Intel® VTune™ Amplifier

Performance Profiler

Faster, Scalable Code, Faster

Intel® VTune™ Amplifier Performance Profiler

5 Advanced Hotspots Hotspots viewpoint (change) @ INTEL VTUNE AMPLIFIER XE 2017
AC C u ra te D ata - LOW Ove r h e a d B8 Collection Log | | @ Analysis Target Analysis Type| | Bl Summary) LLLGIRIEY | +% Caller/Callee | | #% Top-down Tree
Grouping:| Function / Call Stack v ‘EHEH:I
[| C P U G P U F P U h d 1 g b d 1 d h CPUTime ¥ « Context Switch.« || Context Switch Count ..« A |
I)) t re a I n) a n WI t eee Function / Call Stack e Ef;e;ti::rTimg 'l(:ry llJt:EZ:ionl ver 2 Tsim mﬁmeead r?aﬁ"e 1_/:/;:13 In_l_ai:::li;e Preemption | Synchroni
. f I | . w updateBusinessAccount 7915s @] 0s 0s 0597 0s 0.055s 934
v mainompparallel_for@269 7915s @] 0Os O0s 0597 0Os 0.055s 934
M e a n I n g u A n a yS I S » & __kmp_invoke_microtask —| 7.915s @] 0Os 0s| 0599 0s 0.042s 815
. . . . » = updateBusinessAccount«— 0Os 0s 0s 0120 0s 0013s 119
] Th d O M P ff » updateCustomerAccount 77665 | IS 0 0s 16930 0s 0.052s 1
re a I n g) p e n regl O n e I CI e n Cy » __kmpc_atomic_fixed8_add 2.772s |\ D 0Os Os 4.885
. » __kmpc_critical Os 2021s Os 0609 Os 0014s 262
| M d _0_sprintf 1419s |0 @B 0 0s 0613 0s 0.006 86
emory access, storage device » S0 |1 B K
Qo Q-Qe ?.Is s .l S i y e o Ruler Area A
OMP Worker Thread .. | RTINS PTYETPTYRTIFRRITTIT™Y A 7 Region Instance
E a Sy 2 |OMP Worker Thread ... Thread v
'g rtmtest_openmp (TID:... (@ Running
[M OMP Worker Thread ... > [Context Switches
Data displayed on the source code i cr e

CPU Time

= Easy set-up, no special compiles O 1won

ik Spin and Overhe...
["] ¥ Hardware Event Sa... v

“Last week, Intel® VTune™ Amplifier

helped us find almost 3X performance Claire Cates

improvement. This week it helped us Principal Developer http://intel.ly/vtune-amplifier-xe
improve the performance another 3X.” SAS Institute Inc.

Optimization Notice

Copyright © 2016, Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of others.

http://intel.ly/vtune-amplifier-xe

Two Great Ways to Collect Data

Intel” VTune™ Amplifier

Software Collector Hardware Collector

Uses OS interrupts Uses the on chip Performance Monitoring Unit (PMU)
Collects from a single process tree Collect system wide or from a single process tree.

~10ms default resolution ~1ms default resolution (finer granularity - finds small functions)
Either an Intel® or a compatible processor Requires a genuine Intel” processor for collection

Call stacks show calling sequence Optionally collect call stacks

Works in a VM only when supported by the VM

Works in virtual environments
(e.g., vSphere*, KVM)

- Easy to install on Windows
- Linux requires root (or use default perf driver)

No driver required Requires a driver

No special recompiles - C, C++, C#, Fortran, Java, Assembly

Optimization Notice

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

A Rich Set of Performance Data

Intel” VTune™ Amplifier

Software Collector Hardware Collector

Advanced Hotspots
Which functions use the most time?
Where to inline? — Statistical call counts

Basic Hotspots
Which functions use the most time?

Concurrency General Exploration
Tune parallelism. Where is the biggest opportunity?
Colors show number of cores used. Cache misses? Branch mispredictions?

Locks and Waits
Tune the #1 cause of slow threaded performance:
— waiting with idle cores.

Advanced Analysis
Memory-access, HPC Characterization, etc...

Any IA86 processor, any VM, no driver Higher res., lower overhead, system wide

No special recompiles - C, C++, C#, Fortran, Java, Assembly

Optimization Notice

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Find Answers Fast

I nte I ® VTu N eTM Am p I ifi er 8 Basic Hotspots Hotspots by CPU Usage viewpoint (change) @ Intel VTune Amplifier XE 2015

4 ! Analysis Type B8 Collection Log| | I Summary QBottom-up o% Caller/Callee | | *% Top-down Tree BB Tasks and Frames

AdJ u St Data G rou p | N g Grouping: |Function / Call Stack - (@] | pata Of Interest (CPU Metrics) E]
. B7cViewing 4 10f49 P selected stack(s,
- i Call Stack Function / Call Stack CPU Time by Utilizationw * Overhead | ol &
- - - L
unction all Stac @1dle @Poor [Ok @ Ideal [Over and Spin Time | 22.8% (1.029s of 4.507s) |
- = @ FireObject:checkCollisi aso7- T -
Module - Function - Call Stack i freObJ.ec chec Co. 15|on‘ . 507s 0s SystemProceduralFire.DLL!FireObject:c...
i X [# FireObject::ProcessFireCollisionsRange 3.4445-:_ 0Os - .) N
Source File - Function - Call Stack EINtWaitForSingleObject s406: (B 3.406< SystemProceduralFire.DLL!FireObject:Pr...
Tt = [Fe e = (T R [~ WaitForSingleObjectEx< WaitForSir| 3.399s (MM B 3399s | SystemProceduralFire.DLLIFireObject:Fi...
C F. RtlpWaitOnCriticalSection< RtlEnte 0.007s| 0.007s Smoke.exe!ParallelForBody::operator()+...
... (Partial list shown) o N
Elstd:basic_ifstream< char,struct std::char| 3.359s [RN { 0Os Smoke.exe![TBB parallel_for on class Para...
. o [T Ogre:FileSystemArchive::open 3.359s E— 0s Smoke.exeltbb::internal::start_for<class ...
® ice: oo6s [N : N
D O u b I e Cl I C k F u n Ct I O n e 3006 IO TS Smoke.exe!TaskManagerTBB::ParallelFo...
Selected 1 row(s): 4.507s 0s ~
t V. S a1 S SystemProceduralFire.DLL!FireObject:Em... _

QoQtQ-Qe -500ms 900 Ruler Area A

Click [+] for Call Stack EE ~ Frame

i B wWinMainCRTSta Process / Thread / Module E] -

§| @ _endthreadex (TID| | . i
.I b i I. I i g [¥] @3 Running
Filter by Timeline Selection & [_endtivesdex 10 ok e

Ul Overhead and Spin Time
[[J= CPU Sample
1 Tasks

» -

B Any Utilization

(or by Grid Selection)

Zoom In And Filter On Selection
Filter In by Selection L
‘;‘.

[ZI Any Module

) ; ' Call Stack Mode: JEESETla il IZI
Remove All Filters

Filter by Process & Tuning Opportunities Shown in Pink.
Other Controls Hover for Tips

Optimization Notice

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

See Profile Data On Source / Asm

Double Click from Grid or Timeline

View Source / Asm or both CPU Time Right click for instruction reference manual

Hotspots Hotspots by CPU Usage viewpointfichange) ® Intel VTune Amplifier XE 2015

sis Type | | 2@ Collection Log| | B Summary| | % Bo p||*% Caller/Callee| | #% Top-down Tree| | BB Tasks an¢ grid.cpp

[Source][Assembly] L l] Assembly grouping: [Address | v]

Bl - [.
ST_:Jr::e N Source CPU Time: Total ... Address SEier‘re... Asselbly CPU Time: Total .. =
Didle @ Pcor [0 Ok | D Idle @ Poor D Ok _
. . i 0.017s| 0x418b6d 580 | cmp dword ptyy wbp-0x190], 0x| 0120s| 5
Qu |Ck Asm n av|g at| O n . 0x418b74 580 jz Ox418beé <i Jsck 58> 0379500]
' 0x418b76 Block 54: =

— > , ——
Select source to highlight Asm tre 1| o s oo e e | 0031

mov eax, dword ptr

579 cur = g->cells[voxindex]; 0.30v 0x418b7f 581 mov ecx, dword ptr [eax] 3.853s
580 while (cur != NULL) { 04995y 0x418b81 581 mov edx, dword ptr [ebp+0xc] 2.5005- |

if (ry->mbox[cur->obj->id] !| 7795 | 0x418684 581 mov eax, dword ptr [edx+0x10] 0.030s =
582 ry->mbox [cur->obj->id] = x| 0.547s() 0x418b87 581 mov edx, dword ptr [ebp+0xc] ,E
583 cur->obj->methods->interse 1.7695. || 0x418b8a 581 mov eax, dword ptr [eax+ecx*4 0.0405| - I
584 } =| 0x418b8d 581 cmp eax, dword ptr [edx+0xc] 1.262s [0 E
585 cur = cur->next; 0.568s) =| 0x418b90 581 jz 0x418bdé <Block 57> =
586 } 0.070s| B 0x418b92 Block 55: =
587 CUrvox.z += 3tep.z; 0.070s| ;. 0x418b92 582 mov ecx, dword ptr [¢ 0x190 033150
588 if (ry->maxdist < tmax.z || cu 0.1005| ~'0x418b98 582 mov edx, dword ptr [ecX Mx4] 0.1165]

Selected 1 row(s): 7.795s ~ | Highlighted 9 ro ‘(s): 7.795s ~
< € L » ’r < | [< | m »

Scroll Bar "Heat Map” is an overview of hot spots Click jump to scroll Asm

Optimization Notice

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Timeline Visualizes Thread Behavior

Intel® VTune™ Amplifier

& Transitions 4 CPU Time
Locks & Waits Basic Hotspots Advanced Hotspots

LI NI (NLENLNLIL I B ILLNL B JNLINL I L LB LRI L LB NI L LB L L rrrrrr]'rrrrrrrrrrrrrrrrrrrrrrrrrrrrr[rrrrrrrrr[rrl T T T T T T T T T T
Qe Qi Q= Qe 29.86s 29.87s 29.88s 29.89s 29.g¢ T | Ruler Area 29.94s 29.96s 29.98 30.05s 30.1s 30.1¢
T r r r o v AT rrrrn G rrrrenn i G e e e——ar —— ——— — a—r— —ro—
: =¥ Frame —_— e
WWinMainCRTStartu. .. |\ 71 Thread BN T T T T T TN T T T T TI—
rhread (0x1364) @8 Running B | [meen : mlsend e =
§ [Thread (0x1360)) waits —— e = SR
£ [thread (0x1374) &= User Task L . W T —_ |
Thread (0x137c) Transition e § P —
Thread (0x1384) Thread Concurrency D —— R R p——
Treadc mes over Tt o | N i i)
read Concurren
<y £ Frames over Time
rromes over e | A — ki Frame Rete I e i——
Y | » | = B = »
- / — \ T~ User Task
= Frame 95- Aransmon User Task
. Frame Transition Start: 29.958s Duration: 0.018s
H Ove rs . Start: 29.858s Duration: 0.017s wWinMainCRTStartup (0x12d4) to Thread (0x138c¢) (29.899s to 29.899s) Task Type: Smoke:FrameWork:execute()::Other
Frame: 72 Sync Object: TBB Scheduler Task End Call Stack: Framework::Execute
Frame Domain: Smoke::Framework:execute()| | Object Creation File: taskmanagertbb.cpp
Frame Type: Good Object Creation Line: 318 CPU Time
Frame Rate: 59.8242179 94.233472%

Optional: Use APl to mark frames and user tasks V=P Frame < User Task

Optional: Add a mark during collection [D Mark Timeline]

Optimization Notice

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Visualize Parallel Performance Issues

Look for Common Patterns

Coarse Grain
Locks

Thread

T T
QeQF O~ Qe S5s 6s 6.5s

mainCRTStartup (0x2c4
0)

T
7s
f

7.5s

T
8s
s

OMP Worker Thread #1
(0x1790)

(0x228¢)

OMP Worker Thread #2

OMP Worker Thread #3
(01 d74)

e
. IR
 EEm

CPU Usage

Thread Concurrency

<

9s & | [¥] Thread

@ Running
COwa

Transitions
CPU Usage

ddlus CPU Time
Thread Concurrency
sk Concurrency

»

Thread

High Lock
Contention

Qo Q-Qw

T
2.86s
|

2,8‘75 j 2
1

8s

mainCRTStartup (0x23f
0)

- B[

B[

OMP Worker Thread #1
(0x16d8)

OMP Worker Thread #2
(0x1550)

OMP Worker Thread #3
(0x3234)

o R)
Thread Concurrency
-

<

e Thread

@ Running
) waits
us CPU Time
Transitions

CPU Usage

ddlusy CPU Time
Thread Concurrency
dud Concurrency

pu—

—

Load
Imbalance

Thread

Qe QF Qe

mainCRTStartup (Oxlcc
4)

OMP Worker Thread #1
(0x1624)

OMP Worker Thread #2
(0x25c4)

OMP Worker Thread #3
(0x20f4)

EREe h-
Thread Concurrency :

<

o>

Thread

@8 Running

) waits

dusk CPU Time
Transitions

Optimization Notice

Copyright © 2016, Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of others.

Low
2
Concurrency

Command Line Interface

Automate analysis

amplxe-cl is the command line:
—-Windows: C:\Program Files (x86)\Intel\VTune Amplifier XE
\bin[32]|64]\amplxe-cl.exe
—Linux: /opt/intel/vtune amplifier xe/bin[32]64]/amplxe-cl

Intel VTune Amplifier XE 2016

Help: amplxe-cl —help

Copy

Basic Hotspots

B2 Identify your most time-consuming source code. This analysis type cannot

Basic Hotspots be used to profile the system but must either launch an application/process
P sy PP
S e O S e u p - Advanced Hotspots attach to one. This analysis type uses user-mode sampling and tracing
A Concurrenc y ion. Learn more (F1)

B

1) Configure analysis in Ul ool 1T
& Bandwidth [Analyze user tasks

& Memory Access

2) Press “Command Line...” button Aremenin | Do

Analyze Processor Graphics hardware events: None
[=-{_ Platform Analysis ¥z P

3) CO py & p a Ste CO m m a n d 1_4 g]stipn?ﬁ?y:: ””””””” Y []Trace OpenCL and Intel Media SDK programs (Intel HD Graphics only S

Great for regression analysis — send results file to developer
Command line results can also be opened in the Ul

Optimization Notice

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

MPI Analysis

Command line:
> mplrun -n 16 —-ppn 4 -1 amplxe-cl -collect advanced-hotspots -

trace-mpl -result-dir my result -- my app.a

Or use gtool:
> mpirun —-gtool "amplxe-cl -collect memory-access -result-dir
my result:7,5" my app.a

Each process data is presented for each node they were running on:
my result.host namel (rank 0-3)

my result.host nameZ (rank 4-7)

my result.host name3 (rank 8-11)

my result.host named (rank 12-15)

Optimization Notice

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

% Advanced Hotspots Hotspots viewpoint (change) @

B Collection Log| | € Analysis Target || * Analysis Type SVnInEIA «% Bottom-up| |+% Caller/Callee| % Top-down Tree | |B Platform

Elapsed Time : 120.101s

CPU Time : 7085.857s
Effective Time : 2227.628s
Spin Time 4589.471s

A significant portion of CPU time is spent waiting. Use this metric to discover which synchronizations are spinning. Consider adjusting spin wait parameters,
changing the lock implementation (for example, by backing off then descheduling), or adjusting the synchronization granularity.

Overhead Time : 268.758s
Instructions Retired: 3,333,315,033,755
CPlI Rate ~: 2.757
Wait Rate : 191.043
CPU Frequency Ratio “: 1.000
Context Switch Time'* 609.769s
Total Thread Count: 139
Paused Time ~: 60.056s

OpenMP Analysis. Collection Time : 60.046

Serial Time (outside any parallel region) : 43.097s (71.8%)
Serial Time of your application is high. It directly impacts application Elapsed Time and scalability. Explore options for parallelization, algorithm or
microarchitecture tuning of the serial part of the application.

Parallel Region Time : 16.949s (28.2%)

Top OpenMP Regions by Potential Gain

This section lists OpenMP regions with the highest potential for performance improvement. The Potential Gain metric shows the elapsed time that could be saved if the region was optimized to have no load imbalance asst

OpenMP Region OpenMP Potential Gain ~ (%)~ OpenMP Region Time

allocGauge_Dompparallel: 128@/panfs/projects/milc_wa/ruizi/QPHIX/mbench/ks_long_dslash.cpp:231:234 0.340s 0.6% 1.033s
gphix_ks_dslash_D$ompé$parallel: 128@/panfs/projects/milc_wg/ruizi/QPHIX/mbench/ks_long_dslash.cpp:541:627 0.301s 0.5% 3.573s
allocGaugel8 D$ompé$parallel:128@/panfs/projects/milc_wag/ruizi/QPHIX/mbench/ks_long_dslash.cpp:231:234 0.278s 0.5% 0.894s
ks_congrad_parity_gphix_Dompparallel:128@/panfs/projects/milc_wag/ruizi/milc_gcd_1/milc_gcd/ks_imp_rhmc/../generic_ks/d_congrad5_fn_gphix_P.c:188:191 0.159s 0.3% 0.713s
ks_congrad_parity_gphix_Dompparallel: 128@/panfs/projects/milc_wag/ruizi/milc_gcd_1/milc_gcd/ks_imp_rhmc/../generic_ks/d_congrad5_fn_gphix_P.c:240:243 0.144s 0.2% 0.741s

*N/A is applied to non-summable metrics.

Optimization Notice

Copyright © 2016, Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of others.

" Advanced Hotspots Hotspots viewpoint (change) ® Intel VTune Amplifier XE

B8 Collection Log| | @ Analysis Target| | * Analysis Type SNINERE % Bottom-up||«% Caller/Callee | «% Top-down Tree| B8 Platform

Top Hotspots

This section lists the most active functions in your application. Optimizing these hotspot functions typically results in improving overall application performance.

Function Module CPU Time
kmp_hyper_barrier_release libiomp5.s0 3791.856s
vmlinux vmlinux ~ 671.755s
kmp_wait_template<kmp_flag_64> libiomp5.s0 425.421s

ks_long_dslash_vec_noinline su3_rhmc_hisq_d_knl_mpi 360.775s
kmp_release_template<kmp_flag_64> libiomp5.s0 263.734s

*N/A is applied to non-summable metrics.

CPU Usage Histogram

This histogram displays a percentage of the wall time the specific number of CPUs were running simultaneously. Spin and Overhead time adds to the Idle CPU usage value.

65

55

Elapsed Time

454

Target Utilization

[
o
m
[
=]
2
o
o
]
o
©
—
z
<

35

25

1s

0s -
0 20 40 60 80 100 120 140 160 180 200 220 240

“_ F@ﬂ

Simultaneously Utilized Logical CPUs

Optimization Notice

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Advanced Hotspots Hotspots viewpoint (change) @ Intel VTune Amplifier XE 20

B Collection Log| | @ Analysis Target Analysis Type VininElg8 «% Bottom-up| | «% Caller/Callee| | +% Top-down Tree| B8 Platform

OpenMP Region CPU Usage Histogram
This histogram displays a percentage of the wall time the specific number of CPUs were running simultaneously in an OpenMP region. Spin and Overhead time adds to the Idle CPU usage value. OpenMP regions in the drop-down list are sorted by Potential Gain (Elapsed
Time) so it is recommended to start exploration from the top.

OpenMP Region: gphix_ks_dslash_Dompparallel:128@/panfs/projects/milc_wg/ruizi/QPHIX/mbench/ks_long_dslash.cpp:541:627 v |
350msq g o] |
E o | 3|
4+
300ms Z | EI
s I 3|
250ms- & =
© | ol
| | 2
200ms | &
150ms | :
100ms |
|
50ms A |
|
0s - T - T T T T T T :
0 20 40 60 80 100 120 140 160 180 200 220 240
. deal |

Simultaneously Utilized Logical CPUs

OpenMP Region Duration Histogram
This histogram shows the total number of region instances in your application executed with a specific duration. High number of slow instances may signal a performance bottleneck. Explore the data provided in the Bottom-up, Top-down Tree, and Timeline panes to identify
code regions with the slow duration.

8/18/2016 11:15 A,\gpegweggg‘@nppﬁgclare_strided_gatherompparallel:128@/panfs/projectslmilc_wg/ruizilmilc_ch_llmilc_ch/ks_imp_rhmc/../generic/com_mpi.c:1755:1757 v |

200

150

100

50

o
L
Instance Count

le-d 15e-4 2e-4 25e-4 3e-d4 35e-4 de-d 45e-4 Se-d 55e-4 6e-d 65e-4 Te-d 15e-4 Be-d 85e-4 Oe-4 95e-4 000l 000105 00011 000115 0.0012

—_ F_

Optimization Notice

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Advanced Hotspots Hotspots viewpoint (change) ®

Intel VTune Amplifier XE 2016

8 Collection Log

Grouping:

@ Analysis Target

Analysis Type | | i Summary

OpenMP Region / Module / Function / Call Stack

& Bottom-up

+% Caller/Callee

% Top-down Tree

B Platform

3]) a] %

CPU Time

~|

~|l Viewing ¢ 1of 148) selected sta...

OpenMP Potential Gain Number CPU Timew q
OpenMP Region / Module / Elapsed of Instance T o Instructions 71.8% (3577.134s of 4981.719s)
Function / Call Stack TS Lock crea...| sch.. |Red.|Ato.| Other| Time | OpenMP | Count Effective Time by Utilization Spin Time Overhead Retired CPI Rate Frec ibe.2 12 sotllbe.2 12 0] - [unknow
conten... . . threads [Didle @ Poor [JOk [@Ideal @ Over Time i B]
. - - libc-2.12.s0![Unknown stack frame(...
b[Serial - outside any region] 0s 43.097s 431.896s [4301.079s 248.733s 82.5% (I 2.350
» gphix_ks_dslash_D$ompé$pal 0.285s 0.000s 0s 0s 0s 0s 0.016s 3.573s 128 986 398.284s (I 33.112s 2.076s 4.0%| 4.195
»QPHIX_D3_asqtad_create_ 0.054s 0.000s 0s 0.000s 0s 0s 0.002s 1.831s 128 72 224.716s 6.077s 0.321s 0.8%]| 11.549
> QPHIX_D3_asqtad_create_ 0.054s 0s 0s 0.000s 0s 0s 0.002s 1.833s 128 72 222.434s NN 5.9565 0.311s 0.9%| 9.502
» QPHIX_D3_asqtad_invert_| 0.102s 0.000s 0s 0.004s 0s 0s 0.011s 1.0965 128 421 124.911s D 11.431s 1.865s 1.2%]| 4.593
b allocGauge_D$ompsparallel 0.323s 0s 0s 0.000s 0s 0s 0.017s 1.033s 128 144 90.620s () 37.008s 21765 1.0%]| 4.895
b allocGauge18_Dompparal 0.265s 0.000s 0s 0.001s 0s 0s 0.013s 0.894s 128 144 81.035s ([30.401s 1.715s 0.9%| 5.059 :
b create_gphix_raw4_D_G_fro 0.059s 0s 0s 0.000s 0s 0s 0.004s 0.756s 128 144 87.157s (D) 7.701s 0.481s 1.4%| 2.697
Pks_congrad_parity_gphix_D§ 0.137s 0.000s 0s 0.000s 0s 0s 0.007s 0.741s 128 260 76.315s () 15.362s 0.862s 0.7%| 5.399
»ks_congrad_parity_gphix_D$ 0.151s 0.000s 0s 0.001s 0s 0s 0.007s 0.713s 128 260 70.767s (D) 16.8265 0.983s 0.6%]| 5.757
ballockS_Dompparallel:128 0.124s 0.000s 0s 0.001s 0s 0s 0.007s 0.546s 128 550 53.183s [15.020s 1.063s 0.9%| 3.077
Pks_congrad_parity_gphix_D§ 0.097s 0s 0s 0.001s 0s 0s 0.006s 0.545s 128 260 56.553s [11.672s 0.913s 0.6%)| 4.842
P ks_congrad_parity_gphix_D§ 0.097s 0.000s 0s 0.001s 0s 0s 0.005s 0.539s 128 260 56.548s () 11.401s 0.762s 0.5%| 5.223
b create_gphix_D_V_from_fiel 0.065s 0.000s 0s 0.000s 0s 0Os 0.004s 0.438s 128 204 45.273s ([7.590s 0.541s 0.7%| 2.827
P QPHIX_D3_create_V_from_ 0.062s 0.000s 0s 0.001s 0s 0Os 0.003s 0.278s 128 204 25.751s[l) 7.340s 0.501s 0.4%| 2.993
bunload aphix D V to fields 0.039s 0.000s 05 0.000s 0s_ 0s 0.002s 0.2185 128 139 21.640sM 4.2415 0.321s 0.4%] 2.791
Selected 1 row(s): 0s 43.097s 4318965 4301.079s 248.733s 82.5% 2350 |y
1| 0| ki | I
Q- 5s 10s 15s 20s 255 30s 35.384s| 40s 455 50s 55s 60s 655 70s 755 0s 855 90s 95s 10'05 105s 11'05 115s 12'(Ruler Area =t
1 PR T T B SRR BT ol e e e e e b e e e IO W W AW, o a0, 0.0 s o i AT e o S i 1 FlRegiO
OMP Mast...
OMP Worke...] T] O~ open..
OMP Worke...] RELT R Thread v|
o
© |OMP Worke... i] 1m [¥] @3 Running
— J G oC
£ |oMP Worke... | 111m [7] Context ...
OMP Worke...g |] Pree...
OMP Worke... ’] sync...
OMP Worke... [V] duk CPU T...
dud Spin a...
CPU Time paused [J® Hardwa...
Ki| Gl MCPUT...ﬂ

Optimization Notice

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Memory Access Analysis

INTEL VTUNE AMPLIFIER XE 2017

Tune data structures for performance

[v] DRAM Bandwidth, GB/sec
= Attribute cache misses to data structures T TR T TTTTRT YR TV FYITTITITo. "Wt
(not just the code causing the miss) [e
= Support for custom memory allocators e ———————————
Grouping: Bandwidth Domain / Bandwidth Utilization Type / Memory Obje.;; | Allocation Stack v \zl \E \g
T T
Optimize NUMA latency & scalability B
= True & false sharing optimization 052 0 2ot
» MCDRAM Flat, GB/sec 840.803s (D 6.000.180
= Auto detect max system bandwidth o o
= Easier tuning of inter-socket bandwidth
Bandwidth Domain / Bandwidth Utiliz... CPUTime ¥ | L2 Miss Count
v DRAM, GB/sec | 840.803s (NN 6.000.180
Easier install, Latest processors v High | 508635 G 4000120
. .] . » stream.c:100 (381 MB) 2.000.060
= No special drivers required on Linux* b stream.c:98 (331 MB) | 2 000,060
= Intel® Xeon Phi™ processor MCDRAM (high bandwidth | » Medium | 241.638s @ 0
memory) analysis » Low | 90529s B 2.000.060
» MCDRAM Flat, GB/sec | 840.803s | 6.000.180

Optimization Notice

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

% Memory Access Memory Usage viewpoint (change) @

4 Collection Log @ Analysis Target fi Analysis Type & Summary &3 Bottom-up (=} Platform

() Elapsed Time “: 3.821s

Loads

Stores

This section lists memory objects that introduced the highest latency to the overall application execution.

LLC Miss Count

26,823,504,681
6,193,985.814
5,949,178.470
4,015.020.447
502,215,066

2.909,787,291
2,146,564,395
91,802,754

0

296,108,883

0

59,403,564
36,002,160
0
0
0

CPU Time ~: 282.064s
Memeory Bound ~: 84.6% K of Pipeline Slots
L1 Bound ®: 30.5% R of Clockticks Top Memory Objects by Latency
L2 Bound *: 0.0% of Clockiicks
L3 Bound ~: 27.1% R of Clockticks
DRAM Bound ~: 15.0% K of Clockticks
DRAM Bandwidth Bound - 0.0% of Elapsed Time Memory Object Total Latency
Memory Latency:
Regote Locyal memory Ratio - 0.000 [Unknown] 96.4%
Local DRAM 0.0% of Clockticks linear_regression_pthread.c:136 (7 KB) 40.4%
Remote DRAM - 0.0% of Clockticks
Remote Cache 24.4% K of Clockticks [StaCK] 1.7%
Loads: 43,544,206 287 Ireg-pthread!main (54 MB) 1.1%
Storest_ 5,444 263,323 [vmlinux] 0.3%
LLC Miss Count ~: 95,405,724
Average Latency (cycles) ~: 39
Total Thread Count: 116
Paused Time = Os

() Bandwidth Utilization Histogram [
Explore bandwidth utilization over time using the histogram and identify memory objects or functions with maximum contribution to the high bandwidth utilization.

Bandwidth Domain: | DRAM, GB/sec v
Bandwidth Utilization Histogram

This histogram displays the wall time the bandwidth was utilized by certain value. Use sliders at the bottom of the histogram to define thresholds for Low, Medium an
functions executed during a particular utilization type. To learn bandwidth capabilities, refer to your system specifications or run appropriate benchmarks to measure

e =1 £1

E =1 =1

[= = £

254 o 5 | =|
3 S| =

& ol =

-— @

15sHW 2 %I
2! |

1s4 ! ol
I I

I I

0.55 | |
I I

I I
Os_ o —

30 40

Bandwidth Utilization

Optimization Notice

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

= Memory Access Memory Usage viewpoint (change) @
4 Collection Log (D) Analysis Target & Analysis Type Summary &8 Bottom-up = == Platform

O: + s 1 2 3 |/ DRAM Bandwidth, GB/sec
2) - 2 40.000 | aTotal, GB/sec
ackage
‘9_ 40.000 ~~Write, GB/sec
£ » package_1
= UPI Bandwidth, GB/sec
=
& saaTotal, GB/sec
m .
= ~~Incoming Data, GB/sec
% ~~Incoming Non-Data, GB/sec
~~Qutgoing Data, GB/sec
~~Qutgoing Non-Data, GB/sec
o 63.5947 CPU Time
2 » package_1 #maCPU Time
2_ coae 0 63.594
ES » package_
=
=
=
£
= Grouping:| Memory Object / Function / Allocation Stack
= Memory Object / Function / Allocation... | CPU Time |Memorv.“ » | Loads | Stores ILLC Miss... V.2 I Average Latency (cycles) I
» [Unknown] 26.823,504.681 2.909,787.291 62.3% NN 29
» linear_regression_pthread.c:136 (7 6,193,985,814| 2,146,564,395|37.7% 147
» Ireg-pthread!main (54 MB) 4,015,020,447 0 0.0% 8
o p [Id-linux-x86-64.50.2] 1,800,054 0 0.0% 35
= » [libtpsstool so] 8,100,243 0 0.0% 7
» [libxed.s0] 4,500,135 0 0.0% 0
» libxed.solxed_iform_db (47 KB) 1,800,054 0 0.0% 0
» [libpthread.so.0] 900,027 0 0.0% 0
p libxed.so!xed_inst_table (75 KB) 0 0 0.0% 6
» [Ireg-pthread] 43,201,296 0 0.0% 0

Optimization Notice

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

 Memory Access Memory Usage viewpoint (change) @

8 Collection Log| | € Analysis Target

Im Assemblyl _l_” 4

£ A

Analysis Type | ¥t Summary | «% Bottom-up

B Platform

Source

5.4
Grouping: Function / Memory Object / Allocation Stack 46
a7
Function / Memory Object / Allocation Stack CPU Time 48
49

v z_solve_ompparallel@43

v bt.f:64 (41 MB)

361.646s B 50

Pu ~
v bt f:68 (8 MB) 5
P qs 55
v bt.f:70 (8 MB)
P square *
v work_|lhs_vec.h:11 (1 MB)
» lhs -

» work_lhs_vec.h:10 (657 KB) 61
p x_solve_vec.f:46 (3 MB) 62
p x_solve_vec.f:46 (3 MB) 63
» bt f:71 (41 MB) a
Il sl "‘[‘
71

74

Optimization Notice

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

program BT

include ‘'header.h'’

include ‘'mpi_stuff.h'

integer num_zones

parameter (num_zones=x_zones*y zones

integer nx(num_zones), nxmax(num_zones), ny(num_zones),
$ nz(num_zones)

Define all field arrays as one-dimenional arrays, to be reshaped

double precision

> (proc_max_size5),

us (proc_max_size)
(proc_max_size),
(proc_max_size),

qs (proc_max_size)

rho_i (proc_max_size)
square (proc_max_size),
rhs (proc_max_size5),
forcing (proc_max_size5),
gbc_ou (proc_max_bcsize),
gbc_in (proc_max_bcsize)

General Exploration Analysis

%% General Exploration General Exploration viewpoint (change) @

B8 Collection Log| | @ Analysis Target Analysis Type | JEBSUNTERT | «%

* Predefined Analysis Type that collects different types of CPU
~) Elapsed Time : 24.340s
performance events Clockticks: 1,834.214.751.318
Instructions Retired: 1.032,885,549,326
CPIRate. :” A 1.776
* Good for first look at whether any CPU event categories are Front £0d Boung® 5%
. ICache Misses 0.030
affecting performance ITLB Overhead 0017
BACLEARS —: 0.033
MS Entry = 0.008
. . . ICache Line Fetch 007
* GUI highlights those events and functions that have Bad Speculation 0.7%
Branch Mispredict 0.7%
performance problems SMCMain Gl g
Back-End Bound “: A 83:6% K
. e Memory Latency:
e Execution pipeline slots distribution by Retiring, Front-End, [ititBae osseh
. L2 Hit Rate < 0.938
Back-End, Bad Speculation L2 it Bound 01571
L2 Miss Bound ~: 0141
UTLB Overhead ~: 0.009
. . . . SIMD Compute-to-L1 Access Ratio B4R
« Second level metrics for each aspect of execution pipeline D Gt o2 Aot Bia® Bpenra
Contested Accesses (Intra-Tile) ~: 0.000
to understand the reason of stalls Pagabich” 0027
Memo eissues:
SglirtyStDres : 0.002
Loads Blocked by Store Forwarding 0.009
Retiring “: 291%
Total Thread Count: 185
Paused Time Os

Optimization Notice

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Example: General Exploration

Bottom-up View

™ General Exploration General Exploration viewpoint (change) @ INTEL VTUNE AMPLIFIER XE 2017
B® Collection Log| | € Analysis Target| | * Analysis Type| | ¥ Summary ") ERLGIOEIY | o% Event Count| | B8 Platform
Grouping:| Function / Call Stack v |5(H Q H ’
. . . . » Bad Speculation « Back-End Bound « . » Y
Function / Call Stack Clockticks ¥ Instructions Retired CPI Rate Front-End Bound : = - Retiring h
Branch Mispredi..| Machine Clears Memory Bound »/| Core Bound »
93,700,000 09,300,000 1287 % 4.2% 04% 27.0% 42.3% 9.0% | 3_tachyo
» sphere_intersect 8.569.000.000 7.885.000.000 1.087 6.2% 0.0% 74% 18.2% 458% 224% 3_tachyol
» func@0x1002e59d 374,300,000 311,600,000 1.201 51% 0.0% 15.2% 0.0% 28.9% 50.8% libiomp5r
» shader 271,700,000 195,700,000 1.388 105% 0.0% 0.0% 31.6% 474% 14.0% | 3_tachyoi
» KeDelayExecutionThread 220,400,000 110.200.000 2000 17.2% 0.0% 17.2% 0.0% 31.0% 345% ntoskrnl.e
» func@0x140151410 212,800,000 26.600.000 8.000 31.3% 0.0% 22 3% 0.0% 19.6% 26.8% ntoskrnl.e
p tri_intersect 195,700.000 210.900.000 0.928 49 0.0% 9.7% 0.0% 51.2% 24.3% 3_tachyol
» __kmp_x86_pause 144,400,000 43,700.000 3.304 19.7° 0.0% 0.0% 0.0% 342% 72.4% libiomp5r
» [wowb4cpu.dll] 104.500.000 41,800.000 2500 18.2% 0.0% 0.0% 0.0% 63.6% 54 5% wowb4cp
» light_intersect 87.400.000 57.000.000 1533 10.9% 0.0% 10.9% 0.0% 674% 10.9% 3_tachyol
» func@0x10013010 81,700.000 247,000,000 0.331 0.0% 0.0% 0.0% 326% 326% 465% gdiplus.d
» VNorm 66,500,000 34,200.000 1.944 14.3% 0.0% 143% 286% 28.6% 14.3% 3_tachyoi
» func@0x10009c00 58.900.000 125,400,000 0470 0.0% 0.0% 16.1% 0.0% 83.9% 0.0% gdiplus.d
p SleepEx 58.900.000 17.100.000 3444 0.0% 0.0% 16.1% 0.0% 51.6% 32.3% kernelbas
p __libm_sse2_pow 55,100,000 26.600.000 2071 17.2% 0.0% 17.2% 0.0% 65.5% 0.0% libmmd.d
» func@0x140159900 55,100,000 11.400.000 4.833 0.0% 0.0% 172% 0.0% 65.5% 7.2% ntoskrnl.e ¥
< >

Find real CPU stalls due to cache misses, instruction fetch misses, branch misprediction, and a lot more.

Optimization Notice

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

m General Exploration Hotspots viewpoint (change) ® INTEL VTUNE AMPLIFIER XE 2017

B Collection Log| | & Analysis Target Analysis Type | | i Summary | EER=ldad]nBil | «% Caller/Callee | |+% Top-down Tree | B& Platform

Grouping: OpenMP Region / Function / Call Stack e H %4 H?H_y
Number CPU Time «
OpenMP Region / Function / Call Stack go%%%?aﬂ EI-?Pn?eed OpgRMP e Effective Time by Utilization v " SpinTime | Overhead ” Instructions | cpy Rate FreR(c:;F
threads §lidle @Poor 1Ok @ldeal @Over Time
p z_solve_ompparallel: 16@unknown:43:454 23.424s 73.882s 16 51,456 795.740s (D 359.793s 4.878s 31.0% N 1484 1
p y_solve_ompparallel: 16@unknown:43:442 13.360s 62.365s 16 51,456 755.842s (D 217 .641s 4417s 27.8% (M 1395 1
p x_solve_$ompé$parallel: 16@unknown:46:446 13.291s 61.117s 16 51,456 740.960s (D 213.383s 4287s 265% B 1438 1
p compute_rhs_ompparallel: 16@unknown:28:43 6.235s 25.777s 16 51,712 279.954s D 118.079s 7382s 7.1% D 2.273 0
p [Serial - outside any region] 0s 17.738s 107.527s D 156.761s 8329s 56% B 1.927 1
p add_ompparallel: 16@unknown:22:33 0.913s 2.964s 16 51,456 27.503s @ 17.559s 1.763s 0.7% | 2.839 0
p copy_x_face_ompparallel: 16@unknown:255:2¢ 0.591s 1.066s 16 102,912 2.902s | 12.895s 1.019s 0.3% | 2.224 0
p copy_y_face_$ompé$parallel:16@unknown:215:27 0.554s 0.952s 16 102,912 2.611s | 11.484s 0.968s 0.3% | 2.219 1
p copy_x_face_ompparallel: 16@unknown:244:2¢ 0.609s 1.040s 16 102,912 2.445s | 13.051s 1.005s 0.3% | 2.095 0
p copy_y_face_ompparallel:16@unknown:204:2] 0.599s 1.010s 16 102,912 2.303s | 12.656s 0.983s 0.3% | 2.163 1
P initialize_ompparallel: 16@unknown:28:204 0.049s 0.208s 16 512 2.217s | 0.989s 0.031s 0.1% 1.195 0
p exact_rhs_ompparallel: 16@unknown:21:357 0.061s 0.195s 16 256 1.979s | 1.067s 0.0155 0.1% 1.681 1
p error_norm_$ompé$parallel:16@unknown:27:54 0.005s ' 0.021s 16 256 0.201s 0.116s 0.011s 0.0% 2.104 1
p rhs_norm_ompparallel: 16@unknown:86:107 0.004s 0.011s 16 256 0.074s 0.040s 0.014s 0.0% 2.024 1
4 DK]
QQFQ-Q¢ 58 Ws o 20s ~ 30s 35s 40s 455 50s 555 60s ' .
OMP Worke... ﬂ [v] @3 Running
e OMP Worke... MCPU Time .
@ OMP Worke... V] dude Spin and...
£ [OMP Worke...|, . [J¥ Hardware ...
2T iV CPU Time '
OMP Worke... -l [k CPU Time

Optimization Notice

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Example — Hardware Events Viewpoint

& General Exploration Hardware Events viewpoint (change) @

Hardware Events [E
Hardware Event Type

Analysis Type

*% Event Count| | *%

Hardware Event Count

Hardware Event Sample Count

Sample Count| | "

= Uncore Event Count

Events Per Sample

BACLEARS ALL 141.602.124 59 200003
CPU CLK UNHALTED REF TSC 73.650.110475 36.825 2000003
CPU CLK UNHALTED.THREAD 79.282.118.923 39.641 2000003
CPU CLK UNHALTED.THREAD P 79.248.118.872 3.302 2000003
CYCLES DIV BUSYALL o o 2000003
FETCH STALLICACHE FILL PENDING CYCLES 285.604.284 119 200003
INST RETIRED ANY 10.042.015.063 5.021 2000003
MACHINE CLEARS FP ASSIST o o 200003
MACHINE CLEARS MEMORY ORDERING o o 200003
MACHINE CLEARS . SMC o o 200003
MEM UOPS RETIREDALL LOADS 2.913.643.704 1.2714 200003
MEM UOPS RETIREDALL STORES 9744146176 406 200003
MEM UOPS RETIRED HITM o o 200003
MEM UOPS RETIRED.L1T MISS LOADS 1.048.815.732 437 200003
MEM UOPS RETIRED.L2 HIT LOADS PS 993.614.904 414 200003
MEM UOPS RETIRED.L2 MISS LOADS PS 28.802.016 24 100007
MEM UOPS RETIRED.UTLB MISS LOADS 40.800.612 17 200003
MS DECODED.MS ENTRY 4.800.072 2 200003
NO ALLOC CYCLES MISPREDICTS 19.805.087.072 8.252 200003
NO ALLOC CYCLES.NOT DELIVERED 7.183.307.748 2993 200003
PAGE WAILKS CYCLES 271.204.068 113 200003
PAGE WAILKS.| SIDE CYCLES 36. 15 200003
REHABQ.LD SPLITS PS 0.012.600 350 200003
UOPS RETIREDALL 10.320.015.480 430 2000003
UOPS RETIRED.MS 96.000.144 4 2000003
UOPS RETIRED.PACKED SIMD 4.437.666.564 1.849 200003
UOPS RETIRED SCALAR SIMD 124.801.872 ~ 52 200003

Uncore Event Count
Uncore Event Type

Uncore Event Count

UNC M CAS COUNT.RD[UNITO]

UNC M CAS COUNT.RD[UNIT1]

UNC M CAS COUNT.RD[UNIT2]

UNC M CAS COUNT.RD[UNIT3]

UNC M CAS COUNT.RD[UNIT4]

121.667.400
121.277.947
122.970.148
122.185.974
120.999.173

Optimization Notice

Copyright © 2016, Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of others.

44% of packed and scalar SIMD
over all Uops.retired

Example — Hardware Events Viewpoint

" General Exploration Hardware Events viewpoint (change) @

INTEL VTUNE AMPLIFIER XE 201

B Collection Log| | € Analysis Target|| * Analysis Type | K Summary | X200l («% Sample Count| % Caller/Callee | |+% Top-down Tree | | B8 Platform

Grouping: Function / Call Stack

MEIEY

Function / Call Stack

p __kmp_wait_template<kmp_flag_64>
» z_solve_ompparallel@43

p y_solve_ompparallel@43

p x_solve_ompparallel@46

» matmul_sub

p compute_rhs_ompparallel@28

P matvec_sub

p [vmlinux]

p _kmp_yield

p __kmp_x86_pause

p binvrhs

p kmp_basic_flag<unsigned long long>::notdone_c
p _kmp_x86_pause

p add_ompparallel_for@22

p __kmp_wait_template<kmp_flag_64>

Optimization Notice

Copyright © 2016, Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of others.

1

INST_RETIRED.ANY ¥

962,516,100,000
611,201,500,000
347,128,600,000
339,554,800,000
309,962,900,000
203,911,500,000
132,531,100,000
102,785,800,000
77,374,700,000
76,654,500,000
20,668,700,000
16,421,600,000
14,040,000,000
13,910,000,000
6,510,400,000
5,522,400,000

CPU_CLK_UNHALTED.THREAD

840,516,300,000

1,210,440,400,000

479,744,200,000
449,736,300,000
435,763,900,000
466,079,900,000
340,174,900,000
192,093,200,000
235,730,300,000
87,428,900,000
28,120,300,000
20,715,500,000
72,924,800,000
6,919,900,000
29,164,200,000
12,256,400,000

CPU_CLK_UNHALTED.REF_TSC

837,484,700,000

1,214,688,800,000

478,821,200,000
448,412,900,000
432,552,900,000
463,160,100,000
338,747,500,000
191,388,600,000
238,954,300,000
87,451,000,000
28,431,000,000
22,124,700,000
74,201,400,000
7,147,400,000
28,827,500,000
13,812,500,000

RECYCLEQ.LD_BLOCK_ST_FORWARD_PS

6,908,303,623
5,200,078
2,405,036,075
2,233,433,501
2,589,638,844
9,445,941,687
941,214,118
20,800,312
405,606,084
2,600,039

0

145,602,184

0

0

257,403,861
0

CPU_CLK_UNHALTED.THREAD _F

825,683,238,52

1,193,479,790,2

466,622,699,9
442,780,664,1
421,590,632,38
453,986,680,9
331,864,497,79
188,552,282,82
336,024,504,0
83,954,125,9
26,754,040,1
19,708,029,56
70,954,106,4
6,110,009,1€
28,314,042,4
11,492,017,2

Example — Gflops and FPU utilization

General Exploration | HPC Performance Characterization viewpoint (change) ®

B8 Collection Log| | @ Analysis Target Analysis Type Summary JCEREIIRLT T

Elapsed Time : 64.488s
GFLOPS Upper Bound : 92.897

CPU Utilization : 16.5% [*

Average CPU Usage : 42.213 Out of 256 logical CPUs

Top OpenMP Processes by MPI Communication Spin Time

This section lists processes sorted by MPI Communication Spin time. The lower MPI Communication Spin time, the mc
efficiency metrics by MPI processes laying on the critical path

Process PID OpenMP Potential Gain = (%) Serial Time = (%)

bt-mz.C.4 (rank 0) 238538 15.057s® 243% N 39625 6.4%
bt-mz.C 4 (rank 2) 238540 13.994s® 225% R 44925 72%
bt-mz.C 4 (rank 3) 238542 147265 23.7% N 45585 7.3%
bt-mz.C4 (rank 1) 238550 15.920s ™ 25.6% 47265 7.6%

CPU Usage Histogram

Back-End Bound : 39.6%
L2 Hit Bound ”: 0.080
L2 Miss Bound "z 0.167 [*

FPU Utilization Upper Bound : 3.7% [*
GFLOPS Upper Bound : 92.897
Scalar GFLOPS Upper Bound : 24.134
Packed GFLOPS Upper Bound : 68.763
Top 5 hotspot loops (functions) by FPU usage
This section provides information for the most time consuming loops/functions with floating point operations.

Function CPU Time ' FPU Utilization Upper Bound = Loop Characterization
binvcrhs 645.711s 38% I
z_solve_ompparallel@43 369.177s 32% R
matmul_sub 357.102s 13.6%
y_solve_ompparallel@43 345.732s 33% R
x_solve_ompparallel@46 333.504s 32% R

*N/A is applied to non-summable metrics.

Optimization Notice

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

The HPC Performance Characterization Analysis

Th rea d I ng: C P U Utl I Ization M HPC Performance Characterization HPC Performance Characterization viewpoint (change) @ INTELVTUNE AMPLIFIER XE 2017
m Serial VS. Pa ra”el time B2 Collection Log| | @ Analysis Target| | * Analysis Type | JEESWINERE | +% Bottom-up
. . . Elapsed Time “: 3.859s
= Top OpenMP regions by potential gain P
. . . GFLOPS “: 4.743
= Tip: Use hotspot OpenMP region analysis for U Usage Histogram o o |
m O re d eta i | CPU Uti lization : 3 1 . 3 % F ;soh:/s:;:g;:;r:::l:z::(ze{r;:r::alzecgfut::avgv:l‘llatium: the specific number of CPUs were running simultaneously. Spin
Average CPU Usage 27.509 Out of 88 logical CPUs S00me—
Serial Time " : 0.761s (19.7%) E g £
Parallel Region Time : 3.098s (80.3%) 600me % g g
“ g

Estimated Ideal Time : 2.470s (64.0%)

Memory Access EffiCiency OpenMP Potential Gain : 0.627s (16.3%) r 400ms

|
I
I
I
I
I
I
|
Top OpenMP Regions by Potential Gain I
|
I
I
I

= Stalls by memory hierarchy CPU Usage Histogram
= Bandwidth utilization Memory Bound ”: 50.3% K " 20 " %
- Tip: Use Memory Access analySis Cache Bound *= 092 Simultaneously Utilized Logical CPUs

DRAM Bound : 0.104

NUMA: % of Remote Accesses : 0.0%
Bandwidth Utilization Histogram

Vectorization: FPU Utilization
= FLOPS ' estimates from sampling

FPU Utilization -: 0.3% &

GFLOPS : 4743
Scalar GFLOPS : 4.735

= Tip: Use Intel Advisor for precise metrics and Top 5 rorepat loape (Fumetions) by FPU usage
vectorization optimization ' For 3rd, 5th, 6th Generation Intel® Core™ processors and second generation Intel® Xeon

Phi™ processor code named Knights Landing.

Optimization Notice

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Java Analysis

* Multiple simultaneous JVMs

A Memory Access - Hardware Issues A © Intel V

@ Analysis Target Analysis Type | | @ Collection Log| | ¥1 Summary +"s Top-down * Sampling is fa St / unObtrUSive

Grouping: Ichbon / Call Stack

 Mixed Java / C++ / Fortran

Hardware Event Count 1 Rate LLC M -
CPU_CIK_U... v | INST_RETIRED.ANY || .
13,430,000,000 19,360,000,000 0.694 (D See rESUItS On the Java SOU rce
@jnt::samark2::FFT::transform_internal 11,520,000,000 5,362,000,000 2.143 ()
#jnt::samark2::SOR::execute 10,998,000,000 16,324,000,000 0.674 @
®jnt::samark2::LU::factor 9,422,000,000 15,072,000,000 0.625 ()
#jnt::samark2::Random::nextDouble 8,426,000,000 5,056,000,000 —
@jnt::scmark2::FFT::bitreverse 1,362,000,000 368,000,000 Basic Hotspots Hotspots by CPU Usage viewpoint (change) ©)
::samark2::MonteCarlo::integrate 902,000,000 236,000,000 - - = = =
Selected 1row(s): | 13,430,000,000 19,360,000,000 B8 Collection Log| | @ Analysis Target Analysis Type| | B Summary| | ¢ Bottom-up| |¥s Caller/Callee| | #¢ Top-down Trg
Assembly %] | O, | Assembly grouping: Address v
Qi C=Ciw s 2 35 4 OS5 65 75 8 95 10s 1is | % [B]| A
INMEa0 WX 104Y) S CPU CPU
Thread (0x2b8) s Source Time: Time:
g Thread (0x1b48) Total Self
£ Thread (0x 13e4) S SO U N S S S SO PO S
Thread (0x1228) 1 30 {
31 return consume time (token) ;
Hardware Events =
32 }
4
33
34 JNIEXPORT void JNICALL Java_MixedCall_CallBackJavaFunc
35 (JNIEnv * JNIEnv, jobject cobj, jint token)
67.6% 11.810s
37 jclass cls = (*JNIEnv)->GetObjectClass(JNIEnv, obj):;
38 jmethedID mid = (*JNIEnv)->GetMethodID(JNIEnv, cls, "CallJdavaFunc”,
39 (*JNIEnv)->CallIntMethod (JNIEnv, obj, mid, token): =
40 }

Optimization Notice

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimize Private Cloud-Based Applications

Profile Enterprise Applications Host Container
/- -\ Run

analysis

=Native C, C++, Fortran* Intel VTune
=Attach to running Java™ services (e.g., Mail)
=Profile Java daemons without restart

Native
or Java
application

Amplifier
User Interface Get

L _/ results

Accurate, Low-Overhead Data Collection " No container configuration required

Detection of the container is automatic
mAdvanced hotspots and hardware events e ————— INTELTUNE ANPLIER 2018

9 [E Collection Log @ Analysis Target & Analysis Type Summary & Bottom-up &3 Caller/Callee & Top-down Tree {= Platform 4
. . Grouping:| Function / Call Stack v \:‘ E‘E} ECPU Time v
IVI e m 0 ry a n a Iys I S CPU Time ¥ ~ Viewing « 10of 5 » selected stack(s)
Function / Call Stack Effective Time by Utilization » 48.9% (6.891s of 14.091s)

Oidle @Poor §Ok @ldeal @Over [Compiled Java code]lspec:jbbinfra::Collections-longStati... A

u ACC u rate Sta C k i nfo rm ati O n fo r J ava a n d H H V M %k :?::fél;:;:;g;?olledmns 1;2?12 F [Compiled Java code]lspec-jbb-infra-Collections-longStati

[Compiled Java code]lspec::jbb::Warehouse: retrieveltem+0.

» jshort_disjoint_arraycopy 5.458s D : [Compiled Java code]lspec::jbb:-Orderline:-validateAndProc
» func@0x91d85c 4.464s |@ e [Compiled Java code]lspec::jbb::Order::processLines+0x70d
» func@0x620160 4.229s |@ [) [Compiled Java code]lspec::jbb::NewOrderTransaction:-proc..
» spec:jbb:iinfra::Collections| 3.524s (D [Compiled Java code]lspec::jbb:: TransactionManager::go+0
» spec:jbb:Warehouse:retri| 2.722s (il [Compiled Java code]lspec: jbb: TransactionManager::go+0
L » func@0x91cb60 2.570s @00 [Dynamic code]linterpreter+0x2c9c - [unknown source file]
Po p u a r o nta I n e rs u p p 0 rte » func@0x14d2a0 25165 0008 + | [Dynamic code]linterpreter+0x2ce1 - [unknown source file]
< > < - > [Dynamic code]lcall_stub+0x87 - [unknown source file] v
©QeC-Ge | 5s 0s | 15s 20s 255 30s 355 40s 455 SOs S5s 6C (Y] Thread v
| | D k * Thread (TID: 6387) ~ 3 Running
O C e r Thread (TID: 6388) CR@ U Wime

iluk Spin and Overhead Time
[[]® Hardware Event Sample
CPU Time
luk CPU Time
v ik Spin and Overhead Time

Thread (TID: 6386)

Thread

Thread (TID: 5922)

=\esos*

Thread (TIN: 502

Software collectors (e.g., locks & waits) and Python* profiling are not currently available for containers. U Time R il

Optimization Notice

Copyright © 2016, Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of others.

Storage Device Analysis (HDD, SATA or NVMe SSD)
Intel® VTune™ Amplifier

Disk Input and Output Histogram

Are You |/O Bound or CPU Bound? Operation Typs: [wis 3

= Explore imbalance between |/O operations .e)3
24§ Sliders set
(async & sync) and compute thresholds for 1/0
= Storage accesses mapped to N “ Queue Depth
the Sou rce COde o 0.02 0.b4 0.06 0.08 0.1 iLO;/}/OtaVSJ< t
1 1+ Duration d wi al
= See when CPU is waiting for I/O T i i T —— s
R ilecopy (TID: 126155) unnin
= Measure bus bandwidth to storage e e Tl o e
curE Thread (TID: 0) . Tl cruTime
Latency analysis 25w /devsas ‘ SR AN
. e° 1/0 Queue Depth
. Tu ne Storage accesses Wlth © Bl rajor fault [v] dud 170 Queue Depth
. a F > [v] # Slow
latency histogram [1v oed
. Q% @ /dev/sda [[]® Fast
= Distribution of I/O over multiple devices =8 ramul | (9P Activity
. . :DE“E & /dev/sda W W CPU State :
> amplxe-cl -collect disk-io —d 10 EE o

Optimization Notice

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Application Performance Snapshot (APS)

High-level overview of application performance

|ldentify primary optimization areas and next steps in analysis
Easy to install, run, explore results with CL or HTML reports
Scales to large jobs

Multiple methods to obtain

= Part of Intel® Parallel Studio XE 2018
— http://intel.ly/intel-parallel-studio-xe-2018-beta

= Separate free download (110Mb) from APS page

— https://software.intel.com/sites/products/snapshots/application-snapshot/

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

http://intel.ly/intel-parallel-studio-xe-2018-beta
https://software.intel.com/sites/products/snapshots/application-snapshot/

Performance Optimization Workflow based on APS

Intel® VTune™ Amplifier's
Application Performance Snapshot

MPI Bound Thread-level FPU
MPI Imbalance CPU Bound read-leve
s sl me _ (ndentfitatn
ilitv i arallelization
Thread-level scalability issues P issues)

Intel® Trace Analyzer
and Collector

(OpenMP analysis) I l

1 Intel® Advisor

I'hreading Vectorization

Intel® VTune™ Amplifier

Intel® MPI Tuner

CLUSTER NODE CORE

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

APS Usage

Setup Environment

e >source <APS_Install_dir>/apsvars.sh

Run Application

e >aps <application and args>

e MPI: >mpirun <mpi options> aps <application and args>
]

Generate Report on Result Folder e

e >3ps —report <result folder>

Generate CL reports with detailed MPI statistics
on Result Folder

* aps-report —<option> <result folder> \

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

APS HTML Report

Application: heart_demo
Report creation date: 2017-10-16 04:47:46 X
Nomber of ks 136 Your application is MPI bound.
ankKs per node: N
OpenMP threads per rank: 4 This may be caused by high busy wait time inside the library (imbalance), non-optimal communication schema or MPI library
HW Platform: Intel(R) Xeon(R) Processor code named Broadwell-EP settings. Use MPI profiling tools like Intel® Trace Analyzer and Collector to explore performance bottlenecks.
Logical Core Count per node: 72
Collector type: Event-based counting driver

MPI Time 52.09%Kk <10%

129 57 OpenMP Imbalance 0.59% <10%
. S 472 448% <20%

I
0.10%k >50% 1
0.00% <10%

Elapsed Time sP S

1.23K

CPI
(MAX 1.24, MIN 1.21)

MPI Time OpenMP Imbalance Memory Stalls FPU Utilization
67.50s 0.76s 4.48% of pipeline slots 0.10%Rr
52.09%R of Elapsed Time 0.59% of Elapsed Time

Cache Stalls SP_FLOPs per Cycle

MPI Imbalance 22.87%N of cycles 0.04 Out of 32.00

0.84s Memory Footprint)

0.65% of Elapsed Time DRAM stalls y_e_c_ggg;__c_gp_a_gl_';(__u_gag;e_

Resident AVG 25.81%K
) o
TOP 5 MPI Functions “ Per node: 764.01 MB FP Instruction Mix
Waitall 31.90 . 5 e a0,

o Per rank: 44,94 MB % of Packed FE. Instr: 3.54%

Isend 8.32 % of 128-bit: 3.54%
o/ 104,

Tier Virtual PEAK AVG % of 236:hit: 0.00%
e > % of Scalar FP.Instr.: 96.46%R
Irecv 574 Pernode: 9635.81 MB 9527.22 MB
Scattery 000 Perrank: 672.23 MB 560.42 MB ER.Arith/Mem Rd Instr. Ratio

: 0.06R
FP_Arith/Mem_ Wr_Instr. Ratio
1/ Bound 0.32K
0.00%

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

APS Command Line Reports - Summary

Summary information

Application : heart demo.test02
Number of ranks : 8

Used statistics : stat_20170502/
Creation date : 2017-05-02 11:44:27

Your application has significant OpenMP imbalance. Use OpenMP profiling tools like Intel (R) VTune (TM) Amplifien
to see the imbalance details.

Elapsed time: 73.19 sec

CPI Rate: 4.01

The CPI value may be too high.

This could be caused by such issues as memory stalls, instruction starvation,
branch misprediction, or long latency instructions.

Use Intel (R) VTune (TM) Amplifier General Exploration analysis to specify
particular reasons of high CPI.
MPTI Time: 11.48 sec 15.69%
Your application is MPI bound. This may be caused by high busy wait time
inside the library (imbalance), non-optimal communication schema or MPI
library settings. Explore the MPI Imbalance metric if it is available or use
MPI profiling tools like Intel (R) Trace Analyzer and Collector to explore
possible performance bottlenecks.

MPI Imbalance: 3.36 sec 4.59%
OpenMP Imbalance: 22.52 sec 30.77%
The metric value can indicate significant time spent by threads waiting at
barriers. Consider using dynamic work scheduling to reduce the imbalance where
possible. Use Intel(R) VTune (TM) Amplifier HPC Performance Characterization
analysis to review imbalance data distributed by barriers of different lexical
regions.

|)I

>aps —report=<my_result_dir> | grep —v “
eliminating verbose descriptions

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

APS Command Line Reports — Advanced MPI statistics
(1/3)

= MPI Time per rank
" aps-report —t <result>

MPI Time per Rank

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

APS Command Line Reports — Advanced MPI statistics
(2/3)

Message Size Summary by all ranks

= aps-report —m <result>

o
|

I SN)

N -1 =]

= NN

ul Ei =
-

-] n -] WO

1.
0.
0.
S.

|
N Oy
.
O O O

o= N,y =)
-]

[SN T, I
\ e

I£|

[filtered out

265160

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

APS Command Line Reports — Advanced MPI statistics
(3/3)

Data Transfers for Rank-to-Rank

Communication 35 .56
.15 .56
= aps-report —x <result> _ : :
[filtered out
oo1z > 0011 69.60
> 0019 69.29
And many others — check S oo
| > 0021 65.38
= aps-report -help [filtered out

o016 > 0015

o inbr i
(I 2

R |

n n
o =] 0

o030 > 0031

Qo006 > Q00a7

[filtered out 1108 lines]

oo

1415619
1224

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Since 2018 Update 2

Collection Control API

To measure a particular application phase or exclude initialization/finalization phases
use:

MPI:
= Pause: MPI_Pcontrol(0)
= Resume: MPI|_Pcontrol(1)
MPI or Shared memory applications:
= Pause: _itt_pause()

= Resume: ittt _resume()

— See how to configure the build of your application to use itt API

Tip: use aps “-start-paused” option allows to start application without profiling and skip initialization phase

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

https://software.intel.com/en-us/vtune-amplifier-help-configuring-your-build-system

Python

Profiling Python is straightforward in VTune™ Amplifier, as long as one does the
following:

= The “application” should be the full path to the python interpreter used

= The python code should be passed as “arguments” to the “application”

Example:

mpirun -n 1 -N 1 amplxe-cl -c hotspots -r res dir \
-- /usr/bin/python3 mycode.py myarguments

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Simple Python Example

mpirun -n 1 -N 1 amplxe-cl -c hotspots -r vt pytest \
-- /usr/bin/python ./cov.py naive 100 1000

i Basic Hotspots Hotspots by CPU Usage viewpoint (change) © INTEL VTUNE AMPLIFIER 2018
1 Ccollection Log O Analysis Target A Analysis Type 3 Summary &3 Bottom-up G Caller/Callee & Top-down Tree '::Platform [cov.py 3

S G Naive implementation of the calculation of
Jop Hotspot a covariance matrix

This section lists the most active functions in your application. Optimizing these hotspot functions typically results in improving overall application performance. 1

Function Module CPU Time

covpy 1135335
genexpr cov.py 91587s
[Outside any known module] 1.460s S u m m a r S h OWS °
[Unknown stack frame(s)] 1.260s y ¢
<module> cov.py 0.588s

CPU Usage Histogram = Slngle thread execution

This histogram displays a percentage of the wall time the specific number of CPUs were running simultaneously. Spin and Overhead time adds to the Idle CPU usage value

Target Utilization

= Top function is “naive”

1] | | | | | Click on top function to go to Bottom-up
e B view

Simultaneously Utilized Logical CPUs

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Bottom-up View and Source Code

Inefficient array multiplication found quickly
We could use numpy to improve on this

& Basic Hotspots Hotspots by CPU Usage viewpoint (change) © | 3 2018
7 ElCollectionLog D Analysis Target A Analysis Type & Summary @ Bottom-up & Caller/Callee & Top-down Tree ' Platform [cov.py . // 3
Grouping:| Module / Function / Call Stack vii%|Q CPU Time "l
CPU Time ¥ A | Viewing 10f 1 » selected stack(s)
Module / Function / Call Stack T " Module 100.0% (112.473s of 112.473s)
0 idle Eﬁ?&%’f '"E’f’#".'aiif“’". Over | SRR » e covpylnaive - covpy
v covpy 203.728s D 2.280s 0s cov.py!main+0x42 - cov.py:200
v naive 111.873s GGG 1.660s 0s covpy naive(fullArray) covpyl<module>+0x221 - cov.py
v main 110.833s D 1.660s 0s covpy main() python2.7!_start+0x28 - [unknow
110813s | 1660s| 0s | covpy <module>
» B main — <module> — _star) covpy main()
» naive « main « <module> « 1.040s 0s 0s covpy naive(fulArray)
» <genexpr> 90.967s D 0.620s 0s covpy naive@-<genexpr>1
» <module> 0.588s 0s 0s covpy <module>
» main 0.300s 0s 0s covpy main()
» [Unknown] 2720s | 0Os 0Os
» libc-dynamic so 1
» python2.7
» libpin3dwarf so
» tracrkdanc en N/
< >||< >
IDERE 0s 50s 100s 150s 200s & [Thread
£ # CPU Time
Spin and Overhead Ti
[0 ® cPU Sample

&l Basic Hotspots Hotspots by CPU Usage viewpoint (change) ©
7 ElCollection Log O Analysis Target A Analysis Type & Summary & Bottom-up @ Caller/Callee & Top-down Tree =

Assembly % % % Q Assembly grouping: Function Range / Basic Block / Address

CPU Time:
e Source Effective Time by Util
Line y Util
Bidie BrPoor ok Bide:
59
60 $# calculate norm arrays and populate norm arrays dict
61 for i in range (numCols):
62 normArrays.append (np.zeros((numRows, 1), dtype=float))
63 for j in range (numRows): I
64 normArrays (i) [j]=fullArray[:, i][j]-np.mean(fullArray([:, i 6.3%-
65
66
67 # calculate covariance and populate results array
68 for i in range (numCols):
69 for j in range (numCols): I
70 result(i,j)] = sum(p*qg for p,q in zip(
71 normArrays(i),normArrays(j]))/ (numRows)
72
73 end = time.time ()
74 print('overall runtime = ' + str(end - start))

Note that for mixed Python/C code a Top-Down view can often be helpful to drill down into the C kernels

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

VTune Command Line Analysis Configuration
How to Run VTune on MPI Applications

><mpi_launcher>—n N <vtune_command_line> ./app_to_run

* >srun-n 48 -N 16 amplxe-cl —collect memory-access —trace-mpi —r result_dir ./my_mpi_app

* >mpirun —n 48 -ppn 16 amplxe-cl —collect advanced-hotspots —r result_dir ./my_mpi_app

* Encapsulates ranks to per-node result directories suffixed with hostname

* result_dirhostnamel with 0-15, result_dir.hostname2 with 16-31, result_dir.hostname3 with 32-47

mmmm) Add —trace-mpi option for VTune CL to enable per-node result directories for non-Intel MPIs

e Works for software and Intel driver-based collectors

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

VTune Command Line Analysis Configuration

Selective Rank Profiling

Superposition of application to launch and VTune command line for selective ranks to
reduce trace size

Example: profile rank 1 from 0-15:
>mpirun -n1./my_app : -n 1 <vtune_command_line>--./my_app :-n 14 ./my_app
* |nthe case of Intel MPI launcher —gtool option can be used:

Example: profile ranks 3, 7, 11-13 from 0-15:

>mpirun —gtool “amplxe-cl —collect advanced-hotspots —r result_dir:3,7,11-13” ./my_app

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Analysis Workflow

Result finalization and viewing on KNL target might be slow
Use the recommended workflow:
1. Run collection on KNL deferring finalization to host:
>amplxe-cl —collect memory-access —no-auto-finalize —r <my _result_dir> ./my_app
2. Finalize the result on the host

* Provide search directories to the binaries of interest for resolving with —search-dir option
>amplxe-cl —finalize —r <my _result_dir>—search-dir <my_binary_dir>
3. Generate reports, work with GUI

>amplxe-cl —report hotspots —r <my _result_dir>

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Legal Disclaimer & Optimization Notice

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY
RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING
TO THIS INFORMATION INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF
ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as
SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors
may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases,
including the performance of that product when combined with other products. For more complete information visit www.intel.com/benchmarks.

Copyright © 2018, Intel Corporation. All rights reserved. Intel, Pentium, Xeon, Xeon Phi, Core, VTune, Cilk, and the Intel logo are trademarks of Intel Corporation
in the U.S. and other countries.

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors.
These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or
effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use
with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable

product User and Reference Guides for more information regarding the specific instruction sets covered by this notice.
Notice revision #20110804

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

https://software.intel.com/en-us/articles/optimization-notice
http://www.intel.com/benchmarks

S
O
ftwa
re

