

§ Vectorization - Have you:
§ Recompiled for AVX2 or

AVX512 with little gain

§ Wondered where to vectorize?

§ Recoded intrinsics for new
arch.?

§ Struggled with compiler
reports?

§ Threading - Have you:

§ Threaded an app, but seen

little benefit?

§ Hit a “scalability barrier”?

§ Delayed release due to sync.

errors?

Software Must Vectorize & Thread or
Performance Dies
True today – More true tomorrow – Difference can be substantial!

“Intel® Advisor’s Vectorization Advisor fills a gap in code performance

analysis. It can guide the informed user to better exploit the vector

capabilities of modern processors and coprocessors.”

“Intel® Advisor has allowed us to quickly prototype

ideas for parallelism, saving developer time and

effort”

Simon Hammond
Senior Technical Staff
Sandia National Laboratories

Dr. Luigi Iapichino
Scientific Computing Expert
Leibniz Supercomputing Centre

2

Intel Advisor - Thread Prototyping
1) Analyze it.

3) Tune it.

4) Check it.

2) Design it.
(Compiler ignores these
annotations.)

Design Parallelism
• No disruption to regular

development
• All test cases continue to

work
• Tune and debug the design

before you implement it

Intel Advisor Annotation Concepts
§ Advisor uses 3 primary concepts to

create a model
§ SITE

§ A region of code in your
application you want to transform
into parallel code

§ TASK
§ The region of code in a SITE you

want to execute in parallel with
the rest of the code in the SITE

§ LOCK
§ Mark regions of code in a TASK

which must be serialized
NOTE

• All of these regions may be nested
• You may create more than one SITE
• Just macros, so work with any C/C++ compiler

4

#include "advisor-annotate.h"
...
void solve() {
int * queens = new int[size];
//array representing queens placed on a chess board...

ANNOTATE_SITE_BEGIN(solve);

for(int i=0; i<size; i++)
{ // try all positions in first row

ANNOTATE_ITERATION_TASK(setQueen);
setQueen(queens, 0, i);
}

ANNOTATE_SITE_END();
...
}

Suitability report

Intel
Confiden

tial
5 3/6/18

Estimated Overall
Speed-up

Modeling of Runtime and
loops

Scalability Graph

Adjustable: Target architecture, threading models
and number of CPU

§ To set up data collection determine the target
architecture, threading model and number of CPU’s

§ Collect the Scalability data, and determine how it
differs between the architectures and threading
models.

6

7

Intel® Advisor - Vectorization
Recommended methodology

The Right Data At Your Fingertips
Get all the data you need for high impact vectorization

§ Filter by which loops
are vectorized!

Focus on hot
loops

What vectorization
issues do I have?

How efficient is
the code?

What prevents
vectorization?

Which Vector instructions are
being used?

Get Fast Code Fast!

8

9

5 Steps to Efficient Vectorization - Vector Advisor
(part of Intel® Advisor, Parallel Studio, Cluster Studio 2016)

5. Memory Access Patterns Analysis

2. Guidance: detect problem and recommend how to
fix it

1. Compiler diagnostics + Performance Data + SIMD efficiency
information

4. Loop-Carried Dependency Analysis

3. “Precise” Trip Counts + FLOPs & MASKS: understand
utilization, parallelism granularity & overheads

10

Summary View: Plan Your Next Steps
What can I expect

to gain?

Where do I start?

11

Vectorization Advisor runs on and optimizes for
Intel® Xeon Phi™ architecture

AVX-512 ERI – specific to Intel®
Xeon Phi

Efficiency (72%), Speed-up (11.5x), Vector
Length (16)

Performance optimization problem and
advice how to fix it

12

Check if It Is Safe to Vectorize
Loop-Carried Dependencies Analysis Verifies Correctness

Vector Dependence
prevents Vectorization!

Select loop for
Dependency
Analysis and
press play!

Run Memory Access Patterns analysis, just to
check how memory is used in the loop and
the called function

Select loops of interest

13

Improve Vectorization
Memory Access Pattern Analysis

Get specific advice for Improving
Vectorization

14

Loop Analytics
Get detailed information about your loops

16

Highlight “impactful” AVX-512 instructions.
Survey Static Analysis - AVX-512 “Traits”

Summarized Traits in Survey Report.

Simplify “performance-aware” reading of
Source and Assembly

17

Gather/Scatter analysis is very important for
AVX-512
§ AVX512 Gather/Scatter in wider use than on previous instruction sets
• Many more applications can now be vectorized
• Gives good average performance but far from optimal
• Much greater need for Gather/Scatter profiling
• With Intel® Advisor you get both dynamic and static gather/scatter

information

Gather Instructions

18

§ c[i] = a[b[i]] //indirect reference

if (p[i] == q[i]) c[i] = a[b[i]] // also masked

VPCMPEQQ ymm3, ymm2, ymm1
VPGATHERQQ ymm1, ptr [rax+ymm0], ymm3

Fundamental building block for sparse or indirect memory accesses, easing
vectorization

p[i] q[i]

Base of “a” b[i] mask

§ Run Memory Access Pattern
Analysis (MAP)

Irregular access patterns decreases
performance!
Gather profiling

19

§

20

Am I bound by VPU/CPU or by Memory?:
Advisor Memory Access Pattern and Footprint

Footprint Small enough Big enough

Access Pattern

Unit Stride Effective SIMD
No Latency and BW
bottlenecks

Effective SIMD
Bandwidth bottleneck

Const stride Medium SIMD
Latency bottleneck
possible

Medium SIMD
Latency and Bandwidth
bottleneck possible

Irregular
Access,
Gather/Scatter

Bad SIMD
Latency bottleneck
possible

Bad SIMD
Latency bottleneck

21

AVX-512 FLOPS and Mask profiler
Low mask population -> low
performance (in spite of
“high SIMD efficiency”)

Efficiency, FLOPS and Arithmetic
Intensity correlation (more memory
bound -> lower SIMD performance)

22

Why is Mask Utilization important?
Not utilizing full

vectors!!

Fully utilized!

23

#FLOP
Binary Instrumentation
Does not rely on CPU
counters

Seconds
User-mode sampling

Root access not needed

Bytes
Binary Instrumentation
Counts operands size (not cachelines)

Roofs
Microbenchmarks
Actual peak for the current
configuration

AI = Flop/byte

Performance = Flops/seconds

Roofline application profile:

Axis Y: FLOP/S = #FLOP (mask aware) / #Seconds
Axis X: AI = #FLOP / #Bytes

Advisor Roofline: under the hood

24

Getting Roofline in Advisor
FLOP/S
= #FLOP/Seconds

Seconds #FLOP Count
- Mask Utilization
- #Bytes

Step 1: Survey
- Non intrusive. Representative
- Output: Seconds (+much more)

Step 2: FLOPS
- Precise, instrumentation based
- Physically count Num-Instructions
- Output: #FLOP, #Bytes

Intel Confidential

L1 Bandwidth

L2 Bandwidth

DRAM Bandwidth

FMA Peak

Vector Add Peak

Scalar Add Peak

25

Cache-Aware Roofline
Next Steps

If under or near a memory
roof…

If just above the
Scalar Add Peak

If Under the Vector Add Peak

If under the
Scalar Add Peak…

FLOPS

Arithmetic Intensity

• Try a MAP analysis.
Make any appropriate
cache optimizations.

• If cache optimization is
impossible, try
reworking the
algorithm to have a
higher AI.

Check “Traits” in the Survey to see if FMAs are used.
If not, try altering your code or compiler flags to
induce FMA usage.

Check vectorization
efficiency in the Survey.
Follow the recommendations
to improve it if it’s low.

Check the Survey Report to
see if the loop vectorized. If
not, try to get it to vectorize
if possible. This may involve
running Dependencies to see
if it’s safe to force it.

26

Typical Vectorization Optimization Workflow

§ There is no need to recompile or relink the application, but the use of -g is
recommended.

1. Collect survey and tripcounts data
§ Investigate application place within roofline model
§ Determine vectorization efficiency and opportunities for improvement

2. Collect memory access pattern data
§ Determine data structure optimization needs

3. Collect dependencies
§ Differentiate between real and assumed issues blocking vectorization

28

Nbody gravity simulation
https://github.com/fbaru-dev/nbody-demo (Dr. Fabio Baruffa)

§ Let’s consider a distribution of point masses m_1,…,m_n located at r_1,…,r_n.
§ We want to calculate the position of the particles after a certain time interval using the Newton law of

gravity.

struct Particle
{
public:

Particle() { init();}
void init()
{
pos[0] = 0.; pos[1] = 0.; pos[2] = 0.;
vel[0] = 0.; vel[1] = 0.; vel[2] = 0.;
acc[0] = 0.; acc[1] = 0.; acc[2] = 0.;
mass = 0.;

}
real_type pos[3];
real_type vel[3];
real_type acc[3];
real_type mass;

};

for (i = 0; i < n; i++){ // update acceleration
for (j = 0; j < n; j++){

real_type distance, dx, dy, dz;
real_type distanceSqr = 0.0;
real_type distanceInv = 0.0;

dx = particles[j].pos[0] - particles[i].pos[0];
…

distanceSqr = dx*dx + dy*dy + dz*dz + softeningSquared;
distanceInv = 1.0 / sqrt(distanceSqr);

particles[i].acc[0] += dx * G * particles[j].mass *
distanceInv * distanceInv * distanceInv;

particles[i].acc[1] += …
particles[i].acc[2] += …

29

Collect Roofline Data

§ Starting with version 2 of the code we collect both survey and tripcounts
data:

§ mpirun -n 1 -N 1 advixe-cl --collect survey --project-dir ./adv_res --search-dir src:=./ \

§ --search-dir bin:=./ -- ./nbody.x

§ mpirun -n 1 -N 1 advixe-cl --collect tripcounts -flops-and-masks --project-dir ./adv_res \

§ --search-dir src:=./ --search-dir bin:=./ -- ./nbody.x

§ mpirun –n 1 –N 1 advixe-cl –collect roofline (available starting 2018 U1)

§ If finalization is too slow on compute add -no-auto-finalize to collection line.

30

§ GUI left panel provides access to
further tests

§ Summary provides overall
performance characteristics

§ Lists instruction set(s) used
§ Top time consuming loops are listed

individually
§ Loops are annotated as vectorized and

non-vectorized
§ Vectorization efficiency is based on used

ISA, in this case Intel® Advanced Vector
Extensions 512 (AVX512)

Summary Report

31

§ Inline information
regarding loop
characteristics

§ ISA used
§ Types processed
§ Compiler transformations

applied
§ Vector length used
§ …

Survey Report (Source)

32

§ Detailed loop
information

§ Instruction mix
§ ISA used, including subgroups
§ Loop traits

§ FMA
§ Square root
§ Gathers / Blends point to

memory issues and vector
inefficiencies

Survey Report (Code Analytics)

33

§ Using single threaded roof
§ Code vectorized, but

performance on par with
scalar add peak?

§ Irregular memory access
patterns force gather
operations.

§ Overhead of setting up
vector operations reduces
efficiency.

CARM Analysis

Next step is clear: perform a Memory Access Pattern analysis

34

§ Storage of particles is in an Array
Of Structures (AOS) style

§ This leads to regular, but non-unit
strides in memory access

§ 33% unit
§ 33% uniform, non-unit
§ 33% non-uniform
§ Re-structuring the code into a

Structure Of Arrays (SOA) may
lead to unit stride access and
more effective vectorization

Memory Access Pattern Analysis
(Refinement)
mpirun -n 1 -N 1 advixe-cl --collect map -mark-up-list=1 --project-dir
./adv_res --search-dir src:=./ --search-dir bin:=./ -- ./nbody.x

35

Vectorization: gather/scatter operation
§ The compiler might generate gather/scatter instructions for loops automatically vectorized

where memory locations are not contiguous
struct Particle
{
public:
...
real_type pos[3];
real_type vel[3];
real_type acc[3];
real_type mass;

};

struct ParticleSoA
{
public:
...
real_type *pos_x,*pos_y,*pos_z;
real_type *vel_x,*vel_y,*vel_z;
real_type *acc_x,*acc_y;*acc_z
real_type *mass;

};

36

§ In this new version (version 3 in
github sample) we introduce the
following change:

§ Change particle data structures
from AOS to SOA

§ Note changes in report:
§ Performance is lower
§ Main loop is no longer vectorized
§ Assumed vector dependence

prevents automatic vectorization

Performance After Data Structure Change

Next step is clear: perform a Dependencies analysis

37

§ Dependencies analysis
has high overhead:

§ Run on reduced
workload

§ Advisor Findings:
§ RAW dependency
§ Multiple reduction-type

dependencies

Dependencies Analysis (Refinement)
aprun -n 1 -N 1 advixe-cl --collect dependencies --project-dir ./adv_res \

--search-dir src:=./ --search-dir bin:=./ -- ./nbody.x

38

Recommendations

39

Performance After Resolved Dependencies

New memory access pattern plus vectorization produces much improved performance!

40

§ Let’s explore threading
with a suitability
analysis.

§ Recompile including
annotation definitions

§ Add headers to file
§ Annotate suggested

loops
§ Run suitability collection

What next?

41

§ Add annotations as shown on the left
sample

§ Complex sites may be analyzed in more
detail using task sections if needed

§ ANNOTATE_SITE_BEGIN / ANNOTATE_SITE_END
§ ANNOTATE_TASK_BEGIN / ANNOTATE_TASK_END

§ Recompile including annotation
definitions:

§ -I/opt/intel/advisor/include

§ Collect suitability data

§ #include “advisor-annotate.h”
§ ...

§ ANNOTATE_SITE_BEGIN(steps)
§ for (int s=1; s<=get_nsteps(); ++s)
§ {
§ ...

§ ANNOTATE_TASK_BEGIN(particles)
§ for (i = 0; i < n; i++)
§ {
§ ...

§ }
§ ANNOTATE_TASK_END(particles)
§ }
§ ANNOTATE_SITE_END(steps)

Annotating the code

mpirun -n 1 -N 1 advixe-cl --collect suitability --project-dir ./adv_res \
--search-dir src:=./ --search-dir bin:=./ -- ./nbody.x

42

§ Good speedup expected,
but far from ideal (~56%
efficiency).

§ Modeling shows that
increasing the task length
would improve efficiency.

§ Next step: add omp parallel
region to code and re-test

Suitability report

43

Roofline for Threaded Version
§ for (int s=1; s<=get_nsteps(); ++s)
§ {
§ ts0 += time.start();

§ #pragma omp parallel for
§ for (i = 0; i < n; i++) // update

acceleration
§ {
§ ...
§ real_type ax_i = particles->acc_x[i];
§ real_type ay_i = particles->acc_y[i];
§ real_type az_i = particles->acc_z[i];

§ #pragma omp simd reduction(+:ax_i,ay_i,az_i)
§ for (j = 0; j < n; j++)
§ {
§ real_type dx, dy, dz;
§ real_type distanceSqr = 0.0f;
§ real_type distanceInv = 0.0f;
§
§ dx = particles->pos_x[j] - particles->pos_x[i];

Now using regular roofline, instead of single-threaded

Still room for improvement, but at this point we need
additional detail regarding shared resource utilization

