
Poster	Print	Size: 

This	poster	template	is	48”	high	by	
36”	wide.	It	can	be	used	to	print	any	
poster	with	a	4:3	aspect	raAo. 

Placeholders: 

The	various	elements	included	in	
this	poster	are	ones	we	oCen	see	in	
medical,	research,	and	scienAfic	
posters.	Feel	free	to	edit,	move,		
add,	and	delete	items,	or	change	
the	layout	to	suit	your	needs.	
Always	check	with	your	conference	
organizer	for	specific	requirements. 

Image	Quality: 

You	can	place	digital	photos	or	logo	
art	in	your	poster	file	by	selecAng	
the	Insert,	Picture	command,	or	by	
using	standard	copy	&	paste.	For	
best	results,	all	graphic	elements	
should	be	at	least	150-200	pixels	
per	inch	in	their	final	printed	size.	
For	instance,	a	1600	x	1200	pixel	
photo	will	usually	look	fine	up	to	
8“-10”	wide	on	your	printed	poster. 

To	preview	the	print	quality	of	
images,	select	a	magnificaAon	of	
100%	when	previewing	your	poster.	
This	will	give	you	a	good	idea	of	
what	it	will	look	like	in	print.	If	you	
are	laying	out	a	large	poster	and	
using	half-scale	dimensions,	be	sure	
to	preview	your	graphics	at	200%	to	
see	them	at	their	final	printed	size. 

Please	note	that	graphics	from	
websites	(such	as	the	logo	on	your	
hospital's	or	university's	home	
page)	will	only	be	72dpi	and	not	
suitable	for	prinAng. 

 

[This	sidebar	area	does	not	print.] 

Change	Color	Theme: 

This	template	is	designed	to	use	the	
built-in	color	themes	in	the	newer	
versions	of	PowerPoint. 

To	change	the	color	theme,	select	
the	Design	tab,	then	select	the	
Colors	drop-down	list. 

 
 
 
 
 
 
 
 
 

The	default	color	theme	for	this	
template	is	“Office”,	so	you	can	
always	return	to	that	aCer	trying	
some	of	the	alternaAves. 

PrinAng	Your	Poster: 

Once	your	poster	file	is	ready,	visit	
www.genigraphics.com	to	order	a	
high-quality,	affordable	poster	
print.	Every	order	receives	a	free	
design	review	and	we	can	deliver	as	
fast	as	next	business	day	within	the	
US	and	Canada.	 

Genigraphics®	has	been	producing	
output	from	PowerPoint®	longer	
than	anyone	in	the	industry;	daAng	
back	to	when	we	helped	MicrosoC®	
design	the	PowerPoint	soCware.	 

 

US	and	Canada:		1-800-790-4001 

Email:	info@genigraphics.com 

 

[This	sidebar	area	does	not	print.] 

PICSAR	 (ParAcle-In-Cell	 Scalable	ApplicaAon	Resource)	 is	 a	 proxy	 app	developed	 to	 aid	
PIC	 codes	 in	 their	 adaptaAon	 to	 evolving	 large	 scale	 architectures	 such	 as	 Cori	 by	
providing	high	performance	parallel	 subrouAnes.	We	concentrate	here	on	 the	Maxwell	
solver	porAon	of	 the	PIC	algorithm.	Yee’s	scheme	 is	a	2nd	order	FDTD	(finite	difference	
Ame	domain)	method	that	advances	Electric	and	MagneAc	(EM)	fields	in	Ame	and	space.	
E	and	B	fields	are	computed	on	a	staggered	grid.	Each	field	only	requires	a	set	number	of	
points	 from	 the	 other	 field	 and	 current,	 the	 number	 of	 which	 is	 dependent	 on	 the	
methods	order	(2	for	2nd	order	scheme)	.		
	
The	 iniAal	 implementaAon	applies	both	MPI	and	OpenMP	for	parallel	performance	but	
suffers	 from	 large	 amounts	 of	 cache	 misses	 due	 to	 the	 large	 size	 of	 the	 field	 arrays.	
Shared	memory	accesses	make	caching	ineffecAve	due	to	the	constant	need	to	pull	data	
from	socket-level	shared	arrays.	

Improving	Cache	Performance	in	PICSAR’s	Maxwell’s	EquaJons	Solver	
through	Field	Tiling 

1Nigel	Tan,	2Mathieu	Lobet,	2Alice	Koniges,	2Henri	VicenA,	1,2Dong	Li,	2Jean-Luc	Vay 

1UC	Merced,	2Lawrence	Berkeley	NaAonal	Lab	 

Enforcing	cache-coherent	shared	memory	can	significantly	affect	performance	in	current	
architectures.	 This	 research	 explores	 performance	 benefits	 in	 solving	 Maxwell’s	
equaAons	by	refactoring	large	shared	arrays	into	smaller	Ales	that	fit	in	L2	caches.	Tiles	
were	 implemented	 in	 two	different	schemes,	one	able	 to	operate	purely	 in	 the	caches	
through	guard	points	and	the	other	parAally	relying	on	node-level	shared	memory.	Tests	
show	 that	 the	 method	 with	 guard	 points	 is	 fastest	 followed	 by	 Aling	 with	 shared	
memory.	We	note	 that	 applying	 the	 Aling	 scheme	 to	 higher	 order	 numerical	methods	
may	not	have	the	same	performance	improvements	due	mostly	to	communicaAon	costs.	 

Abstract 

The	data	show	clear	improvement	with	Aling	for	the	solver	porAon	of	the	proxy	app.	The	
difference	 between	 the	 shared	 and	 guarded	 versions	 is	 smaller	 because	 the	 shared	
scheme	 only	 uses	 internal	 data	 for	 the	 majority	 of	 the	 points.	 There	 is	 very	 lisle	
difference	between	the	electric	and	magneAc	field	solvers	due	to	the	similariAes	 in	the	
calculaAons	 with	 the	 only	 difference	 being	 the	 current	 which	 doesn’t	 need	 access	 to	
shared	memory. 

IntroducJon 

Tiles	must	contain	
• 	3D	arrays	for		Ex,	Ey,	Ez,	Bx,	By,	Bz,	Jx,	Jy,	Jz	
• 	Max/Min	coordinates	within	MPI	domain	

	Yee’s	method	esAmates	the	value	with	the	perpendicular	components	from	the	other	
field,	the	number	of	points	determined	by	the	methods	order.		
	
Two	possible	opAons	

• 	Only	contain	necessary	points	using	shared	memory	for	outside	data	
• 	Inner	points	benefit	from	cached	data	
• 	Outer	points	must	access	shared	memory	for	calculaAons	
• 	Simple	MPI	communicaAon	

• 	Extend	arrays	for	copies	of	necessary	data	from	neighboring	Ales	
• 	Can	calculate	all	points	without	shared	memory	
• 	Requires	extra	communicaAon	between	Ales	
• 	Either	mulAple	MPI	communicaAons	or	large	buffers	needed	

 

ImplementaJon	Methods 

The	general	trend	was	observed	as	expected	with	regard	to	the	pure	solving	step.	
However,	proper	communicaAon	for	the	guard	version	requires	either	copying	the	small	
pieces	 of	 Ale	 data	 to	 a	 global	 buffer	 for	 MPI	 communicaAon	 or	 many	 smaller	 MPI	
communicaAons.	Both	paths	have	good	and	bad	points	and	need	further	 invesAgaAon.	
Another	 interesAng	 avenue	 is	 the	 difference	 between	 the	 Aled	 version	 with	 varying	
solver	method	orders.	 For	 smaller	 order	methods	 the	 guard	 version	has	 an	 advantage	
but	 large	orders	can	severely	 inflate	array	size	and	 limit	 the	benefits	of	 the	cache.	The	
shared	version	also	has	drawbacks	with	larger	order	methods	as	it	increases	the	amount	
of	shared	memory	access. 

Discussion 

These	 findings	 show	 an	 interesAng	 start	 to	 cache	 performance	 improvements	 for	 the	
Maxwell	 solver	 in	 PICSAR.	 The	 actual	 best	 scheme	 is	 difficult	 to	 determine	 due	 to	
communicaAon	and	problem	definiAon	 issues.	 Further	 study	 into	 the	various	 issues	
and	soluAon	will	yield	more	interesAng	future	results. 

Conclusions 

Results 

Edison	performance	for	different	schemes	running	with	2	MPI	processes	(1	per	socket)		
and	10	OpenMP	threads	per	MPI	task	

	
	

DiscreAzaAon	of	Yee’s	FDTD	(Finite	Difference	Time	Domain)	
method	for	Maxwell’s	EquaAons	

3D	Yee	cell	

Tile	1	 Tile	2	

Guard	Points	

Guard	Points	 Guard	Points	

Guard	Points	

Tiles	with	guard	points	

0	

2	

4	

6	

8	

10	

12	

14	

16	

18	

20	

x:2,y:2,z:1	 x:4,y:4,z:2	 x:8,y:8,z:4	 x:16,y:16,z:8	

No	Tiling	
Shared	Memory	
Guard	Points	

Electric	Field	CalculaAon	

Number	of	Ales	in	each	direcAon	

Time	
(seconds)	

0	

2	

4	

6	

8	

10	

12	

14	

16	

18	

20	

x:2,y:2,z:1	 x:4,y:4,z:2	 x:8,y:8,z:4	 x:16,y:16,z:8	

No	Tiling	
Shared	Memory	
Guard	Points	

MagneAc	Field	CalculaAon	

Number	of	Ales	in	each	direcAon	

Charged	parAcles		

EM	fields	
	
	

	
	

CollecAon	of	charged	macro-
parAcles	interact	with	their	

fields	on	a	grid	

Field	
Solver	
Step	

Socket-Level	
Shared	Memory	

Tile	1	 Tile	2	

Tiles	using	socket-level	
shared	memory	

3D	domains	rapidly	fill	memory	making	
caching	more	important	for	improving	
performance	

	Private	cached	data 	 	 	 	Shared	data	

AssignaAon	of	the	density		and	the	
current	on	the	grid	from	the	parAcle	
distribuAon	according	to	the	selected	

shape	factor	

CalculaAon	of	the	field		seen	by	each	
parAcle	according	to	the	selected	

shape	factor	IntegraAon	of	the	relaAvisAc	moAon	
equaAons:	

	




	

IniAal	
CondiAons	 Main	PIC	Loop	

IniAal	plasma	
profil	
	

IniAal	parAcle	
distribuAons	



	

internal	domain	

MPI	domain	1	

Guard	cells	

internal	domain	

Guard	cells	

MPI	domain	2	

MPI	
CommunicaAon	

Tests	were	conducted	on	the	NERSC	Edison	Cray	 	XC30	supercomputer	using	2	compute	
nodes	each	with	2	Ivy	Bridge	2.4GHz	processors	with	12	cores	each	for	a	total	of	24	cores	
per	node.	Each	core	contains	a	64KB	L1	cache,	a	256KB	L2	cache,	and	a	shared	30Mb	L3	
cache 

Physical	
	Core	0	

L1	

L2	

Physical	
	Core	1	

L1	

L2	

Physical	
	Core	2	

L1	

L2	

Physical	
	Core	3	

L1	

L2	

Physical	
	Core	4	

L1	

L2	

Physical	
	Core	5	

L1	

L2	

Physical	
	Core	6	

L1	

L2	

Physical	
	Core	7	

L1	

L2	

Physical	
	Core	8	

L1	

L2	

Physical	
	Core	9	

L1	

L2	

Physical	
	Core	10	

L1	

L2	

Physical	
	Core	11	

L1	

L2	

L3	Cache	

NUMA	Node	0	
XC30	Compute	Node	

Physical	
	Core	0	

L1	

L2	

Physical	
	Core	1	

L1	

L2	

Physical	
	Core	2	

L1	

L2	

Physical	
	Core	3	

L1	

L2	

Physical	
	Core	4	

L1	

L2	

Physical	
	Core	5	

L1	

L2	

Physical	
	Core	6	

L1	

L2	

Physical	
	Core	7	

L1	

L2	

Physical	
	Core	8	

L1	

L2	

Physical	
	Core	9	

L1	

L2	

Physical	
	Core	10	

L1	

L2	

Physical	
	Core	11	

L1	

L2	

L3	Cache	

NUMA	Node	1	

Ram	
32GB	

Ram	
32GB	

RAM	
32GB	

RAM	
32GB	

Edison	Compute	Node	Diagram	

Hardware	

e	


