Ad

Intel® Advisor
Vectorization Optimization and
Thread Prototyping

Software Must Vectorize & Thread or

Performance Dies

iruq&dw]zmtrqqéqgm%gw lefe;enﬁlcé?\ghﬂggsulqgw»g@

= Recompiled for AVX2 or
AVX512 with little gain

= Wondered where to vectorize?

= Threaded an app, but seen
little benefit?

= Recoded intrinsics for new " Hita “scalability barrier™s
arch.? = Delayed release due to sync.
= Struggled with compiler errors?
reports?

“Intel® Advisor has allowed us to quickly prototype

“Intel® Advisor’s Vectorization Advisor fills a gap in code performance
ideas for parallelism, saving developer time and

analysis. It can guide the informed user to better exploit the vector

”
capabilities of modern processors and coprocessors.” effort

Dr. Luigi lapichino Simon Hammond

Scientific Computing Expert Senior Technical Staff
Leibniz Supercomputing Centre Sandia National Laboratories

Intel Advisor - Thread Pr
[1) . P

Design Parallelism

* No disruption to regular
development

e All test cases continue to —
2) Design it.
Work [(Compiler igr;oresthese
annotations.
 Tune and debug the design
before you implement it '3) Tune it

[4) Check it.

Intel Advisor Annotation Concepts

= Advisor uses 3 primary concepts to
create a model

= SITE

= Aregion of code in your
application you want to transform
into parallel code

= TASK

= The region of code in a SITE you
want to execute in parallel with
the rest of the code in the SITE

= LOCK

= Mark regions of code in a TASK
which must be serialized
NOTE

All of these regions may be nested
You may create more than one SITE
Just macros, so work with any C/C++ compiler

#include "advisor-annotate.h"

voilid solve () {
int * queens = new int[size];

//array representing queens placed on a chess board...

ANNOTATE SITE BEGIN (solve) ;

for(int i=0; i<size; 1i++)
{ // try all positions in first row

ANNOTATE ITERATION TASK (setQueen) ;
setQueen (queens, 0, 1);

}

ANNOTATE SITE END() ;

}

Optimization

Noti wh

uitability report

Estimated Overall

of the annotated sites? D

LR L sl # Correctness Report

Target System: | CPU v Threading Model: | Other v CPU Count: | 256 v
[«

Maximum Program

Gain For All Sites: 74.08x]
saamactance Metrics, Parallel

Modeling of Runtime and
loops

/—j

Combhined Site Metrice All Instances

Serial time: 6851325 Site Label Source Location Impact to Program Gain

Predicted Parallel time: 924 .
redicted Parallel time: 0.924%5 |} Gites | [hitm_test.:133 | 73.76x

Site Performance Scalability R

Scalability of Maximum Site Gain Loop lterations (Tasks) Modeling Runtime Modeling -
256x— Avg. Number of Iterations Avg. Iteration (Task) Type of Change Gain BeneTiBiChecked
128, 8 J') (Tasks): Duration: [] Reduce Site Overhead 121

- g © 1000 0.0171s
64x+ [[] Reduce Task Overhead +35.75x
=z 32x- 0.008x i 0.008x
] o 0.040x 0.040x [[] Reduce Lock Overhead
3 ™ 0.200x 0.200x
3 8 1 1x (1000) —11x(0.0171s) [] Reduce Lock Contention
E? 4x 5x 5x
;“1 2] 25x 25x [] Enable Task Chunking +26.35x
3 125x 125x

Apply

o E= @ — w [=2] — ~ v
(=2 ~no =N ~no w —_
o oA

CPU Count

| 33.5% Load Imbalance: 0.1836s

Intel

Adjustable: Target architecture, threading models
and numhpr nf (‘Pll

" What are the performan

e implications of the

hitm_test.c
Intel Advisor XE 2(

Summary .. S

urvey Report £ Annotation Re,

x0q|oo] Ja101dx3 I

Maximum Program Target System: [CPU
Gain For All Sites: 74.08x ;
Site Label Intel Xeon Phi >rogram Gain 4 Site Instance Metrics, Parallel
Serial time: 68.5132s Offload to Intel Xeon Phi Time
Predicted Parallel time: 0.9249s

MySite5 hitm_test.c:133 73.76x

0.1599s

Site Performance Scalability

= To set up data collection determine the target
architecture, threading model and number of CPU’s

= Collect the Scalability data, and determine how it

differs between the architectures and threading
models.

Optimization
Notice L&

Intel® Advisor - Vectorization

Recommended methodology

> 1. Characterize you code

» (e.g.scalar vs. vector, efficiency). <
Focus on most impactful parts.

/ \
Scalar Loops | | SIMD Loops |

2. Explore root cause preventing
(compilers) from Vectorization.
Implement low-hanging fix.

2. Root cause vectorized code slow-down
factors. Implement low-hanging fix.

Localize memory/memory-access-bound cases.

no
— Done with all low-hanging imtactful parts of your code?
yes yes yes
| Scalar Loops | | Memory-bound loops | | SIMD Loops |
L Z
| 3.Check if Dependencies are real. 3. Explore Memory Access Pattern and | |
Resolve dependencies. Memory Locality. Refactor for Memory Layout.

Optimization
Not C1]

The Right Data At Your Fingertips

Get all the data you need for high impact vectorization

- Filter by which loops What prevents
are vectorized! vectorization?

A Where should | add torization and/or threading parallelism? 1D Intel Advisor XE 2011

B Elapsedtime: 9.49s | @ Vectorized @ Not Vectorized SIRIIN All Modules v [l All Sources [All Threads

Summary %SuweyReport P Refinement Reports & Annotation Report

Vectorized Loops
Function Call Sites and Loops Vector Issues Self Timew | Total Time | Type Why No Vectorization? —)
Vect... | Efficiency Gain...| VL (...

EX® [loop in matvec at Multiply.c:72] * Inefficient .. 5.281s I:l 5.281s |Vectorized (Bo... AVX) | 219 |4

#" [loop in matvec at Multiply.c:66] Q 1Ineffective .. 2.828s @ 2.828:@ Vectorized (Bo... AVX 3.65x
3/ [loop in matvec gl Multiply.c:49] 0.531s1 5812s@ Scalar
3|0 [loop in matveglll Multiply.c:49] 0.516s1 3.344s@ Scalar

3|0 [loop in matvy ' 1 Assumedd.. 0.063s| 0.063s1 Scalar dependence...

V|
Ll
Ll
Ll
Ll

What vectorization

Multiply.c:85]

ik fupctios

How efficient is

30 [loop in g

O [loop in Which Vector instructions are

being used? the code?

issues do | have?

5 Steps to Efficient Vectorization - Vector Advisor

(part of Intel® Advisor, Parallel Studio, Cluster Studio 2016)

1. Compiler diagnostics + Performance Data + SIMD efficiency 2. Guidance: detect problem and recommend how to
information fix it
@ PA ssue: Peeled/Remainder loop(s) present
S Total Compiler Vectorization @ All or some source loop iterations are not executing in the kernel loop. Improve performance by moving
Function Call Sites and Loopsa Ti Ti b @ a 8 source loop iterations from peeled/remainder loops to the kernel loop. Read more at Vector Essentials
me e Loop Type Why No Vectorization? Utilizing Full Vectors...
[#[loop in runCForalllambdal oops) 0.0945 00945 [Scalar vector dependence prevents vector ., (5 Recommendation: Align memory access
[#{loop in runCForallLambdal oops] 01405 37445 [] Scalar inner loop was already vectorized Projected maximum performance gain: High
&V [loop in std:: Complex_base <double,struct_C_double_complex»zi... ! i Projection confidence: Medium
Vestorized SSE: SSE 1 ing Floats2: Floatéd data b “ . . se one of the memory accesses in the source loop does not
TR K oop processing Floatiz; Floatbd data typ 3. “Precise” Trip Counts + FLOPs & MASKS: understand ry access and tell the compiler your memory access is aligned.
Peeled loop; loop stuts were reordered e . . . byte boundary:
[[loop in stdzbasic_string<chan struct stdzchar_traits <chars,class stdvallo... 0,005 Utlllzatlon’ para"ellsm granularlty & overheads
[loop in stdrbasic_string <char,struct steichar traits <char, class st 0,000 TotlTime | P CouTS S SIZE*sizeof(float), 32);
[#[loop in std:num_put<char,class stdzostreambuf_iterator<char,struct st 00005 T8 IMEdH“ ‘le IMBX ;ti;;:n Durtion ‘fau Court
ouost 1 11 <00mts 2408000
0010s i1 12 <0000s 275%
0010 i2 19 <0000l 1173619
0010s i3 15 <000s 1312315
4. Loop-Carried Dependency Analysis 5. Memory Access Patterns Analysis
Site Name Site Function Site Info Loop-Carried Dependencies Strides Distribution Access Pattern
loop_site_203 runCRawLoops runCRawLoops.coc1063 @ RAW:1 No information available No information available
) loop_site 139 runCRawLoops runCRawlLoops.coc622 No information available 3991/36% / 250 Mixed strides
ID @ Type Site Name Sources Modules State loop_site 160 runCRawLoops runCRawlLoops.coc925 No information available 100% /0% /0% All unit strides
P1 @ Parallel site information site2 dqtest2.cpp dqtest2 v Not a problem
0 R " te d d 62 datest2 datest2 AN Memory Access Patterns
P2 ead after write ependency site qtestz.cpp qtes ew D Stride v Type Source Modules Alignment
@ Read after wiite dependency site2 dqtest2.cpp dqtesa RNew P2 @ 001 Unit stride runCRawLoops.coc637 Icals.exe
IZI Wite after wite dependen datest2 cpp g
PS 0 Wiite after write dependency site2 dqtest2.cpp dqtest2 R New 637 plipl[1] += z[:z+321
638 i2 += e[i2
P6 @ Wiite after read dependency site2 dqtest2.cpp dqtest2 R New 639 32 4= 5[32+321:
P7 @ Wiite after read dependency site2 dqtest2.cpp; idle.h dqtest2 R New 223 @ 0,0 Unit stride runCRawLoops.coc638 | lcals.exe
=p30 @ -1575; -63; -26; -25; -1; 0; 1; 25; 26; 63; 2164801 Variable stride runCRawLoops.coc628 Icals.exe
626 i1 &= 64-1;
627 1 &= 64-1;
628 plip] (2] += b[31][i1]:

Summary View: Plan Your Next Steps

% Summary of predicted parallel behavior O Intel Advisor XE 2016

EE Elapsed time: 9.665 @ Not Vectorized| R Al Modules vl ansources vhL -]

, Summary

Survey Report ® Refinement Reports & Annotation Report

@ Program metrics
Elapsed Time: 9,665
Vector Instruction Set: AVX Number of CPU Threads: 1

What can | expect

@ Loop metrics

to gain?

Total CPU time 9.27s (I 100.0%
Time in 2 vectorized loops a11s (R ¢7.6%
Time in scalar code 1.15s B 124%
(® Vectorization Gain/Efficiency”
Vectorized Loops Gain/Efficiency 2.64x ~66%
Program Theoretical Gain 243« ~
Kl - - - =)]
© Top tme-consuming lops @ Vectorization Gain/Efficiency-
Loop Source Location Self Time™
matvec Multiply.c:72 5.62565 . - p - -
ms bt s Vectorized Loops Gain/Efficiency 2.64x [~66%
5 matvec Multiply.c:49 0.52345
5 matvec Multiply.c:49 0.4088¢

Ousiss Mot s Program Theoretical Gain 2.43x

@ Refinement analysis data

These loops were analyzed for memory access patterns an

@ Top time-consuming loops ™

[loopin ... at ...] No information available
O [loopin .. at_.] No information available
O [loopin ... at _...] @RAW:T A WAW:1

Loop Source Location Self Time™ Total Timée™

matvec Multiply.c:72 5.6256s 5.6256s
2.4880s
6, 14905

matvec Multiply.c:66
(" matvec Multiply.c:49
(" matvec Multiply.c:49 0.4088s
(" matvec Multiply.c:85 0.1150s

0.1130s Where do | start?

Vectorization Advisor runs on and optimizes for
Intel® Xeon Phi™ architecture

AVX-512 ERI — specific to Intel®

h .
Vectorized Loops Bl |nstruction Set Analysis Xe O n P I

Loops & | Vector Issues | Self Timev Loop Type

Vector ISA | Efficiency Gain Esti... VL (V...| Traits Data Types | Vector ... |Instruction Sets
v ;Possiblei...| 35.2255 Vectorized+Threaded (Body; Peeled; Re...|AVX512 I 2 m Divisions; FMA; Gathers |Float32; ..|256/512 |AVX; AVX2; AVXF _ccR-512; ...
3@ [loc [T @ 2Possiblein... 26.0255- Vectorized (Body)+Threaded (OpenMP) AVX512 8 Divisions; Gathers; FMA) Float32; ... 256/512 AVX;JAVX512ER_512;[AVX512F...
J@[loc 7 @1lHighvecto.. 5.876sH Vectorized (Peeled)+Threaded (OpenMP) AVX512 8 Divisions; Gathers; FMA 1 Float32; ... 256/512 AVX2; AVX512ER_512; AVX512... Masked Lc
3@ [loc [T @1lHighvecto.. 3.324sH Vectorized (Remainder)+Threaded (Open... AVX512 8 Divisions; Gathers; FMA) Float32; ... 256/512 AVX2; AVX512ER_512; AVX512... MaskedLc
0 [loop o 34.5995 [ERIRII Vectorized (Body; Remainder) AVX512 564x 8 Divisions; FMA; Square Roots Float32; .. 256/51.. AVX2;AVXS12ER_512; AVX512... MaskedLc
=] [Loop [T @ 1Possiblein... 33.8495- Vectorized (Body; Peeled; Remainder) AVX512 '2_8% 2.24x 8 Divisions; FMA; Gathers 1 Float32; ... 256/512 AVX; AVX2; AVX512ER_512; AV... Masked Lc
#[loop [19.839s- Vectorized (Body; Remainder) AVX512 11.48x 16; 8

= - Efficiency (72%), Speed-up (11.5x), Vector

¥ Recommendations | &

ssue: Possible inefficient memory access patterns present Le n gt h (1 6)

Inefficient memory access pattems may result in significant vector code execution slowdown or block automatic vectorization by the compiler. Improve performance by investigating.

Recommendation: Confirm inefficient memory access patterns Confidence: Need More Data
There is no confirmation inefficient memory access pattems are present. To confirm: Run a Memory Access Pattems analysis.

| fsue: Ineffective peeled/remainder loop(s) present Pe rfo rm a n Ce O ptl m I Zat I O n p ro b I e m a n d
All or some source loop iterations are not executing in the loop body. Improve performance by moving source loop iterations from peeled/remainder loops to the loop b xdy.
advice how to fix it

Recommendation: Collect trip counts data

The Survey Report lacks trip counts data that might generate more precise dations. To fix: Run a Trip Counts analysis.
Recommendation: Align data]
Recommendation: Add data padding pro gra m me tri cS

The trip count is not a multiple of vector length. To fix: Do one of the following:

Elapsed Time: 142.79s

o Increase the size of objects and add iterations so the trip count is a multiple of vector length.

o Increase the size of static and automatic objects, and use a compiler option to add data padding, Vector |nstruction Set: AVX‘ AVXZ, AVX512‘ SSE‘ SSE2 Number of CPU Threads: 4
. | Windows' 0S | Linux' OS I
| /Qopt-assume-safe-padding | <qopt-assume-safe-padding | LOOp metriCS

Total CPU time 454.08s N 100.0%

Time in 88 vectorized loops 41.86s B o.2%

Check if It Is Safe to Vectorize

Loop-Carried Dependencies Analysis Verifies Correctness

« M Where should | add vectorization and/or threading parallelism? B Intel Advisor XE 2016
Summary $ S LL # Refinement Reports 4 Annotation Report i Suitability Report
Program time: 12.82s | | Vectorized Not Vectorized | FILTER: ' All Modules v | All Sources ¥ o
Compiler Vectorization
Function Call Sites and Loops Self Timew | Total Time é @ | Trip Counts —
Loop Type Why No Vectorization?
i+l [loop at Multiply.c:33 in matvec] 0.047s| 0.047s | L] 3 Vectorized (Body)
i:[loop at Multiply.c:53 in matvec] 0.413s| 0.413s1] 101 Scalar
= [loop at Multiply.c:45 in matvec] 0.109s| 12.373s B @1 Collapse Collapse
1>l [loop at Multiply.c:45 in matvec] 0.078s1 11.930: @@ [] 12 Vectorized (Body)
i:[loop at Multiply.c:45 in matvec] 0.031s| 0.4445|] 2 Remainder
[loop at Driver.c:146 in main] vector dependence prevents vectoriza...

2.1 Check Dependencies Select |00p for

dependencies for marked loops. Fix the

reported problems. Analysis and prevents Vectorization!
press play!

Command Line

Improve Vectorization

Memory Access Pattern Analysis

A Where should | add vectorization and/or threading parallelism?

Summary % SIGCCL L #»° Refinement Reports 4 Annotation Report { Suitability Report

\Elapsed time: 8,52s ‘ Vectorized H Not Vectorized ‘F FILTER: | All Modules v | | All Sources v

Why No

Loop Type Vectorization?

Function Call Sites and Loops é Select |OOpS of interest

[loop at fractal.cpp:179 in <lambda1>:op... ' gnvector .. 0,013s| 12,020s @ Collapse
@ [loop at fractal.cpp:179 in <lambdal>:o0... ® Serialized use.. 11,281s] | Vectorized (Body)

S

Collapse

1> O [loop at fractal.cpp:179 in <lambdal>:0... ¥ 2 Data type co... 0,000s | 0,163s| Peeled
1> O [loop at fractal.cpp:179 in <lambdal>:0... ‘¥ 2 Data type co ... 0,000s | 0,576s) Remainder
i> O [loop at fractal.cpp:177 in <lambdal>:oper.. [| @ 2Datatypeco.. 0,010s! 12,030s @@ Scalar

<

2.2 Check Memory Access Patterns

Identify and explore complex memory
accesses for marked loops. Fix the
reported problems.

[1[=]

Command Line

Run Memory Access Patterns analysis, just to
check how memory is used in the loop and
the called function

Get speC|f|c advice for Improving
\lqate e e pr—

Issue: Ineffective peeled/remainder loop(s) present
All or some source loop itarations ara not executing in the |oop body. Improve performance by moving source loop iterations from
peeled/remainder loops to the loop body.

) Recommendation: Collect trip counts data Confidence: ¥ Need More Data
> Recommendation: Specify the expected loop trip count | Confidence' ¥ Low
The compiler cannot statically detect the trip count. To fix: Identify the expected n d o5 using a directive:

#pragma loop_count.
Example: Iterate through a loop a minimum of three, maximum of ten, and average of five times:

#include <stdio.h>

int mysum(int start, int end, int a) {

int iret=8,

#pragma loop count min(3), max(1@), avg(s)
for (int i=start;i<=end;i++)

Read More: Advisor XE shows hints how to

. loob count decrease vectorization overhead
» Cetting Started with Intel Compiler Pragmas and Dire

) Recommendation: Enforce vectorized remainder Confidence: ¥ Low
) Recommendation: Use a smaller vector length Confidence: # Low
) Recommendation: Align data Confidence: ¥ Low

') Recommendation: Add data padding Confidence: @ Low

Loop Analytics

Get detailed information about your loops

Loop Analytics W a

56268 Traits

Inserts
Vectorized (Body;, Remainder) Total time @
AVX 5.626s Instruction Mi
Instruction Set Self ime nstruction IX
Memory:7 Compute:8& Other: 4
> Memory 44% (7) D v Memory 43. 75% Y Compute 31.25% |Other: 25%
» Compute 31% (5) D
o Other 25% (4)

Insruction Mix Summary @

2.19x —o0%

Veectorization Gain Veectorization Efficiency

otice (&

Highlight “impactful” AVX-512 instructions.
Survey Static Analysis - AVX-512 “Traits”

Function Call Sites and | Instruction Set Analysis 4 d
Advance
Loops Traits] DataT...] Num..[Vector Widths [Instruction Sets
[loop in s353_at loop ... FMA; Gathers; Mask Manipulations; Scatters Float32... 16 512 AVX512F_512 Sum manzed Traits in Su rvey Report-
O [loop in std:plus<flo... Float32... 2; 4; ... 256; [128; 256;... AVX; [AVX; AVX512F_... Unrolled by 2; ...

Simplify “performance-aware” reading of

¥ g Source and Assembly
Address ‘ Line‘ Assembly TotaITime‘ % ‘SelfTime’ % ’ Traitg
0x140054b58 6004 vfmadd23lps zmml2, k0, zmmS, zmmlé EhAA
) _ Instruction Set Analysis
0x140054b5e 6005 wgatherdps zmm7, ké, zmmword ptr [rl2+zmmé*4-0x4] Function Call Sites and Loops Self Timew | Type : - .
0x140054b66 6005 wvfmadd23lps zmmll, k0, zmm7, zmmlé Traits [DataTypes Vector Widths Instruction Sets
0x140054bbc 6006 wvgatherdps zmm3, k2, zmmword ptr [rl2+zmm8*4-0x4] |uO [loop in Intel::CompilerDevSuit... 5370s® | Scalar
0x140054b74 6006 vfmadd23lps zmml0, kO, zmm9, zmml6 41 floop in Intel:CompilerDevSu... | 1,380s)] Vectorized (Body) [Compress.)Float32; Int32; Uln... 512 AVX512F 512
0x140054b7a 6006 wscatterdps zmmword ptr [rcx+zmml5S*4+0x10], k3, zmf
Source & o)]
Line Source TotaITime‘ % ‘LoopTime‘ % ‘ Traits
114 #pragma ivdep
115 for (i=0; i<BUFF_SIZE; i++) 0,130s 1,380s
116 {
17 if (source[i] > 0) 0,710s | Mask Manipulations
118 {
119 dest[j++] = source[i]; 0,550s | Compresses
120 }

121 }

Gather/Scatter analysis is very important for
AVX-512

= AVX512 Gather/Scatter in wider use than on previous instruction sets
* Many more applications can now be vectorized

* Gives good average performance but far from optimal

* Much greater need for Gather/Scatter profiling

* With Intel® Advisor you get both dynamic and static gather/scatter
information

oAy = mar ..
0 0100 0010010101

Gather Instructions

= c[i] = a[bli]] //indirect reference

if (p[i] == q[i]) cli] = a[b[i]] // also masked

4 /el /] h
VPCMPEQQ ymm3, ymm2, ymml
VPGATHERQQ ymml1, ptr [rax+ymmO0], ymm3

_ Base of “a” 7 bli] - mask - -

Fundamental building block for sparse or indirect memory accesses, easing
vectorization

Irregular access patterns decreases

performance!
Gather profiling

Run Memory Access Pattern
Analysis (MAP)

B 0%:percentage of memory instructions with unit stride or stride 0 accesses

Unit stride (stride 1) = Instruction accesses memory that consistently changes
by one element from iteration to iteration

Uniform stride (stride 0) = Instruction accesses the same memory from iteration to iteration

B s0% percentage of memory instructions with fixed or constant non-unit
stride accesses

Constant stride (stride N) = Instruction accesses memory that consistently changes
by N elements from iteration to iteration

Example: for the double floating point type, stride 4 means the memory

address accessed by this instruction increased by 32 bytes, (4*sizeof(double))

with each iteration

@& 509 percentage of memery instructions with irregular (variable or random)
stride accesses

Irregular stride = Instruction accesses memory addresses that change by an
unpredictable number of elements from iteration to iteration
Typically observed for indirect indexed array accesses, for example, a[index{i]]

& - gather (irregular) accesses, detected for v(p)gather” instructions on AVX2
Instruction Set Architecture

Am | bound by VPU/CPU or by Memory?:
Advisor Memory Access Pattern and Footprint

Small enough Big enough
Source Stride ’ Operand Type‘Operand Size ...| Aggregated footprint
m=1; m<=half; m++) | @10 int 32 48
Access Pattern = fCppMod(i + 1bv[3*m], Xmax); BIOI=]E] int 32,64 388
= £CppMod(j + lbv([3*m+l], Ymax); D@ int 32 888
Unit Stride Effective SIMD Effective SIMD = £CppMod(k + 1bv[3*m+2], Zmax); mlLIE]E) int 2 828

= (nextx * Ymax + nexty) * Imax + nextz;

No Latency and BW
bottlenecks

lbsitelength + 1*lbsy.nq + m + half], lbf[ilnext*lbsiteler| B [0] 8 [1] + [-4. float64:int

Const St”de lbsitelength + l*1lbsy.nqg + m + 1], lbf[il*lbsitelength +]
e —
Irregular «
>
Access,
Gather/Scatter
Assembly Physical Stride | Operand Info Address range Memory acces|

290 1250 add rax, 0x3
294 1254 imul rl4d, rlld
298 1254 add rl4d, rlad

2cb 1256 mov rl2, qword ptr [r9+rsi*g] @ -43775, 118377 ... int*1, int*1, i .., 0x27561058 - 0x27e6cf20 9MB
f2cf 1256 wvmovsd xmm0, qword ptr [rf+rbx*8] @1 float64*1 0x27561098 - 0x275610d0 648
2d5 1256 mov qword ptr [r8+rbx*8], rl2 @1 int*1 0x27561098 - 0x275610d0 64B

2d9 1256 mov rl3d, dword ptr [rip+0x1565bc] 2o int*1 0x18589¢ - 0x18589¢ 4B

AVX-512 FLOPS and Mask profiler

FLOPs, Masks, Trip Counts

Median | GFLOPs/s ¥

‘Arithmeti: Intensity |MaskUtiIiz...| GBytes/s IGFLOP

19)

2,456 3 0.125

43 2,351 0.125

19) 2,136 & 0.0795455
19) 1,910ED 0.0681818
3 1,774 0.0833333
4 1,192E 0.0666667
19 0911@ 0.0681818

19.6498 3.94484

63,29% 18.8111 0.36693
26.8513 2.50209
28.011 1.07231

21.2898 0.11287
17.8726 0.1505
13.3635 0.0285

Low mask population -> low
performance (in spite of

“high SIMD efficiency”)

[+ [=] [zz;tsion e & | Vectorlssues Self Time | Type (FSLF(L)ZiS .
" [loop in s2711 at loops90.£:16... [0,010s| Vectorized (Remainder) 0,8000 0,1000 <
" [loop in 5252 at loops90.£:1172) (] Q2Ineffective peeled/r... 0,171s) Vectorized Versions 16840 0,0968
" [loop in 5116 at loops90.£:257] (] @ 1Ineffective peeled/r... 0,100s| Vectorized (Body, Remainder) 49513 0,0833
" [loop in 5174 at loops90.£:765] (] @ 1Ineffective peeled/r... 0,080s| Vectorized (Body, Remainder) 1,2510 0,0833
1 ® [loop at loops90 effective peeled 0,090 ectorized (Body: Remainde i 0,08
" [loop in 5152 at loops90.f:624] (] @ 1Ineffective peeled/r... 0,010s| Vectorized (Body; Remainder) 10,001/ 0,0833
" [loop in 5121 at loops90.f:324] (] @ 1Ineffective peeled/r... 0,020s| Vectorized (Body, Remainder) 49503 0,0833
" [loop in 5151s at loops90.£:609] (] @ 1Ineffective peeled/r... 0,020s| Vectorized (Body, Remainder) 49503 0,0833
U [loop in 5131 at Ioops90f521] OJ 0,020s| Vectorized (Body) 48083 0,0833
" [loopi ' 2450 @ 0,0833
g O [loop| " ol 4 A " 16490 0,0833
~ [loop C 1,4000 0,0833
" [loop 0,7970 0,0833 ﬁ:] AVX512
- - U cid U0 OI'C - U
" [loop I T,0833
A 4
DO 0 DWE D) perto ANCE

Instruction Set Analysis

Efficiency

E:

AVX512 19%

Gain Esti...| VL | Traits

98« 16 FMA
13.05x 16; Blends; Divisions; Extracts; |
1268x 16 Unpacks
13.05x 16, Unpacks

0 ; Da
11.70x 16, FMA
1147 16, Unpacks
1147x 16; Unpacks
1147 32
1125 16; Unpacks
1125« 16; Unpacks
1125 16; Unpacks
B.55x 16 FMA

16 2-Source Permutes; Gather

Why is Mask Utilization important?

Not utilizing full

3 elements suppressed

vectors!!
for(i = 0; i <= MAX; i++) SIMD Utilization = 5/8
if (cond(i))
cli] = al[i] + b[i]; (GZSWM

010 1 10 1] 1

for(i = 0; 1 <= MAX; i++)

=<£:::::E=v c[i] = a[i] + b[i):

Illiﬂlll R 4£%;- 5?25 iﬁfﬁs , -
+ A
7 77 45"' 7 . A “ \ a[i+7] afi+6] afi+5] afi+4] a[i+3) Sl
G, G v - e
cfi 77N, Sorl IR _V.'
“ 7] 6] cli+s] cfi+4] eli+3) NEER

otice (&

Advisor Roofline: under the hood

Roofline application profile:
Axis Y: FLOP/S = #FLOP (mask aware) / #Seconds
Axis X: Al = #FLOP / #Bytes

. | Roofs
User-mode sampling
Microbenchmarks
Root access not needed e i / Actual peak for the current

" Db eGior FMA Pek: 22;,26'6’7_0%

"~ " SP Vector Add Pesk 110.6 GFLOPS
—_— ® DP Vegtos-#dd Peak: 56.21 GFLOPS

Scalar Add Pezk: 14.05 GFLOPS

Performan

= Binary Instrumentation

Binary Instrumentation : o 4 . .
Does not rely on CPU Anthmetic Intens Counts operands size (not cachelines)

counters

Getting Roofline in Advisor

FLOP/S Seconds | #FLOP Count

— - Mask Utilization
= #FLOP/Seconds 4Bytes

Step 1: Survey

- Non intrusive. Representative
D Collect by, | [] - Output: Seconds (+much more)

1. Survey Target

1.1 Find Trip Counts and FLOPS Step 2: FLOPS

P Collect B] - Precise, instrumentation based
- Physically count Num-Instructions
- Output: #FLOP, #Bytes

Cache-Aware Roofline
Next teps
Scalar Add Peak

Check “Traits” in the Survey to see if FMAs are used.

_ _ Check vectorization
If not, try altering your code or compiler flags to . . :
) efficiency in the Survey.
induce FMA usage.

If under or near a memory IR Follow the recommendations

roof... A to improve it if it’s low.
FMA Peak

\%or Add Peak If under the
Scalar Add Peak...

Check the Survey Report to
see if the loop vectorized. If
not, try to get it to vectorize
if possible. This may involve
running Dependencies to see
if it’s safe to force it.

e Try a MAP analysis.
Make any appropriate
cache optimizations.

e If cache optimization is
impossible, try
reworking the
algorithm to have a
higher Al.

Scalar Add Peak

>
Arithmetic Intensity

Typical Vectorization Optimization Workflow

" There is no need to recompile or relink the application, but the use of -g is
recommended.

1. Collect survey and tripcounts data

= |nvestigate application place within roofline model

= Determine vectorization efficiency and opportunities for improvement
2. Collect memory access pattern data

= Determine data structure optimization needs
3. Collect dependencies

= Differentiate between real and assumed issues blocking vectorization

otice (&

Nbody demonstration

Nbody gravity simulation

= Let’s consider a distribution of point massesm_1,...,m_nlocatedatr_1,...,r n.
= We want to calculate the position of the particles after a certain time interval using the Newton law of

gravity.
struct Particle for (1 = 0; i < n; i++){ // update acceleration
{ for (jJ = 0; j < n; j++){
public: real type distance, dx, dy, dz;
Particle() { init();} real type distanceSqr = 0.0;
void init () real type distanceInv = 0.0;
{
pos[0] = 0.; pos[l] = 0.; pos[2] = O.; dx = particles[j].pos[0] - particles[i].pos[0];
vel[0] = 0.; vel[l] = 0.; vel[2] = O.;
acc[0] = 0.; acc[l] = 0.; acc[2] = 0.;
mass = 0.; distanceSqr = dx*dx + dy*dy + dz*dz + softeningSquared;
} distanceInv = 1.0 / sqrt(distanceSqr);
real type pos[3];
real type vel([3]; particles[i].acc[0] += dx * G * particles[j].mass *
real type acc[3]; distanceInv * distanceInv * distancelnv;
real type mass; particles[i].acc[l] += ..
}; particles[i].acc[2] += ..

Collect Roofline Data

= Starting with version 2 of the code we collect both survey and tripcounts

data:
. mpirun -n 1 -N 1 advixe-cl --collect survey --project-dir ./adv_res --search-dir src:=./ \
- --search-dir bin:=./ -- ./nbody.x
. mpirun -n 1 -N 1 advixe-cl --collect tripcounts -flops-and-masks --project-dir ./adv res \
. --search-dir src:=./ --search-dir bin:=./ -- ./nbody.x
m mpirun —-n 1 -N 1 advixe-cl —-collect roofline (available starting 2018 Ul)

= |f finalization is too slow on compute add -no-auto-finalize to collection line.

otice (&

Summary Report

[apss e 1024 [) CERTERESY ISR e s wies | mvsowees
B Summary % Survey & Roofline ™ Refinement Reports m

~

@ Vectorization Advisor

Vectorization Advisor is a vectorization analysis toolset that lets you identify loops that will benefit most from vector parall
discover performance issues preventing from effective vectorization and characterize your memory vs. vectorization bottle:
Advisor Roofline model automation.

v Program metrics

Elapsed Time 10.24s
Vector Instruction Set AVX512, AVX2, AVX Number of CPU Threads 1
Total GFLOP Count 2120 Total GFLOPS 207

Total Arithmetic Intensity © 0.35165

~ Loop metrics

Metrics Total

Total CPU time 10.14s ([100.0%
Time in 1 vectorized loop 108 [o0 £
Time in scalar code 006s |

Total GFLOP Count 2120 (D 100.0%
Total GFLOPS 207

~' Vectorization Gain/Efficiency
Vectorized Loops Gain/Efficiency 1005x [GEEN]

Program Approximate Gain - 10.00x

~) Top time-consuming loops

Loop Self Time Total Time Trip Counts
[loop in GSimulation:start at GSimulation.cpp:138 10.080s 10.080s 125

5 [loop in GSimulation:start at GSimulation.cpp:136] 0.060s 10.140s 2000

9 [loop in GSimulation:start at GSimulation.cpp:133) 0s 10.140s 500

GUI left panel provides access to
further tests

Summary provides overall
performance characteristics
Lists instruction set(s) used

Top time consuming loops are listed
individually

Loops are annotated as vectorized and
non-vectorized

Vectorization efficiency is based on used
ISA, in this case Intel® Advanced Vector
Extensions 512 (AVX512)

Survey Report (Source)

G |) R RSO - |, o v | o o~ R v

B Summary % Survey & Roofline

P
9]
o]
z
=

Source 1

Line
132

133
134
135
136
137
138

139
140
141
142
143

+

=]

*® Refinement Reports

-] Function Call Sites and Loops ¥ Performance Issues

Self Time w | Total Time

[loop in GSi start at GSii cpp:138] ¥ 2 Inefficient gather/sc
5 [loop in GSimulation:start at GSimulation.cpp:136] ¢ 1 Opportunity for outer |... 0.060s|
_start 0.000s!
main 0.000s!
GSimulation:start 0.000s!
5 [loop in GSimulation:start at GSimulation.cpp:133] # 1 Data type conversions ... 0.000s!
> |«
TopDown|CodeAnalyﬁ5 A ~~|4nn. & Why No Vectorization?
Source
CONSt gouble TtUu = Time.start();
for (int s=1; s<=get_nsteps(); ++s)
{
ts0 += time.start();
for (i = 0; i < n; i++)// update acceleration
{
for (3 = 0; j < n; j++)
loat32; Int32

dz;

real type dx, dy,

real_type distancesgr =

real_type distancelnv =

Type Why No Vectorization?

.. 10.080s @8 10.080s @l Vectorized (Body)

10.140s B Scalar
10.140s @B Function
10.140s @R Function
10.140s @R Function
10.140s SR Scalar

Selected (Total Time):

@ inner loop was already v..

@ inner loop was already v...

~ e = Inline information
T o regarding loop
characteristics
, ® |SA used
e = Types processed
= Compiler transformations
- — applied
= Vector length used
0

Survey Report (Code Analytics)

Summary % Survey & Roofline ™ Refinement Reports

L] -
Vectorized Loops Bl| FLoPY
. +| =] Function Call Sites and Loops BT Self Time v | Total Time | Type Why No Vectorization? - .
Issues Vector... Efficiency | GainE... VL (Ve.. |Self

[loop in GSimulati t at GSimulation.cpp:138] @ 2 Inefficient gat... 10.080s @8 10.080s EH Vectorized (Body) AVXS.. 10.05x 16 2.09:
4O [loop in GSimulation:start at GSimulation.cpp:136] ¢ 1 Opportunity for.. 0.060s! 10.140s G Scalar @ inner loop was already v... 1.700
[[S f _start 0.000s| 10.140s @B Function
m =5 § main 0.000s! 10.140s @I Function
I n O r a I O n « § GSimulation:start 0.000s! 10.140s @I Function
4O [loop in GSimulation:start at GSimulation.cpp:133] @ 1 Data type conv.. 0.000s| 10.140s GEEED Scalar @ inner loop was already v...

" |nstruction mix ‘ > < .

Source | Top Down | Code Analytics | A ’ ¥ Rec { @ Why No Vectorization?

| I SA u Se d , N CI u d N g S u bg ro u pS Loop in GSimulation: start at GSimulation.cpp:138 Average Trip Counts: 125 ® GFLOPS: 2.09325 ®

AVX-512 Mask Usage: 37

10.080s
. . Vectorized (Body) Total time ‘
LOOp tra ItS AVX512ER_512; 10.080s Traits ™ ® static Instruction Mix ©
AVX512F_512 Selftime Square Roots Memory:22 Compute: 21 Mixed -2 Other

u F M A Instruction Set Gathers 12 Number of Vector Registers: 26
-

Y it s R « Irregular Memory Access Patterns May Decrease Perfor
Static Instruction Mix S Y Suggestion: See Recommendations Tab
- » Memory 39% (22)
> o
Square root Gompee 375, 21) D
-

> Mixed 4% (2)0
Other 21% (12) 0D

 Irregular Memory Access Patterns May Decrease Perfor

= Gathers / Blends point to e
memory issues and vector | g @ 2Somerema

i n effi C i e n C i e S 63% Vectorization Efficiency Vectorization Gain v

CARM Analysis

= Using single threaded roof

Performance (GFLOPS) | k | Q B ~ | [V use Single-Threaded Roofs @ [[] show Roofline with Callstacks © =

s oo @ Code vectorized, but
i s performance on par with

T o scalar add peak?
i o oo " rregular memory access
e ”””””””” | e e patterns force gather
operations.
i = Overhead of setting up
vector operations reduces
R | mecrmtiicon €FICIENCY.

Next step is clear: perform a Memory Access Pattern analysis

Memory Access Pattern Analysis
(Refinement)

mpirun -n 1 -N 1 advixe-cl --collect map -mark-up-list=1l --project-dir
./adv_res --search-dir src:=./ --search-dir bin:=./ -- ./nbody.x

) S S INIEL AUVISUR 2U18
Sui % Sul & Roofl ¥ Ref R MAP Source: GSimulation. 1 H H
B Summary % Survey ine : efinement Reports [rce: GSimulation.cpp m Storage Of part|C|eS is in an Array
Site Location Loop-Carried Dependencies ‘Strides Distribution Access Pattern Max. Site Footprint Site Name Recommendations
[[loop in start at GSimulation.cpp:1... No information available 33%/33%/33% @ Mixed strides 5KB loop_site_1 @ 2 Inefficient gather/scatter instructions present Of St r u Ct u re s (AO S) Sty I e

Memory Access Patterns Report ’ Dependencies Report |vRecommendations | u ThiS |eadS tO regL”ar, bUt non'unit

ID Stride Type Source Nested Function Variable references Max. Site Footprint Modules Site Name Access Type

=1 | ® 1040 |Comstantstide |GSimulationcpp44| |block0x60a0b0 allocated at GSimulationcpp109 4B |nbodyx |loop.ste.1 _|Read strides in memory access

14 real type distancelInv .
143 n [0)
144 dx = particles([j].pos[0] - particles[i].pos[0]; //1£flop 33A) unlt
145 dy = particles[j].pos[1l] - particles[i].pos[1]; //1flop
146 z = particles[j].pos[2] - particles([i].pos[2] //1£flop] [0) 1 - 1
P2 @ Gather stride GSimulation.cpp:144 block 0x60a0b0 allocated at GSimulation.cpp:109 5KB nbody.x loop_site_1 Read 33A) unlform’ non unlt
142 real type distanceInv = 0.0f; .
143 - [| Y -
144 particles[j].pos[0] - particles[i].pos([0]; //1£flop 33 A) non u nlform
145 particles([j] .pos[1l] - particles[i].pos[1]; //1flop
‘étT = ga::l.:ltzs[:]‘g':»s[a]- - pér:u:\.eg[xl._::s[e]' //1flop -] Re_structurlng the Code |nt0 a
=P3] Parallel site information GSimulation.cpp:144 nbody.x loop_site_1
142 real type distanceInv = 0.0f;
S Structure Of Arrays (SOA) may
144 dx = particles([j].pos[0] - particles[i].pos[0]; //1£flop . .
- B e e lead to unit stride access and
14 d part .pos[2 particles[i]. 1flop
PS @ 0 Uniform stride GSimulation.cpp:149 4B nbody.x loop_site_1 Read H H H
more effective vectorization
148 distanceSqr = dx%dx + dy*dy + dz*dz + softeningSquared; //6£lops
149 distanceInv = 1.0f / sqrtf(distancesqr); //1div+lsqrt
:;1 particles([i] .acc[0] += dx * G * particles[j].mass * distanceInv * distanceInv * distancelnv; //6£flops

Vectorization: gather/scatter operation

= The compiler might generate gather/scatter instructions for loops automatically vectorized
where memory locations are not contiguous

ctruct Particle AoS - array SOA - structure
{ of structures of arrays
publ ic: ﬂdemory Memory
real type pos[3]; ?;‘» ~ F p.pos_x[i]
real type vel[3]; o p.pos x[i+1]
real type acc[3]; - _
real type mass; o p.pos_x[1+2]
} 7 .':, p.pos_x[i+3]
. ~ p.pos x[i+4]
struct ParticleSoA -
{ rg ~ p.-pos_x[i+5]
publ ic: E P.pos_x[i+6]
e o o & P.-pPos_X [1+7] 1
real type *pos_ x,*pos_y,*pos_z; . e, \ —
real type *vel x,*vel y,*vel z; 'E_‘ Vector p.pos_x[1+8] Vector
real type *acc_x,*acc_y; *acc_z = e Register Register
real type *mass;
}i \ \ /

Performance After Data Structure Change

In this new version (version 3 in
github sample) we introduce the
following change:

Change particle data structures
from AOS to SOA

Note changes in report:
Performance is lower
Main loop is no longer vectorized

Assumed vector dependence
prevents automatic vectorization

F) Summary % Survey & Roofline |®{Refinement Reports
§ +| |=] Function Call Sites and Loops DUEIETEE Self Time w» | Total Time Type Why No Vectorization? Vectorized Léops Sl 8
o Issues Vector...|Gain E... | VL (Ve... | Self GFLOPS | ¢
Z = O [loop in GSi start at GSi cpp:151] ¢ 1 Assumed dep... 46.360s 8 46.360s B Scalar & vector dependence pre... 11220 ¢
Scalar loop. Not vectorized: vector dep Scalar loop. Not vectorized: vector dependence prevents vectorization
: No loop transformations applied No loop transformations applied
=6 [loop in GSimulation:start at GSimulation.cpp:171] @ 1 Assumed depe.. 0.040s! 0.040s! Scalar B vector dependence preve... 047500 C
. f _start 0.000s! 46.400s BB Function
2 f main 0.000s! 46.400s @ Function
« f GSimulation:start 0.000s| 46.400< R Function cY
< >« >
Source ’ Top Down ‘ Code Analytics ‘ Assembly | ¥ Recommendations | @ Why No Vectorization?
~
Loop in GSimulation::start at GSimulation.cpp:151 Average Trip Counts: 2000 ® GFLOPS: 1.12166 ®

46.360s
Scalar Total time
46.360s Static Instruction Mix
Self time - -
Memory:8 Compute:11 Mixed 11 Other
4 Number of Vector Registers: 21
¥ Static Instruction Mix Summary

» Memory 24% (8) BB

» Compute 32% (11) D

> Mixed 32% (11) D
Other 12% (4) @

» Dynamic Instruction Mix Summary

Traits @

Sauare Roots. FMA

AVX-512 Mask Usage: 100

(¥) Code Optimizations ®

Compiler: Intel(R) C++ Intel(R) 64 Compiler for applications
running on Intel(R) 64,
Version: 18.0.0.128 Build 20170811

Dependencies Analysis (Refinement)

aprun -n 1 -N 1 advixe-cl --collect dependencies --project-dir ./adv _res \
--search-dir src:=./ --search-dir bin:=./ -- ./nbody.x

B Summary % Survey & Roofline ™1 Refinement Reports [Dependencies Source: GSimulation.cpp INIEL AUVRUK CUIY

. L] L]
Site Location Loop-Carried Dependencies | Strides Distribution Access Pattern Max. Site Footprint Site Name | Recommendations D e p e n d e n C I e S a n a I yS I S
1[loop in start at GSimulation.cpp:157] @RAW:4 No information available No information available No information available loop_site_1 @ 1 Proven (real) dependency present
L]
has high overhead:
g *

Dependencies Report

- = Run on reduced
@ Site Name
P1 @ Parallel site information loop_site_1 GSimulation.cpp nbody.x v Not a problem Error 4items WO r kl O a d
P3 @ Read after write dependency loop_site_1 GSimulation.cpp nbody.x R New

Information 1item

Sources Modules | State

Read after write dependency |loop_site_1 |GSimulation.cpp; main.cpp | nbody.x

. T
PS @ Read after write dependency loop_site_1 GSimulation.cpp nbody.x R New ype _ ° . .
P6 @ Read after write dependency loop_site_1 GSimulation.cpp nbody.x R New Parallel site information 1 item . L4
Read after write depend... 4 items °
Source
ID Instruction Address Description Source Function Variable references Module State A || GSimulation.cpp 5 items .
=IX3 0x401c85 Parallel site GSimulation.cpp:157 start nbodyx R New main.cep 1item ‘ p ‘ n ‘ n Cy
1 wv = 0.0fF; Module
particles->pos_x[j] - particles—>pos_x[i] //1£flop nbody.x S ftems °]
: e = Multiple reduction-type
- New 4items

- [Not a problem 1item
sqrtf (distanceSqr); //1div+1lsqrt

.
* particles->mass[j] * distanceInv * distanceInv * distanceInv; //6flops d e p e I I d e I I C I e S

//6£flops

=IX6 0x401cb8, 0x401d17 1 GSimulation.cpp:164 start register XMM1 nbody.x R New

distan v * dist v * distancelnv;

“p es->mass[j] *

v _* distanc

dz es—>mass[j] *

% GSimulation.cpp:164 start nbody.x R New

sqrtf (distancesqr); //1div+lsqgrt

v Sort By Item Name ®

i=dx * G * particles—>mass[j] * distancelny * distancelny * distanceIny: //6flops

Recommendations

Memory Access Patterns Report ‘ Dependencies Report ‘ ¥ Recommendations ‘

All Advisor-detectable issues: C++ | Fortran

Recommendation: Resolve dependency

The Dependencies analysis shows there is a real (proven) dependency in the loop. To fix: Do one of the following:

« If there is an anti-dependency, enable vectorization using the directive #pragma omp simd

safelen(length) , where length is smaller than the distance between dependent iterations in
anti-dependency. For example:

fpragma omp simd safelen(4)
for (1 = 0; 1 < n - 4; 1 += 4)
{

af[i + 4] = a[i] * c;

ISSUE: PROVEN (REAL) DEPENDENCY
PRESENT

The compiler assumed there is an
anti-dependency (Write after read - WAR) or
true dependency (Read after write - RAW) in the
loop. Improve performance by investigating the
assumption and handling accordingly.

Q.| Resolve dependency

« If there is a reduction pattern dependency in the loop, enable vectorization using the directive #pragma omp simd reduction(operator:list) . For example:

fpragma omp simd reduction (+:sumx)
for (k = 0;k < size2; k++)
{

sumx += x[k]*b[k];

Performance After Resolved Dependencies

B Summary % Survey & Roofline i Refinement Reports
Performance (GFLOPS) L3 :Q\ B - | Use Single-Threaded Roofs @ | [[] Show Roofline with Callstacks @ =

5P Vector FMA Peak: 75.93 GFLOPS
= e B s - RE R

O < A~ S GRS i gl

0.1 14—t

0.01 0.1 1 10
Self Elapsed Time: 2.320s Total Time: 2.320 s Arithmetic Intensity (FLOP/Byte)

New memory access pattern plus vectorization produces much improved performance!

What next?

Elapsed time: 2435 | * | [N B] | FLTER| ANl Modules ~ [Al Sources ~

B Summary % Survey & Roofline ™ Refinement Reports O Annotation Report 3 Suitability Report

Threading Advisor is a threading design and prototyping tool that lets you analyze, design, tune, and check threading desic
without disrupting your normal development.

= Let’s explore threading
with a suitability
analysis.

= Recompile including

i No source files found to scan for annotations.

No appropriate source files were found in your project.

) Program metrics

Elapsed Time 243s
. ° ° ° Vector Instruction Set AVX512, AVX2, AVX Number of CPU Threads 1
a NN Otat | O N d efl N |t | O N S Total GFLOP Count 26.12 Total GFLOPS 1077

Total Arithmetic Intensity ¥ 0.63431

(>) Loop metrics

= Add headers to file

= Annotate suggested
loops

() Vectorization Gain/Efficiency

) Top time-consuming loops~’

Consider adding parallel site and task annotations around these time-consuming loops found during Survey analysis.

Loop Self Time®” Total Time® Trip Counts”
O [loop in GSimulation:start at GSimulation.cpp:143] 0s 2.380s 500
m ° ol ° O [loop in GSimulation:start at GSimulation.cpp:146 0.040s 2.360s 2000
un suitabi |ty collection 5 floop i GSiTulationstart st GSiTuiation o 154 2308

O [loop in GSimulation:start at GSimulation.cpp:177. 0.020s 0.020s 2000

Annotating the code

= Add annotations as shown on the left [TineTe edvisormamtaten
sample e et netepe 0

= Complex sites may be analyzed in more _ e e e et
detail using task sections if needed : T (5 =0 48 5 A

= ANNOTATE_SITE_BEGIN / ANNOTATE_SITE_END i B

= ANNOTATE_TASK_BEGIN / ANNOTATE_TASK_END] } AMNOTATE TASK END(particles)

= Recompile including annotation * ANNOTATE_SITE_END(steps)
definitions:

. -I/opt/intel/advisor/include

" Collect suitability data

mpirun -n 1 -N 1 advixe-cl --collect suitability --project-dir ./adv _res \
--search-dir src:=./ --search-dir bin:=./ -- ./nbody.x

Suitability report

" Good speedup expected,
but far from ideal (~56%
efficiency).

" Modeling shows that
increasing the task length
would improve efficiency.

= Next step: add omp parallel
region to code and re-test

0 Summary % Survey & Roofline ®1 Refi Reports O A INIEL ADVISUK ZU 18

Report & Suitability Report

Maximum Program
Gain For All Sites: 36.40x

Target System: | CPU b Threading Model: | OpenMP v CPU Count: |64 M

Combined Site Metrics, All Instances

Site Instance Metrics,
Site Label Source Location Impact to Program Gain
Serial time: 2.210s Total Serial Time | Total Parallel Time | Site Gain | Parallel Time
Predicted Parallel time: 00615 2 GSimulation.cpp:144|36.40x 21925 00435 5132 |0043s

Site Performance Scalability | Site Details

Scalability of Maximum Site Gain

Tasks Modeling Runtime Modeling

Avg. Number Avg. Task ’ ’ A Benentit

of Tasks: Duration: [Reduce site Overhead

500 0004s [JReduce Task Overhead
0.008x 0.008x
0040 0040x (L] Reduce Lock Overhead
0.200x 0.200x [] Reduce Lock Contention

— 1 1% (500) —11x(0.004s)
5x 5x D Enable Task Chunking
25x 25x

. 125 125

1€ y 64

I 15.1% Load Imbalance: 0.006s v
5.6% Runtime Overhead: 0.002s v
0.0% Lock Contention: Os

Roofline for Threaded Version

P:;;;;nfnce(GFLOPS) xQ B - | [J Use Single-Threaded Roofs @ | [] Show Roofiine with Calistacks © = | for (1nt s=1; s<=get_nsteps (); +-|-s)
S s e P Moo EUA P cumponoes” | [{
R T . ts0 += time.start();
100 =T ? = - | o #pragma omp parallel for
: : o for (1 = 0; i < n; i++) // update
o , - acceleration
. j @ |
- et I B R - {
_F - real type ax_i = particles->acc_x[i];
o real type ay i = particles->acc_yl[i];
10 2 o real type az_i = particles->acc_z[i];
o v - #pragma omp simd reduction(+:ax i,ay i,az i)
Ve for (j = 0; j < n; j++)
A o 01 1 10 o H {
- real type dx, dy, dz;
Now using regular roofline, instead of single-threaded 8 real type distanceSqr = 0.0f;
- real type distancelInv = 0.0f;
Still room for improvement, but at this point we need . dx = particles->pos_x[j] - particles->pos x[i];
additional detail regarding shared resource utilization

Optimization

Not C1]

Optimization

Notice

