distribution for Python™* team
Machine Learning Engineer

Python - lingua franca of data science @ python’

KDnuggets Analytics, Data
Science, Machine Learning Software .
’ 8 Kaggle ML and Data Science Survey, 2017
Poll, 2016-2018
0% 10% 20% 30% 40% 50% 60% 70% Tools used in work
| | | 1 |
Python 65/6%
RapidMiner 6000
8000
R 5000
saL 6000 4000
Excel W 2018 %share
o 4000 3000
Andconda 4% m 2017|%share
Tensorflow W 2016/ %share 2000
2000
Tableau 4 1000
... ®ovvcee
scikit-learn 0
3785555885555 388388255¢83
Keras 2 F8R-8+toC 2232038358 ns
= 3352877 E S5=g =Ergeisge
Apache Spark 385> e ZZn "zgon Eik
https://www.kdnuggets.com/2018/05/poll-tools-analytics-data-science-machine-learning- https://www.kaggle.com/sudalairajkumar/an-interactive-deep-dive-into-survey-results/data
results.html

L b L Scaling out data analytics with Python

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

The of “Data Centric Computing”

* Software is slow and single-node for many organizations
* Only sample a small portion of data

* More performant/scalable implementations require significantly more
development & deployment skills & time

* Performance bottleneck often in compute or in memory bandwidth

Our mission: Deliver Python technologies that scale-up/out entire

data analytics pipeline in productive way

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Performance of Python

Python

Interpreter
GIL

100x-1000x performance gap

Optimizing compiler
OpenMP*/TBB/pthreads

Optimization Notice

Copyright © 2019, Intel
*Other names and brand

Parallelism Matters Most

BLACK SCHOLES FORMULA

6957
4,096
1,024
350x
o 256
3
m
[= 64 Vectorization,
.g threading, and dat@
Q. localit
§ 16 opti(r)nciialt\i/ons
4
1
% C C (Parallelism)
0

0.36

Confguratlon info: - Versions: Intel® Distribution for Python 2.7.10 Technical Preview 1 (Aug 03, 2015), icc 15.0; Hardware: Intel®
Xeon® CPU E5-2698 v3 @ 2.30GHz (2 sockets, 16 cores each, HT=0FF), 64 GB of RAM, 8 DIMMS of 863@2133MH2 Operating
System: Ubuntu 14.04 LTS.

Optimization Notice

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Unlocking parallelism is
essential to make Python
useful in production

L

Voy=S,-CDF(d,)-¢""- X -CDF(d,)

Vou=€" -X-CDF(-d,)-S,-CDF(-d,)

ln!)+(+U/)T
)+p_@/v

.J

Performance of Python

Python + Numba* LLVM-based compiler

e Multiple threading runtimes

Small %% performance gap

Optimizing compiler
OpenMP*/TBB/pthreads

@numba.jit(nopython=True, parallel=True)
10 def logistic_regression(Y, X, wd, step, iterations):
11 """SGD solver for binary logistic regression.™""
12 w = wd.copy()
13 for i in range(iterations):
14 w += step * np.dot((1.0/(1.9 + np.exp(Y * np.dot(X, w)))) * Y, X)

15 return w
https://www.anaconda.com/blog/developer-blog/parallel-python-with-numba-and-parallelaccelerator/

Optimization Notice

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

High Performance Python

Python Libraries Thin layer in Python or Cython

Native highly optimized

Intel® Performance Libraries libraries (Intel MKL, Intel
DAAL, Intel IPP)

(generations of processors)

more nodes,
more cores,
more threads,
wider vectors, ...

Optimization Notice

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Productivity with Performance via Intel® Python*

Intel® Distribution for Python*

[

pandes | 2 @pnn | Srscry)_ el]sm}’

a

daaldpy tbb4py

l |
I Y
Data acquisition & Numerical/Scientific computing & Composable multi- Distributed
preprocessing machine learning threading parallelism

Learn More: software.intel.com/distribution-for-python

Optimization Notice

Copyright © 2019, Intel Col tion
*Other names and brands

Intel® Distribution for Python*

https://software.intel.com/en-us/distribution-for-python

Accelerated NumPy, SciPy _
Intel® MKL /a
Intel® C and Fortran compilers ,

Linear algebra, universal functions, FFT

Accelerated Scikit-Learn
Intel® MKL } via NumPy/Scipy
Intel® C and Fortran compilers
Intel® Data Analytics Acceleration Library (DAAL)

Solutions for efficient parallelism

\

B4py
github.com/IntelPython/smp
Intel® i Y

Optimization Notice

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

conda create —c intel intelpython3_full
docker pull intelpython/intelpython3_full

pip install intel-numpy intel-scipy intel-scikit-learn

Python APIs for Intel® MKL functions
github.com/IntelPython/mkl_fft
github.com/IntelPython/mkl_random
github.com/IntelPython/mkl-service

Python APIs for Intel® DAAL
github.com/IntelPython/daaldpy

7z,

Numba with upstreamed Inte

tions \L : \
Parallel-Accelerator : \.g. 4
support for SVML \

support for TBB/OpenMP threading runtimes

https://software.intel.com/en-us/distribution-for-python/benchmarks

Xeon

Close to native code Umath Performance with Intel Python 2019 Compared to
Stock Python packages on Intel® Xeon processors

87%
native efficiency on

Black-Scholes Formula code
Problem Size = 2.5M
B Stock Python M Intel ® Distribution for Python 2019

100%
80%
60%
40%
20%
0 -
>

Configuration: Stock Python: python 3.6.6 hc3d631a_0 installed from conda, numpy 1.15, numba 0.39.0, llvmlite 0.24.0, scipy 1.1.0, scikit-learn 0.19.2 installed from pip;Intel Python: Intel Distribution for Python 2019 Gold: python 3.6.5
intel_11, numpy 1.14.3 intel_py36_5, mkl 2019.0 intel_101, mkl_fft 1.0.2 intel_np114py36_6,mkl_random 1.0.1 intel_np114py36_6, numba 0.39.0 intel_np114py36_0, llvmlite 0.24.0 intel_py36_0, scipy 1.1.0 intel_np114py36_6, scikit-
learn 0.19.1 intel_np114py36_35; OS: CentOS Linux 7.3.1611, kernel 3.10.0-514.el7.x86_64; Hardware: Intel(R) Xeon(R) Gold 6140 CPU @ 2.30GHz (2 sockets, 18 cores/socket, HT:off), 256 GB of DDR4 RAM, 16 DIMMs of 16 GB@2666MHz
Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems,
components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated
purchases, including the performance of that product when combined with other products. For more complete information visit www.intel.com/benchmarks. Source: Intel Corporation - performance measured in Intel labs by Intel
employees. Optimization Notice: Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and
SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this
product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more
information regarding the specific instruction sets covered by this notice. Notice revision #20110804.

X

o
S

x
o)

invsqrt
logl0

with Intel numpy + numba.

Performance Efficiency measured
against native code with Intel® MKL

array*arra
array*scalar
array+arra
array+scalar
array-arra
array-scalar

Optimization Notice

Copyright © 2019, Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of others.

NumPy sources/recipes

https://github.com/IntelPython/numpy/

Sources with IDP patches applied

conda recipes included

Optimization Notice

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

https://github.com/IntelPython/numpy/

Accelerating Machine Learning

Efficient memory layout
via Numeric Tables

Blocking for optimal cache
performance

Intel® Data Analytics Acceleration Library

(DAAL) Computation mapped to

efficient operations (MKL)
Intel® Math Kernel Intel® Threading

Library (MKL) Building Blocks (TBB) Vectorization

Parallelization via TBB

Tryitout! conda install -c intel scikit-learn

Optimization Notice

Copyright © 2019, Int
*Other names and bra

Intel® DAAL Algorithms supported by daal4py
Data Transformation and Analysis

Basic statistics for Correlation and

datasets dependence
. Low order - . . -
pifeice Cosine distance
moments
. Correlation
B Quantiles distance
Order i
statistics =1 .
- matrix -

D Algorithms supporting batch processing

Algorithms supporting batch, online and/or distributed processing

Optimization Notice

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Matrix factorizations

SVvD

QR

Cholesky

Dimensionality

reduction

PCA

Association rule
mining (Apriori)

Outlier detection

Univariate

Multivariate

Optimization solvers
(SGD, AdaGrad, IBFGS)

Math functions
(exp, log,...)

Intel® DAAL Algorithms supported by daal4py

Machine Learning

Linear Regression == Ridge Regression
K-Means
: Clustering
Regression Unsupervised
learning
Decision Tree EM for GMM
Supervised o
learning Decision Forest
GradientBoosting
Classification Naive Bayes Collaborative Alternating
filtering Least Squares

kNN

Algorithms supporting batch processing

D *Expected with DAAL® 2020
D Support Vector Machine

Algorithms supporting batch, online and/or distributed processing

Optimization Notice

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Xeon

Close to native code scikit-learn Performance with Intel Python 2019
Compared to Stock Python packages on Intel® Xeon processors

100%

he]

[TCH

53 80%

o £

g 60%

> 32

2 o 40%

QT -

S 8% 20%

5 eo

8 -g 0% — — — [R | [—_— [[

% < 1K x 15K 1K x 15K 1M x50 1Mx50 1M x50 1M x50 1M x50 1M x 50 10K x 1K 10K x 1K
-

%g cosine dist comelationdist kmeans.fit kmeans.predict linear_reg.fit linear_reg.predict ridge_reg.fit ridge_reg.predict svm.fit svm.predict

uq% o (binary) (binary)

P w

Function & Problem Size

W Stock Python M Intel ® Distribution for Python 2019

Configuration: Stock Python: python 3.6.6 hc3d631a_0 installed from conda, numpy 1.15, numba 0.39.0, llvmlite 0.24.0, scipy 1.1.0, scikit-learn 0.19.2 installed from pip;Intel Python: Intel Distribution for Python 2019 Gold: python 3.6.5
intel_11, numpy 1.14.3 intel_py36_5, mkl 2019.0 intel_101, mkl_fft 1.0.2 intel_np114py36_6,mkl_random 1.0.1 intel_np114py36_6, numba 0.39.0 intel_np114py36_0, llvmlite 0.24.0 intel_py36_0, scipy 1.1.0 intel_np114py36_6, scikit-
learn 0.19.1 intel_np114py36_35; OS: CentOS Linux 7.3.1611, kernel 3.10.0-514.el7.x86_64; Hardware: Intel(R) Xeon(R) Gold 6140 CPU @ 2.30GHz (2 sockets, 18 cores/socket, HT:off), 256 GB of DDR4 RAM, 16 DIMM:s of 16 GB@2666MHz
Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems,
components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated
purchases, including the performance of that product when combined with other products. For more complete information visit www.intel.com/benchmarks. Source: Intel Corporation - performance measured in Intel labs by Intel
employees. Optimization Notice: Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and
SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this
product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more
information regarding the specific instruction sets covered by this notice. Notice revision #20110804.

Optimization Notice

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Accelerating K-Means

Performance speedups for Intel® Distribution for Python* scikit-learn on Google
Cloud Platform’s 96 vCPU instance Intel® Xeon™ Processors

g W Stock scikit-learn W Intel-optimized scikit-learn
M~
1)
o
=
= § PCA-based
_C
=Rl < 23X faster
D .
GRS
£3
o
> g random
=
o E < 21X faster
<3
s
€%
v 2
8 k-means++
._g’ — 22X faster
|
=

o
N

4 6 8 10 12 14
Time (Geomean, in seconds)

System Configuration: GCP VM, zone us-central1-c; 96 vCPU, Intel Skylake; 360 GB memory. Ubuntu 16.04.3 LTS; Linux instance-1 4.10.0-38-generic #42~16.04.1-Ubuntu
SMP Tue Oct 10 16:32:20 UTC 2017 x86_64 x86_64 x86_64 GNU/Linux; Intel® Distribution for Python* from Docker image intelpython/intelpython3_full:latest (created 2017-
09-12T20:10:42.8629655597); Stock Python*: pip install scikit-learn

Optimization Notice

https://cloudplatform.googleblog.com/2017/11/Intel-performance-libraries-and-python-distribution-enhance-performance-and-scaling-of-Intel-Xeon-Scalable-processors-
on-GCP.html

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Accelerating scikit-learn through daal4py

Monkey-patch any scikit-learn
on the command-line

import daal4py.sklearn Monkey-patch any scikit-learn
daal4py.sklearn.patch_sklearn() progranwnwaﬁca”y
import daal4py.sklearn . .
daal4py.sklearn.linear_model.Ridge().fit(X, y) Use along5|de scikit-learn

> python -m daal4py <your-scikit-learn-script>

Scikit-learn with daaldpy patches applied
passes scikit-learn test-suite (run on public Cl)

Optimization Notice

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

PCA

_ KMeans . Scikit-Learn KNeighborsClassifier
inearRegression SCI klt_ Learn RandomForestClassifier

ol Equivalents AP
o q Compatible

pairwise_distances
logistic_regression_path

RandomForestRegressor

Use directly for ’ daa |4py

* Scaling to multiple nodes

* Streaming data
* Non-homogeneous

dataframes

Intel® DAAL

Optimization Notice

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Get to fly with daaldpy

¢ Close to native performance through Intel® DAAL

Fa St & Scalable e Efficient MPI scale-out

e Streaming

¢ |ntuitive usage model

Easy to use * Picklable

e Plugs into scikit-learn

FleXI ble * Plugs into HPAT/Numba

e Open source:
https://github.com/IntelPython/daal4py

Optimization Notice

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

https://github.com/IntelPython/daal4py

Scaling Machine Learning Beyond a Single Node

- Simple Python API
daaldpy Powpers sZikit—Iearn

Intel® Data Analytics Acceleration Library Powered by DAAL
(DAAL)

Intel® Math Kernel Intel® Threading Scalable to multiple nodes
Library (MKL) Building Blocks (TBB)

Tryitout! conda install -c intel daaldpy

Optimization Notice

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

K-Means using daaldpy

import daal4py as d4p

data "kmeans_dense.csv"

init d4p.kmeans_init (10, method="plusPlusDense")
ires init.compute(data)
centroids = ires.centroids

result = d4p.kmeans(10).compute(data, centroids)

[Optimization Notice | -"3
intel | 21

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Distributed K-Means using daal4py

import daal4py as d4p

d4p.daalinit()

data = "kmeans_dense_{}.csv".format(d4p.my_procid())

init = d4p.kmeans_init(10, method="plusPlusDense", distributed=True)

centroids = init.compute(data).centroids
result = d4p.kmeans(10, distributed=True).compute(data, centroids)

mpirun -n 4 python ./kmeans.py

Optimization Notice

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Intel(R) Xeon(R) Gold 6148 CPU @ 2.40GHz,
EIST/Turbo on

° ° Hardware 2 sockets, 20 Cores per socket
n 192 GB RAM
rO g e a C a I l I g V I a a a p y 16 nodes connected with Infiniband
Operating Oracle Linux Server release 7.4
System

Data Type double

daaldpy Linear Regression Distributed Scalability daaldpy K-Means Distributed Scalability

14 Hard Scaling: Fixed input: 36M observations, 256 features 140 Hard Scaling: Fixed input: 16M observations, 300 features, 10 clusters
Weak Scaling: 36M observations and 256 features per node Weak Scaling: 16M observations and 300 features per node
12 120
1 100
g 038 8 80
N N
E E
§ 06 S 60
3 3
04 0
0,2 I 20 I
. l [| - o . [| -
1 2 4 8 16 32 1 2 4 8 16 32

Number of nodes (with 40 cores on 2 sockets each) Number of nodes (with 40 cores on 2 sockets each)

m Batch Mode (single node base-line) ® Hard Scaling, 2 processes per node Weak Scaling; 2 processes per node m Batch Mode (single node base-line) m Hard Scaling, 2 process per node Weak Scaling; 2 processes per node
On a 32-node cluster (1280 cores) daaldpy computed linear On a 32-node cluster (1280 cores) daaldpy computed K-Means (10
regression of 2.15 TB of data in 1.18 seconds and 68.66 GB of data clusters) of 1.12 TB of data in 107.4 seconds and 35.76 GB of data in
in less than 48 milliseconds. 4.8 seconds.

Optimization Notice

Copyright © 2019, Intel Corporation. All rights reserved. ‘ lntel l 23

*Other names and brands may be claimed as the property of others.

Distributed K-Means Using DAAL (C++ API)

- ~400l0Ctotal

(e |

Streaming data (linear regression) using daal4py

import daal4py as d4p

train_algo = d4p.linear_regression_training(interceptFlag=True, streaming=True)

rn = read_next(infile)

for chunk in rn:
algo.compute(chunk.X. chunk.y)

result = algo.finalize()

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

[Optimization Notice | -")
intel | 25

Scalable Python Solutions in Incubation

/

Drop-in acceleration of Python ETL
(Pandas, Numpy & select custom Python)

* Statically compiles analytics code to binary
* Simply annotate with @hpat.jit

* Built on Anaconda Numba compiler

_

~
HPAT

)

-

Ease-of-use of scikit-learn
+ Performance of DAAL

daal4py

* High-level Python API for DAAL

* 10x fewer LOC wrt DAAL for single node,
100x fewer LOC wrt DAAL for multi-node

_)

Automatically scales to multiple nodes with MPI

Optimization Notice

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Accelerating pandas CSV read

Patches merged to pandas mainline:
https://github.com/pandas-dev/pandas/pull/25804
https://github.com/pandas-dev/pandas/pull/25784

Accelerated CSV read (pandas)

Mortgage dataset
http://rapidsai-data.s3-website.us-east-2.amazonaws.com/notebook-mortgage-data/mortgage 2000-2001.tgz
_, 600
5
g 500 70x-81x
5 speedu
2 400 P P
[s]
g
c 300
=1
2 200
(o]
aQ
§ 100
(]
& 0 mu m N - N
HPAT Optimzed Pandas Optimzed Pandas + HPAT

M Intel Xeon® CPU E5-2699 v4 m AWSr5.24xlarge: Intel® Xeon® Platinum 8175M CPU m Skylake 8180 S2P2C01B

Optimization Notice

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Intel(R) Xeon(R) CPU E5-2699 v4: 2.20GHz; 1chreads
per core; 22 cores per socket; 2 sockets

Intel(R) Xeon(R) Platinum 8175M CPU: 2.50GHz; 2
threads per core; 24 cores per socket; 2 sockets
Skylake 8180 S2P2C01B: 2.5GHz

1 thread per core; 28 cores per socket; 2 sockets

https://github.com/pandas-dev/pandas/pull/25804
https://github.com/pandas-dev/pandas/pull/25784

Accelerating Pandas using HPAT

import pandas as pd
import hpat

@hpat.jit

def process_times():
df = pqg.read_table(‘data.parquet’).to_pandas();
df[‘event_time’] = pd.DatetimeIndex(df[‘event_time’])

df[‘hr’] = df.event_time.map(lambda x: x.hour)

df[‘minute’] df.event_time.map(Tambda x: x.minute)

df[‘second’] df.event_time.map(Tambda x: x.second)

df[‘minute_day’] = df.apply(lambda row: row.hr*60 + row.minute, axis
df[‘event_date’] = df.event_time.map(lambda x: x.date())

df[‘indicator_cleaned’] = df.indicator.map(lambda x: -1 if x == ‘na’ else int(x))

$ mpirun -n 4 python ./process times.py

Optimization Notice

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

HPAT’s Scope of Functionalities (Technical Preview)

Python/Numpy basics
Statistical operations (mean, std, var, ...)

Operations
P Relational operations (filter, join, groupby)
Custom Python functions (apply, map)
Missing values
Time series, dates
Data Strings, unicode

Dictionaries Extend Numba to support

Pandas

Interoperability

I/O integration (CSV, Parquet, HDF5, Xenon)
Daal4py integration

Intel® Distribution for Python*

https://anaconda.org/intel
https://software.intel.com/en-us/distribution-for-python
https://intelpython.github.io/daal4py

https://github.com/IntelLabs/hpat
%

Questions?

<

Optimization Notice

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Backup

New in Intel Distribution for Python 2019 Update 3

* Updated version of scikit-learn (0.20.2)
* All scikit-learn patches are now in daal4py, see daa4lpy.sklearn
e Algorithmically:

» daadlpy.sklearn.neighbor.KNeighborsClassifier (DAALs nearest neighbor
classifier based on KDTrees)

Patched scikit-learn passes upstream’s full test suite, with a few documented
exceptions.

Optimization Notice

Copyright © 2019, Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of others.

Logistic Regression acceleration

* Presently accelerated .fit method for solver=‘Ibfgs’ only s to become the default in scikit-learn 0.21)
* Acceleration applies

e for any number of classes

* for multiclass=‘multinomial’ or ‘ovr’

* to LogisticRegression, LogisticRegressionCV, logistic_path

Optimization Notice

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

RandomForest

* daal4py.sklearn.ensemble.RandomForestClassifier
* daaldpy.sklearn.ensemble.RandomForestRegressor

* only support dense features, and single response

* produce similar output to scikit-learn’s own classes, i.e. populate estimators_ attribute,
so that it can be used in existing Python viz. pipeline.

* prediction is using DAALs model, rather than estimators_

Optimization Notice

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

@ Intel® Distribution for Python* | X = =

< CcC 0

i Apps @ Windows 8.1 Help..

@ https://software.intel.com/en-us/distribution-for-python

Developer Info - SA... Distribution Genera... SAT/numexpr @ Intel Library - Intel ython - setvery lo.. @ Using Intel® C++ C,
P P Y PY Y 9
f My Workbench

Developer
Zone

B INTEL" DISTRIBUTION FOR PYTHON*

Home

intel,

Search our content library... O,
Software

n

Supercharge Python* applications and speed up core computational packages with this performance-
oriented distribution. /

B

umentation

Using Intel® Distribution for Python Who Needs This Product

You can @D Machine Learning Developers, Data Scientists, and
Analysts

-
« Achieve faster Python* application performance—right out of the

box—with minimal or no changes to your code Easily implement performance-packed, production-ready scikit-learn
* Accelerate NumPy*, SciPy*, and scikit-learn* with integrated Intel® algorithms

@ python - How does...

@ support ‘ profilev @ English v

amoesvomons [

ACCELERATE PYTHON* PERFORMANCE

POWERED BY ANACONDA™

Optimization Notice

Copyright © 2019, Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of others.

‘Available on conda*, pip*, APT GET, YUM, and Docker*

On Cori

module load/python3.6-anaconda-4.4
conda create -n idp -c intel python=3.6 numpy scipy scikit-learn

source activate idp

Optimization Notice

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Software

Legal Disclaimer & Optimization Notice

The benchmark results reported above may need to be revised as additional testing is conducted. The results depend on the specific platform configurations and workloads utilized
in the testing, and may not be applicable to any particular user’s components, computer system or workloads. The results are not necessarily representative of other benchmarks
and other benchmark results may show greater or lesser impact from mitigations.

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark,
are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should
consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with
other products. For more complete information visit www.intel.com/benchmarks.

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY
THIS DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO THIS INFORMATION INCLUDING
LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL
PROPERTY RIGHT.

Copyright © 2018, Intel Corporation. All rights reserved. Intel, Pentium, Xeon, Xeon Phi, Core, VTune, Cilk, and the Intel logo are trademarks of Intel Corporation in the U.S. and
other countries.

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These
optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any
optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors.
Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for
more information regarding the specific instruction sets covered by this notice.

Notice revision #20110804

Optimization Notice

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

https://software.intel.com/en-us/articles/optimization-notice
http://www.intel.com/benchmarks

