IceCube and the Highest Energy Neutrinos Ever

Lisa Gerhardt, LBNL NUG 2014 February 5, 2014

Neutrinos

"Small neutral one" Fundamental particle Three Flavors

"Ghost Particle"

Neutrinos are produced locally in Sun, nuclear reactors, and cosmic ray interactions in atmosphere

Why neutrinos?

Three particles to observe the universe

Photons, cosmic rays, and neutrinos
High energy photons are absorbed
by dust, other photons

Cosmic rays are bent by magnetic fields

- "Big" so easy to interact

Neutrinos are a unique probe of distant astronomical objects

Active Galactic Nuclei

ux (m² sr s GeV)

10-22

Gamma Ray Bursts

Dark Matter

Supernovae

CRs: atm v

Fluxes of Cosmic Ray

Knee (1 particle per m²-year)

1 particle per m2-second)

Ankle (1 partic

1013 1014 1015

GZK v

 $p + \gamma CMB \rightarrow \Delta^{\pm} \rightarrow \pi^{\pm} + n$

 $\pi^{\pm} \xrightarrow{} \mu^{\pm} + \nu_{\mu}$

 $\mu^{\pm} \rightarrow e^{\pm} + \nu_e + \nu_{\mu}$

Neutrino Detection

- Neutrino interacts and produces charged particle
- Muon is traveling faster than speed of light in ice
- •Emits Cherenkov light (cone 41°)
- Light is detected by Digital Optical Module (DOM)

Big Ice

A Long Trip

TRANSPORTING MATERIALS TO THE SOUTH POLE

McMurdo

Logistics

South Pole

Climate data for the South Pole [hid													
Month	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Year
Record high °C (°F)	-14	-20	-28	-27	-30	-28.8	-33	-32	-29	-29	-18	-12.3	-12.3
	(7)	(-4)	(-15)	(-17)	(-22)	(-19.8)	(-27)	(-26)	(-20)	(-20)	(0)	(9.9)	(9.9)
Average high °C (°F)	-25.9	-38.1	-50.3	-54.2	-53.9	-54.4	-55.9	-55.6	-55.1	-48.4	-36.9	-28.5	-46.3
	(-14.6)	(-36.6)	(-58.5)	(-65.6)	(-65)	(-65.9)	(-68.6)	(-68.1)	(-67.2)	(-55.1)	(-34.4)	(-15.7)	(-51.3)
Average low °C (°F)	-29.4	-42.7	-57.0	-61.2	-61.7	-61.2	-62.8	-62.5	-62.4	-53.8	-40.4	-29.3	-52.0
	(-20.9)	(-44.9)	(-70.6)	(-78.2)	(-79.1)	(-78.2)	(-81)	(-80.5)	(-60.3)	(-64.8)	(-40.7)	(-20.7)	(-61.6)
Record low °C (°F)	-41	-57	-71	-75	-78	-82.8	-80	-77	-79	-71	-55	-38	-82.8
	(-42)	(-71)	(-96)	(-103)	(-108)	(-117)	(-112)	(-107)	(-110)	(-96)	(-67)	(-36)	(-117)
Mean monthly sunshine hours	558	480	217	0	0	0	0	0	60	434	600	589	2,938

Amundsen Scott Station

IceCube

DOM: Digital Optical Module Designed at LBNL

IceCube Data

177

Surface DAQ 400 CPUs TDRSS satellite 1 TB / day, only 105 GB / day over satellite

IceCube's Background

Not just background! Lots of interesting CR physics, too.

Cosmic rays: 2800 Hz –Nuclei on nuclei at 100 x LHC energy –Hadron rain –Produce 10's to 10,000's μ's and v's 90 billion CRs, looking for a handful of neutrinos

Separate by Direction

Separate by Energy

Looking for astrophysical neutrinos

 $p + \gamma / p \rightarrow hadrons \rightarrow v + stuff$

Against cosmic ray neutrino background

17

 $p + p \rightarrow hadrons \rightarrow hadrons \rightarrow v + stuff$

Neutrino or Muon Energy

Simulation Is Critical

- 'Pleasantly parallel' simulation
- Modeling particle interactions in the atmosphere or the ice
- Rare processes
 - -Doing the same thing over and over
- Primarily C++ and python, some java

IceCube Production Framework

- Uses resources distributed throughout the collaboration
 - -Heterogeneous collection of clusters and grids
 - -Different batch system/middleware
 - Different OS systems/platforms
- Coordinated by IceProd
 - -Based on Python, XMLRPC, GridFTP

Grid Solution for Wide Area

 Runs on top of batch queuing systems or grid middleware

19

HERREIT

West Grid

GPUs are Essential

Absorption and scattering of light in

ice changes

- Use individual photon tracking
- Dirac GPU cluster essential for this
- IceCube bought GPU cluster of 48 Tesla M2070 GPUs

BERKELEY

DAGs Keep the GPUs Fed

- Only photon propagation needs GPUs
- The rest are CPU only
- Ratio of CPU / GPU needed changes depending on the simulation type
- IceProd breaks simulation up into chunks, sends CPU-intensive tasks to CPU clusters through out the collaboration

BERKELEY

Collaboration Effort

- Spread over 38 different institutions
- Peak 11,000 cores, average 4,000 cores
 - -~10% was done at PDSF and Carver
- 135 TB of data
- Used to fuel >30 papers and ~50 analyses in 2011 / 2012

22

BERKEUEY

A Wealth of Science

Diffuse Sources

Supernovae

SN

Point Sources

CRs

GRBs

GZK/UHE v

Search for the Highest Energy Neutrinos

- Highest energy cosmic rays + cosmic microwave background => highest energy neutrinos
 - "Guaranteed" source

24

Search for the Highest Energy Neutrinos

- Highest energy cosmic rays + cosmic microwave background => highest energy neutrinos
 - "Guaranteed" source
- Used number of photons as a proxy for energy

Looked at two years of data, found two surprises

Bert and Ernie

Energies are 1.0 and 1.1 PeV

72,907 photons

PHYSICAL REVIEW LETTERS

One perspective

Lina III.

Lonely at the Top

- Two perfect cascades
- Not a good match for theoretical predictions
- Need more data!
- Rate is 1 event / year: sooo long
- But then some IceCubers had an idea

Muon Veto

If we can identify atmospheric muons from the Southern hemisphere, we can lower the energy threshold and get more events

rrrrr

Separate by Topology

Starting Track Events

Vetoes atmospheric muons

-Pay a price in detector size, but more than worth it Added lower energy cut to get above atmospheric neutrinos

31

Re-searched two years of data

Went from 2 events to 28 events

The Evidence Is In

Data agrees with background prediction at low energies Clear excess at high energies 4 sigma deviation from pure background expectation

November 22nd, 2013

32

Now What?

- Keep Looking!
 - Found these events in only two years of full IceCube data
 - Have another year and a half in the can
- Earlier this year we searched 10% of another year of data
 - Improved analysis, focused in on cascade shaped events

Deposited 127,065 photons into 378 DOMs

Conclusions

- IceCube has seen the first evidence of astrophysical neutrinos
 - Origin still unclear
- Made possible through use of computing resources at NERSC and other locations
- Plan to take data until 2022
- Beginning of a new era of neutrino astronomy

35

The IceCube Collaboration

Stockholm University Uppsala Universitet

University of Alberta

Clark Atlanta University Georgia Institute of Technology Lawrence Berkeley National Laboratory **Ohio State University Pennsylvania State University** Southern University and A&M College **Stony Brook University** University of Alabama University of Alaska Anchorage University of California-Berkeley University of California-Irvine University of Delaware University of Kansas University of Maryland University of Wisconsin-Madison University of Wisconsin-River Falls

University of Oxford Manchester University Niel

Ecole Polytechnique Fédérale de Lausanne University of Geneva

> Université Libre de Bruxelles Université de Mons University of Gent Vrije Universiteit Brussel

Deutsches Elektronen-Synchrotron Humboldt Universität Ruhr-Universität Bochum RWTH Aachen University Technische Universität München Universität Bonn Universität Dortmund Universität Mainz Universität Wuppertal

Sungkyunkwan University

Chiba University Tokyo University

University of Adelaide

University of Canterbury

International Funding Agencies

Fonds de la Recherche Scientifique (FRS-FNRS) Fonds Wetenschappelijk Onderzoek-Vlaanderen (FWO-Vlaanderen) Federal Ministry of Education & Research (BMBF)

German Research Foundation (DFG) Deutsches Elektronen-Synchrotron (DESY) Knut and Alice Wallenberg Foundation Swedish Polar Research Secretariat The Swedish Research Council (VR) University of Wisconsin Alumni Research Foundation (WARF) US National Science Foundation (NSF)

The IceCube Hot Water Drill

Drill camp (5 MW hot water heater)

Hot water hoses

IceTop Tanks (w/ sun shield)

Drill speeds ~ 2 m/minute ~40 hours to drill a hole ~12 hours to deploy a string Solar heated Facilities

Hose Reel

Drill tower

Drill head

Big Water

E PV.

Neutrinos in The Wild

41

BERKELEY LA

Neutrino Flavor Identification Tracks Cascades

- Muons and taus
- Long tracks length ~1 km

• $\nu_e,\,\nu_\tau^{},\,\text{and NC}$ also make cascades

42

- "Point" sources O(10 m)
- Electron kicks out many other electrons

Bert and Ernie

Energies are 1.0 and 1.1 PeV

72,907 photons

107,898 photons

PHYSICA REVIEW

Fantastic Accelerators Large radius

AGNs: B field 1 G, size 10¹² km

Large magnetic field

GRBs: B field 10⁹ G, size 10⁵ km

Radiation From Space

100 Years After Hess

• Falls as E^{-2.7}

•Cosmic rays energies span 13 orders of magnitude up to 10²⁰ eV

Highest energy CR so far: 3 x 10²⁰ eV Footprint 6 km diameter (city of Berkeley) 10,000 muons at center

A Special Kind of Place

Massive Cascades

Particle Zoo

- p + N₂ $\rightarrow \pi^{\pm}, \pi^{0}, K^{\pm}, K^{0}, p, n, \Lambda, D, etc.$
- • $\pi^0 \rightarrow \gamma\gamma \rightarrow$ showers of e⁺/e⁻
- Low energy π[±], K[±] decay to μ, ν. High energy interact and make more π
- Bulk of energy and particles are in electromagnetic component
- Tens to 10 of thousands of penetrating muons and neutrinos

rerrer

Simulation Management

49

BERKELEY LAD

IceProd Python code Uses SOAP xml Collected using GridFTP

Jamesways

Science at Antarctica

51

mmm BERKELEY

Cosmic Ray Backgrounds

 $CR + nucleus \rightarrow \Delta^{\pm} \rightarrow \pi^{\pm} + n$

$\pi^{\pm} \rightarrow \mu^{\pm} + \nu_{\mu}$ $\mu^{\pm} \rightarrow e^{\pm} + \nu_{e} + \nu_{\mu}$

Atmospheric neutrinos

-Interact in the ice and produce muons / electrons

-Essentially the same as astrophysical neutrino

Atmospheric muons

-Astrophysical neutrino make electrons / muons too

-All muons / electrons make light in ice

DOMs are democratic

-See photons, regardless of origin

Not just background! Lots of interesting CR physics, too.

52

A Matter of Perspective

Big Bird Energy is 2.2 PeV, deposited 127,065 photons into 378 DOMs

History of neutrinos

- 1956: First detector of nuclear reactor neutrinos
- 1965: First atmospheric neutrino detection
- 1968: First solar neutrino detection
- 1976: DUMAND
- 1987: Only neutrinos from outside of the solar system detected from 1987 Supernova
 - -3 simultaneous detections within 13 seconds
- 1995: AMANDA drilled into Antarctic Ice
- 2005: IceCube construction began
- 2013: IceCube finds first evidence for high energy astrophysical neutrinos

Cosmic Ray Backgrounds

 $CR + nucleus \rightarrow \Delta^{\pm} \rightarrow \pi^{\pm} + n$

$$\pi^{\pm} \rightarrow \mu^{\pm} + \nu_{\mu}$$
$$\mu^{\pm} \rightarrow e^{\pm} + \nu_{e} + \nu_{\mu}$$

Atmospheric neutrinos

-Separate by energy

Atmospheric muons

-Separate by direction

'Traditional' IceCube analyses

-Southern Direction: Energy threshold

-Northern Direction: Earth Shield, lower energy threshold

Evidence of What?

Leading candidate for source of these neutrinos is AGNs Reconstruct direction and see if they're pointing back to anything interesting 21 cascades and 7 tracks

Reconstructing Cascade Direction

Sky Map of Neutrinos

No significant clustering found

