
1

Harnessing Billions
of Tasks for a
Scalable Portable
Hydrodynamic
Simulation of the
Merger of Two Stars

The International Journal of High
Performance Computing Applications
XX(X):2–30
©The Author(s) 0000
Reprints and permission:
sagepub.co.uk/journalsPermissions.nav
DOI: 10.1177/ToBeAssigned
www.sagepub.com/

Thomas HellerFAU* , Bryce Adelstein LelbachNV* , Kevin A.
HuckUO , John BiddiscombeCSCS* , Patricia GrubelLANL* , Alice E.
KonigesLBNL , Matthias KretzGSI , Dominic MarcelloLSU* , David
PfanderUS , Adrian SerioLSU* , Juhan FrankLSU , Geoffrey C.
ClaytonLSU , Dirk PflügerUS , David EderLLNL , and Hartmut
KaiserLSU*

thom.heller@gmail.com, brycelelbach@gmail.com, khuck@cs.uoregon.edu,
biddisco@cscs.ch, pagrubel@lanl.gov, aekoniges@lbl.gov, m.kretz@gsi.de,
dmarce504@gmail.com, david.pfander@ipvs.uni-stuttgart.de,
aserio@cct.lsu.edu, frank@phys.lsu.edu, gclayton@fenway.phys.lsu.edu,
dirk.pflueger@ipvs.uni-stuttgart.de, davidceder@gmail.com,
hkaiser@cct.lsu.edu

FAUFriedrich-Alexander-Universität Erlangen-Nürnberg, NVNVIDIA ,
LBNLLawrence Berkeley National Laboratory, UOUniversity of Oregon, CSCSSwiss
National Supercomputing Centre, LANLLos Alamos National Laboratory, GSIGSI
Helmholtzzentrum für Schwerionenforschung, USUniversity of Stuttgart,
LLNLLawrence Livermore National Laboratory, LSULouisiana State University
*The STE||AR Group,stellar-group.org

Prepared using sagej.cls

Abstract
We present a highly scalable demonstration of a portable Asynchronous Many
Task programming model and runtime system applied to a grid-based Adaptive
Mesh Refinement hydrodynamic simulation of a Double White Dwarf merger
with 14 Levels of Refinement that spans 17 orders of magnitude in astrophysical
densities. The code uses the portable C++ Parallel Programming Model that is
embodied in the HPX library and being incorporated into the ISO C++ Standard.
The model represents a significant shift from existing bulk synchronous parallel
programming models under consideration for exascale systems. Through the use of
the Futurization technique, seemingly sequential code is transformed into wait-free
asynchronous tasks. We demonstrate the potential of our model by showing results
from strong scaling runs on NERSC’s Cori system (658,784 Intel Knight’s Landing
cores) that achieve a parallel efficiency of ~96.8% using billions of asynchronous
tasks.

Keywords
parallel runtime, binary star merger, asynchronous tasks, HPX, C++

1. Introduction
As High Performance Computing (HPC) moves towards increasingly diverse
architectures and larger processor-counts, the HPC community is considering a
range of new models. Newly evolving manycore and heterogeneous architectures
present many programming challenges suggesting that a move beyond
traditional HPC programming models may provide substantial benefits. In this
paper we describe an approach to portable application programming at scale
with a novel runtime and programming model. We demonstrate our approach
with a real application on modern hardware. Our programming model approach
emphasizes the following attributes:

• Scalability: Enable applications to strongly scale to exascale systems.
• Programmability: Reduce the burden we are placing on HPC programmers.
• Performance Portability: Eliminate or significantly minimize requirements

for porting to future platforms.
• Energy Efficiency: Maximally exploit dynamic energy saving opportu-

nities, leveraging the tradeoffs between energy efficiency, resilience, and
performance.

In this paper we show how several of these objectives can be realized with a
scalable simulation in modern time-domain astrophysics.

Advanced time evolving astrophysical simulations are only now becoming
possible with new hardware and programming models. In particular, we show
how our programming model approach enables the simulation of transient events
caused by stellar mergers, which are spectacular, interesting, and fundamental

Prepared using sagej.cls [Version: 2016/06/24 v1.10]

3

phenomena in our Universe. Their study pays dividends in the broadest possible
ways, leading to insights into both astrophysics and fundamental physics.
Additionally, until recently, merger events have been rarely observed, because
they are short lived and can happen anywhere in the sky. Early in the next
decade, the behemoth Large Synoptic Survey Telescope (LSST) (Željko Ivezić
et al. 2008) study will begin. With a combination of a large telescope and a
large field of view, this study will be 40 to 1,000 times more powerful than
any survey done before. It will finally present us with a real chance to detect
traditionally elusive events like Double White Dwarf (DWD) mergers in great
numbers (~1 million new transients per night). Numerical simulations can help
identify the signatures of the most interesting mergers within this very high
volume of transients.

In §2 we describe the stellar merger problem we wish to solve. In §3 we briefly
describe OctoTiger. In §4 we lay out the HPX model and discuss futurization,
and in §5 we describe how OctoTiger uses futurization. We executed this model
on NERSC’s Cori machine, described in §6. The results of node-level and full-
system scaling are detailed in §7. In terms of portability, we note that the same
source code running at scale on Cori also can be compiled and run on an Apple
Laptop. In §8 we describe how our experiment demonstrates the ability of HPX
to realize scalability, programmability, and performance portability.

2. The Physical Problem
Interacting binary star systems are potential progenitors of a wide array of
astrophysical phenomena. As a result, they have received attention from across
the astrophysical community. Some groups have modeled mergers of DWDs as
progenitors of Type Ia Supernovae (see Figure 1) (Katz et al. 2016; Pakmor
et al. 2011; Zingale et al. 2009; Dan et al. 2011, 2012; Guillochon et al. 2010).
White dwarf mergers that are not massive enough to cause a Type Ia Supernovae
to leave an observable remnant, can be studied by continuing the model past
the point of merger (Montiel et al. 2015; Dan et al. 2014; Staff et al. 2012;
Schwab et al. 2012; Raskin et al. 2012). The beauty of a merger is that a
vast range of fundamental physical phenomena with countless connections to all
areas of astrophysics are packed into a small volume and a short time. However,
this information can only be decoded with a suitable set of observations and
numerical simulations.

Practically, DWD simulations feature tremendous variances in scale between
the simulated physical entities. Figure 2 depicts the early stages of the
formation of the mass-transfer stream and accretion disk in a binary star where
the primary star or accretor (on the left) is ~5 times more massive than the
donor star. Some binaries merge and others, such as this one, are expected to
be stable to mass transfer. If the accretor is compact enough, the accretion
stream will miss the donor on the first pass and form a disc. Figure 3 shows
the same system after an accretion disc begins to form. These binary systems,
known as AM Canum Venaticorum (AM CVn) systems, exist in a state of
mass transfer for millions of years as the donor slowly transfers matter to the

Prepared using sagej.cls

4 The International Journal of High Performance Computing Applications XX(X)

Figure 1. A false-color composite image of the Supernova remnant nebula from SN
1604 (Sankrit and Blair 2004). Visible to the naked eye, Kepler’s Star was brighter at its
peak than any other star in the night sky, with an apparent magnitude of -2.5. It was
visible during the day for over three weeks. While discovered in Kepler’s time, new
studies are trying to resolve the question of whether or not Double White Dwarf (DWD)
mergers cause Type Ia Supernovae.

accretor and the orbital separation widens. When mass transfer first ensues,
they have orbital periods of only a few minutes. The mass transfer causes the
orbit to separate, and the AM CVns we observe typically have periods between
10 and 40 minutes. Periodic instabilities in the disc can result in dwarf nova.
The buildup of Helium in the disc can periodically detonate as a sub-luminous
Supernova known as a Type “.Ia” (point one a) Supernova. Stable mass transfer
cases require thousands of orbits to simulate and thus necessitate both extreme
computation scales and the conservation of angular momentum. In a simulation,
we find that a dynamically adapting grid to capture many orders of magnitude
of scales and accurate angular momentum conservation is required to properly
evolve and distinguish these different outcomes. For example, it is necessary to
resolve the grid around the accretion stream with high resolution. Thus, many
groups have turned to Adaptive Mesh Refinement (AMR) methods (Katz et al.
2016; Kadam et al. 2017) to address these problems. The simulations described
in this paper use up to 14 Levels of Refinement (LoR), to simulate more than 4

Prepared using sagej.cls

5

Figure 2. The early stages of mass transfer in a binary star system. The accreting star is
five times more massive than the donor star.

magnitudes difference in resolution of space across the computational domain.
Multiple coupled physics solvers with very different performance characteristics
and algorithmic complexities are combined in order to adequately simulate the
behavior of DWD systems. Rapidly changing physical quantities with steep
gradients require the mesh to dynamically change in resolution. Consequently,
the resulting application is highly irregular and frequent load balancing over the
course of a simulation is required.

3. The OctoTiger Simulation Package
In this paper, we detail programming model updates to create OctoTiger,
a 3D finite-volume octree AMR hydrodynamics code with Newtonian
gravity (Marcello et al. 2016; STE||AR Group 2017d). It is a successor to
previous codes described in (Lindblom et al. 2001; Ott et al. 2005; D’Souza
et al. 2006; Motl et al. 2007; Kadam et al. 2016; Motl et al. 2017; Byerly
et al. 2014; Lelbach et al. 2013; STE||AR Group 2017c). In OctoTiger, the
astrophysical fluid is modeled using the inviscid Euler equations. These are
solved using a finite-volume central scheme (Kurganov and Tadmor 2000).
Species within the fluid are evolved as passive scalars. We use an angular
momentum conserving hydrodynamic solver, based on the methods described
in Despres and Labourasse (Desprésa and Labourasse 2015). The gravitational
potential and force are computed using a modified version of the Fast Multipole

Prepared using sagej.cls

6 The International Journal of High Performance Computing Applications XX(X)

Method (FMM) (Dehnen 2000), that conserves linear momentum to machine
precision. With our extension to the method (Marcello et al. 2016; Marcello
2017), OctoTiger’s FMM solver also conserves angular momentum to machine
precision. The code’s capability to conserve angular momentum at scale is novel
and facilitates long-running ab inito simulations spanning thousands of orbits,
such as stable mass transfer binaries (see Figure 3).

The computational domain in OctoTiger is based on a three-dimensional
octree AMR structure. Each node in the structure is an N ×N ×N Cartesian
sub-grid (in this work, N = 8), and may be further refined into eight child
nodes, each containing its own N ×N ×N sub-grid with twice the resolution
of the parent. The AMR structure is properly nested, meaning that there is no
more than one jump in refinement level across adjacent leaf nodes. The AMR
refinement criteria is based on density. This refinement criteria in the current
simulation is checked every 15 timesteps to see if refinement or coarsening is
required, based on the minimal number of timesteps required for a feature of
the flow to propagate between two cells. After each refinement / coarsening
step, the sub-grids need to be redistributed, introducing a need for dynamic
load balancing. The images in Figure 2 show how the AMR grid is dynamically
refined as the simulation progresses in order to properly reflect density changes
in the mass-transfer stream. In the top image, the accretion stream has not
formed yet, and the region between the stars is not fully refined as it does
not fall below the refinement criteria density of 1e-3. In the bottom image, the
accretion stream, now fully formed and refined, has just missed the primary
star. Over time, the material from the stream will slowly form an accretion disk
around the primary.

4. Programming Model Considerations
We developed the OctoTiger application framework (STE||AR Group 2017d)
in ISO C++11 using HPX (Heller et al. 2012, 2013; Kaiser et al. 2014, 2015;
Heller et al. 2016; STE||AR Group 2017a). HPX is a C++ standard library for
distributed and parallel programming built on top of an Asynchronous Many
Task (AMT) runtime system. Such AMT runtimes may provide a means for
helping programming models to fully exploit available parallelism on complex
emerging HPC architectures. The HPX methodology described here includes
the following essential components:

• An ISO C++ standard conforming API that enables wait-free
asynchronous parallel programming, including futures, channels, and
other asynchronization primitives.

• An Active Global Address Space (AGAS) that supports load balancing
via object migration.

• An active-message networking layer that ships functions to the objects
they operate on.

• A work-stealing lightweight task scheduler that enables finer-grained
parallelization and synchronization.

Prepared using sagej.cls

7

Figure 3. A three-dimensional contour plot of the system in Figure 2 after an accretion
disc begins to form.

The design features of HPX allow application developers to naturally
use key parallelization and optimization techniques, such as overlapping
communication and computation, decentralizing control flow, oversubscribing
execution resources, and sending work to data instead of data to work. Using
Futurization, developers can express complex dataflow execution trees that
generate billions of HPX tasks that are scheduled to execute only when their
dependencies are satisfied (see Section 4.2.1 Futurization). Additionally, HPX
also provides a performance counter and adaptive tuning framework that allows
users to access performance data, such as processor utilization, task overheads,
and network throughput (see Section 5.2 Performance Counters and APEX).

4.1 Background
Parallel programming models are emerging to meet the challenges of
manycore, heterogeneous, and exascale architectures. Models call on the AMT
methodology to efficiently avoid artificial barriers and overlap communication
with computation to hide unavoidable latencies (USDOE 2012; Wheeler et al.
2008; Huck et al. 2015; Anderson et al. 2013; Dekate et al. 2012). While the
concepts of AMT systems are emerging in many modern programming models,
some of the more advanced competing implementations of new programming
models with similar concepts include Charm++ (Kumar et al. 2004), Intel
Cilk Plus (Intel 2017a), OpenMP with tasking (deSupinski et al. 2017),

Prepared using sagej.cls

8 The International Journal of High Performance Computing Applications XX(X)

Chapel (Chamberlain et al. 2007), Intel SPMD Program Compiler (ISPC) (Intel
2017b), X10 (Charles et al. 2005), and Legion (Bauer et al. 2012).

Parallelism is expressed and presented to the user in different ways in each
of these solutions, but a trend towards asynchronous programming is evident.
While the majority of the task based programming models focus on dealing
with node level parallelism, HPX presents a single model to the programmer
that supports both local and remote execution. This concept assures a uniform
programming model that is architecture independent.

Many applications must overcome the scaling limitations imposed by current
programming practices by embracing an entirely new way of coordinating
parallel execution. Fortunately, this does not mean that we must abandon all of
our legacy code. HPX can use MPI as a highly efficient portable communication
platform and at the same time serve as a back-end for OpenMP, OpenCL, or
even Chapel while maintaining or even improving execution times. This opens
a migration path for legacy codes to a new programming model that allows old
and new code to coexist in the same application.

Within the astrophysics community, two recent and important contributions
that use asynchronous tasking and AMR are SWIFT (Schaller et al. 2016)
and ChaNGa (Menon et al. 2015). SWIFT scales up to ~100K cores with
~60% parallel efficiency, and ChaNGa has demonstrated scalability up to ~500K
cores with ~93.4% parallel efficiency. SWIFT code uses asynchronous tasking
to blend computation and communication, in a similar manner to HPX, but
its parallel runtime is application-specific and not designed for reuse. ChaNGa
uses Charm++ (Kumar et al. 2004) and is tied to the Charm++ compiler
and runtime. In contrast to both, HPX is a library-only generic solution that
implements standardized C++ APIs and can be applied to existing C++ code
with minimal modifications.

4.2 Fundamental Properties of the HPX Model
One goal of this paper is to demonstrate the viability of the HPX
programming model through a portable and standards conforming application
and to demonstrate that application at scale. OctoTiger fully embraces the
C++ Parallel Programming Model, including additional constructs that are
incrementally being adopted into the ISO C++ Standard. The programming
model views the entire supercomputer as a single C++ abstract machine. A
set of tasks operates on a set of C++ objects distributed across the system.
These objects interact via asynchronous function calls; a function call to an
object on a remote node is sent as an active message to that node. A powerful
and composable primitive, the future object, is used to represent and manage
asynchronous execution and dataflow.

A crucial property of this model is the semantic equivalence between local
and remote operations. This provides a unified approach to vector-, core-, and
node-level parallelism based on proven generic algorithms and data structures
in the ISO C++ Standard today. The programming model is intuitive and
enables performance portability across a broad spectrum of the landscape of

Prepared using sagej.cls

9

increasingly diverse supercomputing hardware. Results of using the HPX model
on additional architectures will be presented in a future publication.

4.2.1 Futurization The fundamental asynchrony primitive in the C++ Parallel
Programming Model is the future. A future consists of a state (ready or not
ready), a value, and a set of continuation functions. future objects represent
values that have not yet been computed.

futures are monadic data structures, e.g. they can be composed together and
used to chain operations. An operation g can be attached as a continuation to
a future f; the result of the continuation-attaching operation (f.then(g)) is
another future that represents the computation of g. Multiple futures can be
joined together into a single future, and multiple continuations can be attached
to a single future, allowing the construction of arbitrary dataflow graphs.

The continuation-attaching operation is very powerful because it enables
Continuation Passing Style (CPS) (Appel and Jim 1989) asynchrony. CPS
ensures that tasks that have data dependencies do not start executing until
all their dependencies are satisfied. This approach has been shown to reduce
unnecessary waiting and avoid latency (Syme et al. 2011).

Sequential Futurized Futurized with
Coroutines

t future(t) Same as Futurized.
T f(){...} future<T> f(){...} Same as Futurized.
T t = f(); future<T> t = f(); Same as Futurized.
U g(T t){...} future<U> g(T t){...} Same as Futurized.
U u = g(t); future<U> u = t.then(g); future<U> u = g(co_await t);

U u = g(f()); future<U> u = f().then(g); future<U> u = g(co_await f());

V h(T t,U u){...} future<V> h(T t,U u){...} Same as Futurized.
V v = h(t,u); future<V> v = future<V> v =

when_all(t,u).then(h); h(co_await t,co_await u);

V v = h(f(),g()); future<V> v = future<V> v =

when_all(f(),g()).then(h); h(co_await f(),co_await g());

Table 1. The Futurization Technique: This table shows sequential C++ constructs
(left column) and the corresponding constructs after applying a transformation called
Futurization (center and right columns). This technique transforms sequential code into
wait-free asynchronous tasks with explicit data dependencies. The right column uses the
ISO C++ Coroutines Technical Specification (C++ Standards Committee 2017b), that
provides language-level support for this transformation. T, U and V are types, t, u, v are
variables of those types, and f, g and h are functions.

Rewriting synchronous blocking code as a chain of wait-free continuations
can be achieved through the straightforward Futurization technique, depicted
in Table 1. The Futurization technique allows a delay of direct (sequential)
execution in order to avoid synchronization. The futurized code no longer
directly calculates results, but instead generates a dynamic execution tree

Prepared using sagej.cls

10 The International Journal of High Performance Computing Applications XX(X)

representing the inherent data dependencies of the original algorithm. The
execution of this tree can now be parallelized by the underlying AMT runtime,
yielding the same result as the original code. Some programming languages, such
as F# and C#, have introduced powerful language facilities that simplify this
transformation (Syme et al. 2011; Bierman et al. 2012). Such a feature, based on
await in C#, has recently been introduced to the C++ programming language
via an ISO Technical Specification (C++ Standards Committee 2017b) and will
further simplify the process of futurizing existing code.

Futures are created by control structures, generic routines parameterized on
execution semantics, such as C++11 std::async C++ Standards Committee
(2011, §futures.async) or the C++17 parallel algorithms library C++ Standards
Committee (2017a, §algorithms.parallel). Execution policies describe the
constraints and parameters of execution (ex: std::par allows parallelization,
while std::par_unseq allows parallelization and interleaving C++ Standards
Committee (2017a, §algorithms.parallel.overloads)), and executors describe
where execution will occur (ex: a GPU executor, a thread pool executor, an RPC
executor). An upcoming ISO Technical Specification (Hoberock et al. 2017) will
add executors to the C++ language. Vector data types and execution policies
can be used to facilitate vector parallelism (see 5.1 Vectorization).

5. Methodology
We use HPX Futurization in OctoTiger to eliminate global barriers and thus
reduce barriers to optimal parallel performance as much as possible. The only
phases of OctoTiger that require a global barrier are 1) rebalancing the Adaptive
Mesh Refinement (AMR) tree after refinement/coarsening and 2) computing and
distributing the maximum allowed time-step size.

We implement AMR operations in a natural way that is generic and can
be easily parallelized: traverse the tree recursively, apply a transformation (ex:
refinement/coarsening, migrate children, performing a time-step) to each tree
node, and return a recursively reduced result.

The sequential version of this algorithm is shown in Listing 1. If a specific
node is refined, that is if it contains children, we recurse in a depth-first pattern.
The computation for the current node is combined with the results returned by
the traversal from the children, leading to a natural way to gather results and
propagate values from the leaves to the root. The downside to this approach is
that a stack overflow might occur when executing trees of great depth, due to
excessive recursion.

By applying the Futurization techniques, the formulation of tree traversal can
be parallelized. The futurized traversal algorithm is depicted in Listing 2. Instead
of direct recursion, we recurse asynchronously. The computation for a given
tree node, representing a sub-grid in OctoTiger, is overlapped with the children
computations. When communication with possibly remote tree node objects
takes place, it is transparently hidden by other ongoing computations. This
futurized tree traversal is the basic parallel pattern implemented in OctoTiger,
including the most expensive operations: regrid and step.

Prepared using sagej.cls

11

T tree_node::traverse() {
if (is_refined) {

// 8 for children, 1 for this node.
array<T, 9> r;
for (int i = 0; i < 8: ++i)

r[i] = children[i].traverse();
r[8] = compute_result();
return combine_results(r);

}
else return compute_result();

}

Listing 1: Natural recursive tree traversal.

future<T> traverse() {
if (is_refined) {

// 8 for children, 1 for this node.
array<future<T>, 9> r;
for (int i = 0; i < 8: ++i)

r[i] = async(traverse, children[i]);
r[8] = compute_result();
return when_all(r).then(combine_results);

}
else return future(compute_result());

}

Listing 2: Futurized recursive tree traversal.

The extension of this approach to a distributed memory application using
AGAS is straightforward. We simply register the tree node objects with AGAS,
and store Globally Unique Identifiers (GUIDs) in the children array instead of
storing the objects themselves. The GUIDs can be thought of as global pointers.
A GUID can be passed as the second argument to async (after the function to
be invoked, before the arguments to the function) to an make asynchronous
Remote Procedure Call (RPC). The children may reside on the same node as
the parent, or they may be distributed over various different compute nodes;
the algorithm works in both cases, because of the semantic equivalence of local
and remote interfaces in our model.

The regrid phase performs refinement/coarsening of the entire AMR octree.
It’s implemented as four distinct futurized tree traversals:

1) Check if each node in the octree needs to be refined or coarsened, and if
so, mark it for refinement and ensure the correct refinement levels of its
neighbors (e.g. proper nesting).

Prepared using sagej.cls

12 The International Journal of High Performance Computing Applications XX(X)

2) Count the total number of tree nodes and the number of tree nodes in
each child via recursive reduction.

3) Move tree nodes that are being rebalanced. A space filling curve is used
to determine the distribution. Migration is initiated by parent tree nodes.

4) Update references to neighboring tree nodes. Old references may be
outdated due to the preceding steps.

The step phase implements the hydrodynamics and gravity solvers. Each
tree node has its own N3 sub-grid containing the evolved variables for the
solvers. The futurized fluid solver, gravity solver and time-step size propagation
differ from the other futurized tree traversals. The hydrodynamics and gravity
solvers depend on ghost zone data (zones of data that are shared between
processors, usually on the boarder of grids separated for parallel computation)
from neighboring regions and the dynamically-computed time-step size from a
reduction on the previous time-step’s entire tree.

To avoid introducing needless waiting during these solves and exchanges,
OctoTiger uses a channel to propagate results between neighboring regions.
channels are primitives that represent a series of futures that will be produced
asynchronously. A consumer can request a future for a particular epoch (e.g. an
integer) from a channel and a producer can set a value for an epoch. channels
allow producers and consumers to agree on a location (the channel) where they
will communicate repeatedly.

The associated state and storage for each epoch’s future is created lazily on
demand, e.g. after either a consumer or producer requests the epoch. channel
s transparently buffer values on the fly when needed, allowing producers to
proceed ahead of consumers – avoiding needless waiting. Our asynchronous
solvers use channels to allow computation to proceed as far as possible and
overlap communication and computation. After the solve for one sub-step
is complete, a tree node will retrieve futures from its channels and attach
continuations to the futures (via when_all) that will compute the next sub-
step. The continuation will only begin executing when the necessary data for
that sub-step has been sent to the channels.

A simplified example of a channel-based asynchronous ghost zone exchange
on a 2D mesh partitioned into 4 sub-grids is shown in Figure 4. This technique
allows computation to proceed as far as possible without needless waiting. First,
all sub-grids begin computing the first sub-step (red). Sub-grids A, B, and D
finish their computations and send ghost zone data to their neighbor’s channel
s. Then, A, B, and D combine the dependencies of the next sub-step with
when_all and attach a continuation that computes the next sub-step to the
resulting future. C is still computing the first sub-step, so it has not sent the
first sub-step ghost zone data to A or D, and the second sub-step continuation
for A and D does not start yet (C, however, has received ghost zone data from
A and D). B’s continuation for the second sub-step has all the data it needs,
so that computation is executed (blue). When it is completed, a third sub-step
continuation is created and the second sub-step ghost zone data is sent from
B to A and D’s channels, where it is effectively buffered. In OctoTiger, the

Prepared using sagej.cls

13

N N N N N N N N

N
N
N
N
N
N
N
N

C D

BA

Figure 4. Depiction of ghost zone exchange patterns.

dependencies are more complicated, due to 3D geometry, coarse-fine boundaries,
and other communications such as flux corrections from children tree nodes to
parent tree nodes.

To advance the hydrodynamics variables for each cell, a single sub-step in
time requires knowledge of the variables in the neighboring three cells on each
side and in each dimension. These ghost zones are updated after every sub-step,
with each tree node sending the required data from its interior (non-ghost zone)
cells to its neighboring tree nodes. When a leaf node has no neighboring tree
node at the same level of refinement, the ghost zones are interpolated from the
neighboring tree nodes of its parent.

Like the hydrodynamics solver, the FMM solver also requires data from
neighboring tree nodes on the same level. It also requires data from its child and
parent tree nodes. Each tree node executes three steps for the FMM algorithm:

Prepared using sagej.cls

14 The International Journal of High Performance Computing Applications XX(X)

Levels of Refinement # of Tree Nodes File Size (GB)
7 1,641 0.1
8 4,361 0.3
9 36,201 0.8
10 47,721 3.5
11 278,921 21
12 1,934,025 140
13 14,412,841 N/A
14 111,806,409 N/A

Table 2. Number of tree nodes (sub-grids) for example dataset after initialization for
different maximum Levels of Refinement. This Includes the size of the file needed to be
used for initializing the computation.

1) Compute multipoles by combining multipoles from its children tree nodes,
and communicate multipoles to its parent tree node and the relevant
subsets to its neighboring tree nodes.

2) Compute the Taylor expansion of the gravitational interaction between
multipoles, including those from neighboring tree nodes on the same
refinement level.

3) Add its own Taylor expansion to the Taylor expansion of the gravitational
potential from its parent tree node, and communicate the total Taylor
expansions to its children tree nodes.

The FMM solver requires four cells of ghost zone data from its neighboring tree
nodes. Because of the large amount of neighboring data required, rather than
storing ghost zone cells for the FMM solver, the data from neighboring cells is
discarded once the relevant interactions are computed.

5.1 Vectorization
The combination OctoTiger with HPX uses the Vc (Kretz 2015a; Kretz and
Lindenstruth 2011) library for the portable expression vector parallelism. This
library is advancing towards potential standardization in the C++ programming
language (Kretz 2017, 2016, 2015b,c). The Vc library enables explicit and
portable vectorization through vector data types (datapar<T>) that store
a target-architecture specific number of elements. datapar has arithmetic
operator and math function overloads that simultaneously apply element-wise.
These data types mimic the semantics of the built-in arithmetic types of the
C++ language to a large extent, making algorithm vectorization almost as easy
as a simple type replacement.

5.2 Performance Counters and APEX
Within our HPX implementation is a performance counter framework with a
uniform interface for extracting arbitrary information including performance
metrics, queue lengths, execution times of crucial functions, memory footprint,

Prepared using sagej.cls

15

network utilization, or any other aspect of application or runtime system
behavior. The counters are accessible through AGAS and are available at the
thread, process, or system level. The counters can be queried periodically, on
demand, or at the end of execution. They are output either to the terminal or
to a file in a variety of formats.

The HPX implementation is also integrated with the Autonomous
Performance Environment for eXascale (APEX) (Huck et al. 2015; XPRESS
APEX 2017). The APEX environment provides a lightweight performance
measurement and control library specifically designed for use in HPX and
has been extended to other runtime systems. It is integrated into the task
scheduler within HPX, providing direct measurement of every task scheduled by
the runtime. Unlike other parallel performance measurement libraries, APEX
includes support for direct timing of tasks that yield and resume, even if
resumption happens on a different OS thread than the one that yielded the
task. The aforementioned HPX counters are also stored in APEX along with
hardware and OS utilization/status counters.

Optionally, APEX can be integrated with TAU (Shende and Malony 2006)
for detailed profiling, sampling and tracing, and PAPI (Dongarra et al. 2001)
for hardware counter and GPGPU support. Alternatively, APEX can utilize
the OTF2 (Eschweiler et al. 2012) library for full event tracing for analysis
and visualization in Vampir (Knüpfer et al. 2008). The APEX environment
gathers system health and utilization information through available user-space
OS methods such as the /proc virtual filesystem. Power and energy data is
available through the Cray PM Counters (Martin and Kappel 2014) or Linux
Power Capping Framework (Linux Kernel Organization 2017) interface.

On its own, APEX maintains an internal performance state that is
asynchronously updated by the HPX runtime as a scheduled task. Measurement
overheads are typically less than 2-3%. The APEX measurement artifacts
include process-level profiles, concurrency and scatter plot charts, and formatted
text output. During this research, APEX was used to help identify, resolve, and
verify a serialization bottleneck during the tree formation and rebalancing steps
of the regridding phase of OctoTiger, as shown in Figure 5.

6. Experimental Setup
The primary system used for the experiments in this paper is a Cray XC40
installation at the National Energy Research Scientific Computing Center
(NERSC) located in Berkeley, California. (He et al. 2018) known as Cori.
Significant dedicated time on the Cori machine enabled the accurate scaling
measurements presented here. Cori consists of two phases, Phase 1 consisting of
an Intel Haswell partition and Phase 2 consisting of an Intel Knight’s Landing
(KNL) partition. For the following system description and results, we limit our
discussion to Phase 2. The Phase 2 system consists of 9,688 nodes; each node
has a single Xeon Phi 7250 processor with 68 cores and 272 hyper-threads
(HTs) (Intel 2017c). Therefore, there are 658,784 cores and up ~2.6 million
threads overall. The whole system has a peak double precision floating point

Prepared using sagej.cls

16 The International Journal of High Performance Computing Applications XX(X)

 0

 10000

 20000

 30000

 40000

 50000

 60000

0 150 300 450 600 750 900 1050 1200
 0

 50000

 100000

 150000

 200000
To

ta
l T

hr
ea

ds
 E

xe
cu

tin
g

Po
w

er
 (W

at
ts

)

Time (sample period)

 0

 10000

 20000

 30000

 40000

 50000

 60000

0 150 300 450 600 750
 0

 50000

 100000

 150000

 200000

To
ta

l T
hr

ea
ds

 E
xe

cu
tin

g

Po
w

er
 (W

at
ts

)

Time (sample period)

Figure 5. Concurrency views using APEX of OctoTiger running on 1,024 nodes of Cori.
Higher values indicate better system utilization. The figure on the left shows a profile of
OctoTiger prior to Futurization. There are two long periods of serial execution: 1) after
the checkpoint load and grid creation stage (first yellow bulge) and 2) after the first
gravity solve (center), followed by two time-steps. The figure on the right shows the
same sequence of events after applying the Futurization methodology to make the
regridding algorithm (that is used during checkpoint loading) more scalable. Each color
represents an HPX task type, and the aggregate power consumption (Watts) across
nodes is visible as a dashed black line. The axis scales are equivalent.

performance of ~29.1 PFLOP/s and an aggregated main memory capacity of
~1.1 PB. Cori uses a Cray Aries interconnect and has a global bandwidth of ~45
TB/s.

The Intel KNL Xeon Phi 7250 processor supports the AVX512 instruction
set and has two 512-bit fused-multiple-add vector units per core. Each Xeon
Phi 7250 is capable of up to 3 TFLOP/s (double precision). The KNL cores are
derived from the Intel Atom architecture that has lower scalar performance
compared to contemporary Intel Xeon processors. (Doerfer et al. 2016) In
addition to 96 GB of DDR4 for main memory, the Xeon Phi 7250 has 16GB
high bandwidth memory (MCDRAM). The bandwidth of the MCDRAM is
~460 GB/s. The MCDRAM can be configured as a direct mapped cache or
as explicitly-programmable memory. (Doerfer et al. 2016) The KNL processor
can be configured in 3 different NUMA clustering modes: 1) All-to-All, 2) Quad,
and 3) Sub-Numa-Clustering (SNC). Each mode determines the configuration of
the entries in distributed hash table among tiles for virtual address translation.
The latencies for memory access are highest in the first case and lowest in the
third (Sodani 2015).

After a first initial evaluation of the achievable performance, the single-node
performance did not vary significantly between the different clustering and high
bandwidth memory modes. Thus we used the Quad mode (NERSC’s default)
and configured the MCDRAM as a cache.

In our experiments, we used the software listed in Table 3. Experiments were
also performed with other compilers, however the computations were signifi-
cantly slower, so we chose to use GCC. To measure execution times, we used
std::chrono::steady_clock, a monotonically increasing system clock with
nanosecond resolution C++ Standards Committee (2011, §time.clock.steady).

Prepared using sagej.cls

17

Compiler GCC 6.3.0 (GNU 2017)
MPI Cray MPICH 7.4.4(NERSC 2017a)
Jemalloc 4.5.0(jemalloc 2017)
Boost 1.63(Boost 2017)
hwloc 1.11.6(Open MPI 2017)
HPX 19bd11a(STE||AR Group 2017b)
APEX 58214cf(Kevin Huck 2017)
OctoTiger 0b6cd60(STE||AR Group 2017e)

Table 3. Software versions used in our experiments.

Timings are reported for the major phases of the simulation, including
initialization, grid creation, regridding and the solvers.

7. Results
The following section presents results from strong scaling experiments with
OctoTiger on Cori (NERSC 2017b) and demonstrates the scalability of our
approach. The problem size was controlled by setting the maximum Levels
of Refinement (LoR) (see Table 2). The effectiveness of the Futurization of
OctoTiger was observed by profiling the application with the APEX toolkit
(see Figure 5). The results presented include I/O in the initialization phase and
plain computation time for the remaining part.

7.1 Node-Level Scaling
First, we look at single node scalability to determine a suitable number of cores
and processing elements per core for performing the distributed memory full-
system scaling experiments.

Figure 6 shows the scalability of an OctoTiger 7 LoR 10 time-step simulation
on a single KNL node with different numbers of hyper-threads (HTs) per
core. This experiment shows that using 2 HTs per core gives the best overall
performance, with a parallel efficiency of ~87%. This is a ~1.3× speedup over
the results for 1 HT per core.

This demonstrates the applicability of the futurization technique on manycore
system like the KNL. By having the system oversubscribed with ~24 tree nodes
per core, we were able to exploit the on-node parallelism efficiently. Increasing
the number of sub-grids per core even further does not show significant
improvements with respect to scalability. Reducing this number however, leads
to a drop in performance.

7.2 Full-System Scaling
To assess scalability and distributed performance of our futurized application,
we did strong scaling runs for different LoR. Figure 7 provides an overview of
the results.

Prepared using sagej.cls

18 The International Journal of High Performance Computing Applications XX(X)

0

0.2

0.4

0.6

0.8

1

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50 60 70

Pa
ra

lle
l E

ffi
ci

en
cy

 (r
el

at
iv

e
to

 1
 c

or
e)

Sp
ee

du
p

(re
la

tiv
e

to
 1

 c
or

e)

Number of Cores

Speedup and Parallel Efficiency of OctoTiger
(single node, 7 Levels of Refinement, 1641 sub-grids)

Speedup (1 HT)
Speedup (2 HT)
Speedup (4 HT)
Parallel Efficiency (1 HT)

Figure 6. The speedup and parallel efficiency of OctoTiger strong scaling experiments on
a single KNL node with different numbers of hyper-threads (HTs) per core is shown
above. The 2 HTs per core case performs best. It achieves a speedup of ~55.9× when
scaling from 1 to 64 cores, corresponding to a parallel efficiency of ~87%. This is a
~1.3× speedup over the results for 1 HT per core.

Because we are strong scaling, the speedup naturally flattens off after the
number of sub-grids per core drops below a certain value. In our experiments,
this was happening at ~100 sub-grids per core. The overall speedup from 10
LoR at 16 compute nodes (~44 sub-grids per core) to 14 LoR at 9,640 compute
nodes (~171 sub-grids per core) is ~342×, corresponding to a parallel efficiency of
~56.8%. Since the number of sub-grids per core is not the same, the comparison
does not fully reflect the scalability of OctoTiger. However, it can be clearly
observed that excellent scalability can be achieved by providing sufficient work
to be executed by each core.

To further demonstrate the scalability of OctoTiger and show the effects of
futurization at scale, Figures 8 and 9 provide a breakdown of performance of
the different stages of the application.

These figures show that when executing the 13 LoR and 14 LoR problems,
the futurized tree traversal, described in §5, is able to scale up to the full
Cori system – e.g. 655,520 cores. While the initialization of the problem, which
includes loading the initial octree from disk, is hampered by I/O limitations, the
actual computation exhibits a parallel efficiency of 96.8% (obtained by the strong
scaling of the 14 LoR problem from 4,096 nodes to 9,640 nodes). The sustained
aggregated bandwidth for loading the initialization file was at 1.4 GB/s with

Prepared using sagej.cls

19

0 100,000 200,000 300,000 400,000 500,000 600,000

0

100

200

300

400

500

600

700

0 2000 4000 6000 8000 10000

Number of Cores
Su

b-
gr

id
s (

th
ou

sa
nd

s)
 p

er
 se

co
nd

Number of Nodes

Number of Sub-grids Processed per Second

10 LoR
11 LoR
12 LoR
13 LoR
14 LoR

Figure 7. The results of OctoTiger strong scaling runs up to 655,520 cores on Cori for
different problem sizes – e.g. different maximum LoR. This graph indicates close to
perfect scalability for each problem size, with a clear improvement of performance from
one LoR to the next because of increased latency hiding and parallel work due to higher
oversubscription (higher number of sub-grids per core). The larger problem sizes cannot
be run on a smaller number of cores because they will exceed memory capacity.

reading concurrently from 2048 nodes while performing initialization. The data
was read from the Burst Buffer, spread across 50 Burst Buffer nodes. This only
uses a fraction of the available bandwidth. Future work will improve this with
proper support for parallel I/O. We started the scaling experiment for the 14
LoR problem at 4,096 nodes as it does not fit in memory on a smaller number of
compute nodes. On the other hand, the scaling of the 13 LoR problem is limited
by the lack of work, as the number of sub-grids per core drops to ~51 at 4,096
nodes, causing the parallel efficiency in this case to be reduced to ~87%.

8. Conclusions and Implications
The OctoTiger simulations presented here show the onset of a stable mass
transfer stream and the initial few orbits during which an accretion disk forms
with excellent detail. Additional orbits are needed for the disk to fully develop
and reach a quasi-steady state. Ultimately the disk will transport angular
momentum outward and tidal forces will return this angular momentum to
the orbit. The stability and final fate of the binary do depend on this further
evolution, but the intent of this paper is to demonstrate the capability of

Prepared using sagej.cls

20 The International Journal of High Performance Computing Applications XX(X)

0

0.2

0.4

0.6

0.8

1

0

0.5

1

1.5

2

2.5

3

3.5

4

1536 / 104448 2048 / 139264 4096 / 278528

Pa
ra

lle
l E

ffi
ci

en
cy

 (r
el

at
iv

e
to

 1
02

4
no

de
s)

Sp
ee

du
p

(re
la

tiv
e

to
 1

02
4

no
de

s)

Number of Nodes / Cores

Speedup and Parallel Efficiency of OctoTiger
(13 Levels of Refinement, ~14.5 million sub-grids)

Initialization 12→13
Computation Total
Initialization Computation
Total

Figure 8. Speedup (bars, left axis) and parallel efficiency (lines, right axis) of OctoTiger
strong scaling a problem with 13 LoR up to 1,024 Knights Landing nodes / 69,632 cores
on Cori. The graphs show separate speedup and parallel efficiency results for three
application stages (initialization, initial regridding from the 12 LoR restart file to 13 LoR,
and the actual computation). The computational phase achieves a speedup of ~3.46×
when scaling from 1,024 to 4,096 nodes, corresponding to a parallel efficiency of ~87%.

OctoTiger and HPX. Notably, futurized HPX applications can strong scale out
to hundreds of thousands of cores. As for application portability, we note that
the same source code we ran at scale on Cori we also ran on an Apple Laptop
using HPX and compiled with gcc.

The OctoTiger advances show the potential to substantially reduce the
time-to-solution for high fidelity DWD merger simulations. Experiments that
previously took weeks or months of computational effort can now be performed
in a matter of days on petascale systems like Cori. This scalability will make
it possible to simulate evolutions over more orbits and allow us to make these
simulations more realistic by including more compute-intensive physical effects
such as radiative transfer, light curve generation, radiation hydrodynamics and
nuclear reactions. Code development along these lines is already underway.

This work also has several implications for parallel programming and future
architectures. The AMT runtime systems are a powerful and viable addition
to the current set of prevalent parallel programming models. Our work
demonstrates that it is not only possible to utilize these emerging tools to
perform on the largest scales, but also that it might even be desirable to
leverage the latency hiding, finer-grained parallelism and natural support for

Prepared using sagej.cls

21

0

0.2

0.4

0.6

0.8

1

0

0.5

1

1.5

2

2.5

8192 / 557056 9460 / 643280

Pa
ra

lle
l E

ffi
ci

en
cy

 (r
el

at
iv

e
to

 4
09

6
no

de
s)

Sp
ee

du
p

(re
la

tiv
e

to
 4

09
6

no
de

s)

Number of Nodes / Cores

Speedup and Parallel Efficiency of OctoTiger
(14 Levels of Refinement, ~111 million sub-grids)

Initialization 12→14
Computation Total
Initialization Computation
Total

Figure 9. Speedup (bars, left axis) and parallel efficiency (lines, right axis) of OctoTiger
strong scaling a problem with 14 LoR up to 4,096 Knights Landing nodes / 278,528
cores on Cori. The graphs show separate speedup and parallel efficiency results for three
application stages (initialization, initial regridding from the 12 LoR restart file to 14 LoR,
and the actual computation). The computational phase reaches a speedup of ~2.24×
when scaling from 4,096 to 9,460 nodes corresponding to a parallel efficiency of ~96.8%.

heterogeneity that the AMT model exposes. As more and more applications
choose to utilize this model, future hardware architectures will be encouraged
to better support the needs of AMTs by adding features such as faster user-space
context switching, task queues, and global address space facilities.

The standard C++ parallelism, concurrency, and memory models are easily
programmable, portable and performant. Further additions to the ISO C++
Standard will allow the world’s ~4.4 million C++ programmers (Kazakova
2015) to write applications that generate billions of tasks across hundreds
of thousands of heterogeneous cores within a hierarchical and heterogeneous
memory space. Leveraging concepts such as futures, executors, and generic
algorithms, the C++ Parallel Programming Model enables developers to focus
attention on the application logic instead of on managing vectors, threads and
network connections. Users are presented with a coherent approach to vector-,
core- and node-level parallelism that both simplifies reading and writing parallel
code and increases performance portability. This programming model allows the
expression of all forms of parallelism at a high level of abstraction with minimal
cost.

Prepared using sagej.cls

22 The International Journal of High Performance Computing Applications XX(X)

In order to be sustainable and maintainable, scientific applications must not
only perform well but must also perform portably, a feat that will become
difficult as hardware becomes more diverse, heterogeneous, and hierarchical.
High-level abstractions will become pivotal. We believe our work lays a
foundation and a potential vision for developing future performance portable
applications.

Acknowledgments
This research used resources of the National Energy Research Scientific
Computing Center (NERSC), that is supported by the U.S. Department of
Energy (DoE) Office of Science’s (SC) Advanced Scientific Computing Research
(ASCR) program (contract DE-AC02-05CH11231). We would like to thank
Brandon Cook, Dave Paul, Stephen Leak, Doug Jacobson, and Jack Deslippe for
NERSC technical support. Additionally the Talapas HPC cluster and the High
Performance Computing Research Core Facility at the University of Oregon
were used in the course of this research. Support for this work was also provided
through the X-Stack program funded by the U.S. DoE SC ASCR program under
contracts DE-SC0008638, DE-SC0008714, and DE-AC02-05CH11231. This
work has received funding from the European Union’s Horizon 2020 research
and innovation programm under grant agreement 671603 (AllScale). The
development of the OctoTiger code is supported through the National Science
Foundation award 1240655 (STAR). This research was partially supported
under U.S. DoE contract DE-AC02-05CH11231 for Lawrence Berkeley National
Laboratory that is operated by the University of California, contract DE-AC52-
06NA25396 for Los Alamos National Laboratory that is operated by Los Alamos
National Security, LLC (LA-UR-17-31311), and contract DE-AC52-07NA27344
for Lawrence Livermore National Laboratory operated by Lawrence Livermore
National Security, LLC. Further, we would like to acknowledge the Center for
Computation and Technology at Louisiana State University, the Department of
Computer Science 3 - Computer Architecture at the University of Erlangen
Nuremberg, and the Institute for Parallel and Distributed Systems at the
University of Stuttgart. Comments on the paper content by Hans Johansen
and Tim Mattson are greatly appreciated. We further acknowledge the following
individuals for various contributions: Agust́ın (K-Ballo) Bergé, Kundan Kadam,
Joel E. Tohline, Nigel Tan, Dietmar Fey, Ram Ramanujam, Nick Chaimov, and
Allen D. Malony.

Prepared using sagej.cls

23

References
Anderson M, Brodowicz M, Kaiser H, Lelbach BA and Sterling T (2013) Tabulated

Equations of State with a Many-tasking Execution Model. In: Proceedings of the
IEEE International Symposium on Parallel Distributed Processing, Workshops and
PhD Forum (IPDPSW), Workshop on Large-Scale Parallel Processing (LSPP).
ISBN 978-1-4799-1372-5, pp. 1691–1699. DOI:10.1109/IPDPSW.2013.162. https:
//stellar.cct.lsu.edu/pubs/tabulated_eos.pdf.

Appel AW and Jim T (1989) Continuation-Passing, Closure-Passing Style. In:
Proceedings of the ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL). ISBN 0-89791-294-2, pp. 293–302. DOI:
10.1145/75277.75303. https://dx.doi.org/10.1145/75277.75303.

Bauer M, Treichler S, Slaughter E and Aiken A (2012) Legion: Expressing Locality
and Independence with Logical Regions. In: Proceedings of the ACM/IEEE
International Conference for High Performance Computing, Networking, Storage
and Analysis (SC), art. id 66. ISBN 978-1-4673-0805-2. DOI:10.1109/SC.2012.71.
https://dx.doi.org/10.1109/SC.2012.71.

Bierman G, Russo C, Mainland G, Meijer E and Torgersen M (2012) Pause
’N’ Play: Formalizing Asynchronous C#. In: Proceedings of the European
Conference on Object-Oriented Programming (ECOOP). ISBN 978-3-642-31056-0,
pp. 233–257. DOI:10.1007/978-3-642-31057-7 12. https://dx.doi.org/10.1007/
978-3-642-31057-7_12.

Boost (2017) Boost C++ Libraries 1.63.0 source and binary distributions. {https:
//www.boost.org/users/history/version_1_63_0.html}. Available under the
Boost Software License 1.0 (a BSD-style open source license).

Byerly ZD, Lelbach BA, Tohline JE and Marcello DC (2014) A Hybrid Advection
Scheme for Conserving Angular Momentum on a Refined Cartesian Mesh.
Astrophysical Journal, Supplement (ApJS) 212(2, art. id 23). DOI:10.1088/
0067-0049/212/2/23. http://adsabs.harvard.edu/abs/2014ApJS..212...23B.

C++ Standards Committee (2011) ISO/IEC 14882:2011, Standard for Programming
Language C++ (C++11). Technical report, ISO/IEC JTC1/SC22/WG21 (the
C++ Standards Committee). https://wg21.link/N3337, last publicly available
draft.

C++ Standards Committee (2017a) ISO/IEC DIS 14882, Working Draft, Standard
for Programming Language C++ (C++17). Technical report, ISO/IEC
JTC1/SC22/WG21 (the C++ Standards Committee). https://wg21.link/
N4659, last publicly available draft.

C++ Standards Committee (2017b) ISO/IEC TS 22277, Programming Languages –
C++ Extensions for Coroutines. Technical report, ISO/IEC JTC1/SC22/WG21
(the C++ Standards Committee). https://wg21.link/N4663, last publicly
available draft.

Chamberlain BL, Callahan D and Zima HP (2007) Parallel Programmability and
the Chapel Language. International Journal of High Performance Computing
Applications (IJHPCA) 21(3): 291–312. DOI:10.1177/1094342007078442. https:
//dx.doi.org/10.1177/1094342007078442.

Prepared using sagej.cls

24 The International Journal of High Performance Computing Applications XX(X)

Charles P, Grothoff C, Saraswat V, Donawa C, Kielstra A, Ebcioglu K, von Praun C
and Sarkar V (2005) X10: An Object-Oriented Approach to Non-Uniform Cluster
Computing. ACM SIGPLAN Notices 40(10): 519–538. DOI:10.1145/1103845.
1094852. https://dx.doi.org/10.1145/1103845.1094852.

Dan M, Rosswog S, Brüggen M and Podsiadlowski P (2014) The Structure and Fate
of White Dwarf Merger Remnants. Monthly Notices of the Royal Astronomical
Society (MNRAS) 438(1): 14–34. DOI:10.1093/mnras/stt1766. http://adsabs.
harvard.edu/abs/2014MNRAS.438...14D.

Dan M, Rosswog S, Guillochon J and Ramirez-Ruiz E (2011) Prelude to A Double
Degenerate Merger: The Onset of Mass Transfer and Its Impact on Gravitational
Waves and Surface Detonations. Astrophysical Journal (ApJ) 737(2, art. id 89).
DOI:10.1088/0004-637X/737/2/89. http://adsabs.harvard.edu/abs/2011ApJ.
..737...89D.

Dan M, Rosswog S, Guillochon J and Ramirez-Ruiz E (2012) How the Merger of Two
White Dwarfs Depends on Their Mass Ratio: Orbital Stability and Detonations at
Contact. Monthly Notices of the Royal Astronomical Society (MNRAS) 422(3):
2417–2428. DOI:10.1111/j.1365-2966.2012.20794.x. http://adsabs.harvard.
edu/abs/2012MNRAS.422.2417D.

Dehnen W (2000) A Very Fast and Momentum-conserving Tree Code. Astrophysical
Journal, Letters (ApJL) 536(1): L39–L42. DOI:10.1086/312724. http://adsabs.
harvard.edu/abs/2000ApJ...536L..39D.

Dekate C, Anderson M, Brodowicz M, Kaiser H, Lelbach BA and Sterling T
(2012) Improving the Scalability of Parallel Nbody Applications with an Event
Driven Constraint Based Execution Model. International Journal of High
Performance Computing Applications (IJHPCA) 26(3): 319–332. DOI:10.1177/
1094342012440585. https://arxiv.org/abs/1109.5190.

Desprésa B and Labourasse E (2015) Angular Momentum Preserving Cell-Centered
Lagrangian and Eulerian Schemes on Arbitrary Grids. Journal of Computational
Physics 290: 28–54. DOI:10.1016/j.jcp.2015.02.032. https://dx.doi.org/10.
1016/j.jcp.2015.02.032.

deSupinski BR, Olivier SL, Terboven C, Chapman BM and Mullerr MS (2017) Editors:
Scaling OpenMP for Exascale Performance and Portability - 13th International
Workshop on OpenMP, IWOMP 2017, Stony Brook, NY, USA, Proceedings.
SpingerLink: Lecture Notes in Computer Science .

Doerfer D, Deslippe J, Williams S, Oliker L, Cook B, Kurth T, Lobet M, Malas T, Vay
JL and Vincenti H (2016) Applying the Roofline Performance Model to the Intel
Xeon Phi Knights Landing Processor. In: Proceedings of the Intel Xeon Phi User
Group Workshop Annual US Meeting. https://crd.lbl.gov/assets/Uploads/
ixpug16-roofline.pdf.

Dongarra J, London K, Moore S, Mucci P and Terpstra D (2001) Using PAPI for
Hardware Performance Monitoring on Linux Systems. In: Proceedings of the
International Conference on Linux Clusters: The HPC Revolution. www.netlib.
org/utk/people/JackDongarra/PAPERS/papi-linux.pdf.

D’Souza MCR, Motl PM, Tohline JE and Frank J (2006) Numerical Simulations of
the Onset and Stability of Dynamical Mass Transfer in Binaries. Astrophysical

Prepared using sagej.cls

25

Journal (ApJ) 643(1): 381–401. DOI:10.1086/500384. http://adsabs.harvard.
edu/abs/2006ApJ...643..381D.

Eschweiler D, Wagner M, Geimer M, Knüpfer A, Nagel WE and Wolf F (2012) Open
Trace Format 2: The Next Generation of Scalable Trace Formats and Support
Libraries. In: Advances in Parallel Computing, volume 22. pp. 481–490. DOI:
10.3233/978-1-61499-041-3-481. https://goo.gl/LVoPi5.

GNU (2017) GNU Compiler Collection 6.3.0 source distributions. https://ftp.
gnu.org/gnu/gcc/gcc-6.3.0/. Available under the GNU General Public License
version 3.

Guillochon J, Dan M, Ramirez-Ruiz E and Rosswog S (2010) Surface Detonations in
Double Degenerate Binary Systems Triggered by Accretion Stream Instabilities.
Astrophysical Journal, Letters (ApJL) 709(1): L64–L69. DOI:10.1088/2041-8205/
709/1/L64. http://adsabs.harvard.edu/abs/2010ApJ...709L..64G.

He Y, Cook B, Deslippe J, Friesen B, Gerber R, Hartman-Baker R, Koniges A, Kurth
T, Leak S, Yang WS et al. (2018) Preparing nersc users for cori, a cray xc40
system with intel many integrated cores. Concurrency and Computation: Practice
and Experience 30(1).

Heller T, Kaiser H, Diehl P, Fey D and Schweitzer MA (2016) Closing the Performance
Gap with Modern C++. In: High Performance Computing, Proceedings of
the International Conference on High Performance Computing Workshops (ISC
Workshops), Workshop on Exascale Multi/Many Core Computing Systems (E-
MuCoCoS). ISBN 978-3-319-46079-6, pp. 18–31. DOI:10.1007/978-3-319-46079-6
2. https://stellar.cct.lsu.edu/pubs/closing_perf_gap_isc_2016.pdf.

Heller T, Kaiser H and Iglberger K (2012) Application of the ParalleX Execution
Model to Stencil-Based Problems. Computer Science - Research and Development
28(2-3): 253–261. DOI:10.1007/s00450-012-0217-1. https://stellar.cct.lsu.
edu/pubs/isc2012.pdf.

Heller T, Kaiser H, Schäfer A and Fey D (2013) Using HPX and LibGeoDecomp for
Scaling HPC Applications on Heterogeneous Supercomputers. In: Proceedings of
the ACM/IEEE Workshop on Latest Advances in Scalable Algorithms for Large-
Scale Systems (ScalA, SC Workshop), art. id 1. ISBN 978-1-4503-2508-0. DOI:
10.1145/2530268.2530269. https://stellar.cct.lsu.edu/pubs/scala13.pdf.

Hoberock J, Garland M, Kohlhoff C, Mysen C, Edwards HC and Brown G (2017)
P0443R2: A Unified Executors Proposal for C++. ISO/IEC JTC1/SC22/WG21
(the C++ Standards Committee) Mailings https://wg21.link/P0443R2.

Huck K, Porterfield A, Chaimov N, Kaiser H, Malony A, Sterling T and Fowler R
(2015) An Autonomic Performance Environment for Exascale. Supercomputing
Frontiers and Innovations 2(3): 49–66. DOI:10.14529/jsfi150305. https://dx.
doi.org/10.14529/jsfi150305.

Intel (2017a) Intel Cilk Plus. https://software.intel.com/en-us/
intel-cilk-plus.

Intel (2017b) Intel SPMD Program Compiler (ISPC). https://ispc.github.io/.
Intel (2017c) Intel Xeon Phi Processor 7250 (16GB, 1.40 GHz, 68

core) Specifications. https://ark.intel.com/products/94035/
Intel-Xeon-Phi-Processor-7250-16GB-1_40-GHz-68-core.

Prepared using sagej.cls

26 The International Journal of High Performance Computing Applications XX(X)

jemalloc (2017) jemalloc GitHub repository, 4.5.0 tag. https://github.com/
jemalloc/jemalloc/tree/4.5.0. Available under the 2-Clause BSD License.

Kadam K, Clayton GC, Motl PM, Marcello DC and Frank J (2017) Numerical
Simulations of Close and Contact Binary Systems Having Bipolytropic Equation
of State. In: Proceedings of the American Astronomical Society (AAS), meeting
229, art. id 433.14. http://adsabs.harvard.edu/abs/2017AAS...22943314K.

Kadam K, Motl PM, Frank J, Clayton GC and Marcello DC (2016) A
Numerical Method for Generating Rapidly Rotating Bipolytropic Structures in
Equilibrium. Monthly Notices of the Royal Astronomical Society (MNRAS)
462(2): 2237–2245. DOI:10.1093/mnras/stw1814. http://adsabs.harvard.edu/
abs/2016MNRAS.462.2237K.

Kaiser H, Heller T, Bourgeois D and Fey D (2015) Higher-level Parallelization for Local
and Distributed Asynchronous Task-based Programming. In: Proceedings of the
ACM/IEEE International Workshop on Extreme Scale Programming Models and
Middleware (ESPM, SC Workshop). ISBN 978-1-4503-3996-4, pp. 29–37. DOI:10.
1145/2832241.2832244. https://stellar.cct.lsu.edu/pubs/executors_espm2_
2015.pdf.

Kaiser H, Heller T, Lelbach BA, Serio A and Fey D (2014) HPX: A Task
Based Programming Model in a Global Address Space. In: Proceedings of
the International Conference on Partitioned Global Address Space Programming
Models (PGAS), art. id 6. ISBN 978-1-4503-3247-7. DOI:10.1145/2676870.
2676883. https://stellar.cct.lsu.edu/pubs/pgas14.pdf.

Katz MP, Zingale M, Calder AC, Swesty FD, Almgren AS and Zhang W (2016)
White Dwarf Mergers on Adaptive Meshes. I. Methodology and Code Verification.
Astrophysical Journal (ApJ) 819(2, art. id 94). DOI:10.3847/0004-637X/819/2/94.
http://adsabs.harvard.edu/abs/2016ApJ...819...94K.

Kazakova A (2015) C/C++ Facts We Learned Before Going Ahead with CLion.
Technical report, Jetbrains. https://blog.jetbrains.com/clion/2015/07/
infographics-cpp-facts-before-clion/.

Kevin Huck (2017) APEX Performance Monitoring Framework GitHub repos-
itory, commit 58214cf. https://github.com/khuck/xpress-apex/commit/
58214cfba5ce6ddb2682713329687c56625c580e. Available under the Boost Soft-
ware License 1.0 (a BSD-style open source license).

Knüpfer A, Brunst H, Doleschal J, Jurenz M, Lieber M, Mickler H, Müller MS
and Nagel WE (2008) The Vampir Performance Analysis Tool-Set. In: Tools
for High Performance Computing: Proceedings of the International Workshop
on Parallel Tools for High Performance Computing. ISBN 978-3-540-68561-6,
pp. 139–155. DOI:10.1007/978-3-540-68564-7 9. https://dx.doi.org/10.1007/
978-3-540-68564-7_9.

Kretz M (2015a) Extending C++ for Explicit Data-Parallel Programming via SIMD
Vector Types. PhD Thesis, Goethe University Frankfurt. DOI:10.13140/RG.
2.1.2355.4323. http://publikationen.ub.uni-frankfurt.de/frontdoor/index/
index/docId/38415.

Kretz M (2015b) N4395: SIMD Types: ABI Considerations. ISO/IEC
JTC1/SC22/WG21 (the C++ Standards Committee) Mailings https://wg21.

Prepared using sagej.cls

27

link/N4395.
Kretz M (2015c) N4454: SIMD Types Example: Matrix Multiplication. ISO/IEC

JTC1/SC22/WG21 (the C++ Standards Committee) Mailings https://wg21.
link/N4454.

Kretz M (2016) P0350R0: Integrating datapar with Parallel Algorithms and Executors.
ISO/IEC JTC1/SC22/WG21 (the C++ Standards Committee) Mailings https:
//wg21.link/P0350R0.

Kretz M (2017) P0214R3: Data-Parallel Vector Types & Operations. ISO/IEC
JTC1/SC22/WG21 (the C++ Standards Committee) Mailings https://wg21.
link/P0214R3.

Kretz M and Lindenstruth V (2011) Vc: A C++ Library for Explicit Vectorization.
Software: Practice and Experience 42(11): 1409–1430. DOI:10.1002/spe.1149.
https://dx.doi.org/10.1002/spe.1149.

Kumar R, Tullsen DM, Ranganathan P, Jouppi NP and Farkas KI (2004)
Single-ISA Heterogeneous Multi-Core Architectures for Multithreaded Workload
Performance. In: Proceedings of the ACM/IEEE International Symposium on
Computer Architecture (ISCA). ISBN 0-7695-2143-6, pp. 64–75. DOI:10.1109/
ISCA.2004.1310764. https://dx.doi.org/10.1109/ISCA.2004.1310764.

Kurganov A and Tadmor E (2000) New High-Resolution Central Schemes for Nonlinear
Conservation Laws and Convection-Diffusion Equations. Journal of Computational
Physics 160(1): 241–282. DOI:10.1006/jcph.2000.6459. https://dx.doi.org/10.
1006/jcph.2000.6459.

Lelbach BA, Byerly ZD, Marcello DC, Clayton GC and Kaiser H (2013) Octopus:
A Scalable AMR Toolkit for Astrophysics. In: Scientific Computing Around
Louisiana (SCALA). http://stellar.cct.lsu.edu/pubs/SCALA2013_lelbach.
pdf.

Lindblom L, Tohline JE and Vallisneri M (2001) Nonlinear Evolution of the r-Modes
in Neutron Stars. Physical Review Letters (PRL) 86(7): 1152–1155. DOI:10.1103/
PhysRevLett.86.1152. http://adsabs.harvard.edu/abs/2001PhRvL..86.1152L.

Linux Kernel Organization I (2017) Linux Power Capping Framework. https:
//www.kernel.org/doc/Documentation/power/powercap/powercap.txt.

Marcello DC (2017) A Very Fast and Angular Momentum Conserving Tree Code.
accepted for publication by the American Astronomical Society (AAS) Journals
http://adsabs.harvard.edu/abs/2017arXiv170606989M.

Marcello DC, Kadam K, Clayton GC, Frank J, Kaiser H and Motl PM (2016)
Introducing Octo-tiger/HPX: Simulating Interacting Binaries with Adaptive Mesh
Refinement and the Fast Multipole Method. In: Proceedings of the International
Conference on Accretion Processes in Cosmic Sources. http://apcs2016.iaps.
inaf.it.

Martin SJ and Kappel M (2014) Cray XC30 Power Monitoring and Management. In:
Proceedings of the Cray User Group Conference. https://cug.org/proceedings/
cug2014_proceedings/includes/files/pap130.pdf.

Menon H, Wesolowski L, Zheng G, Jetley P, Kale L, Quinn T and Governato
F (2015) Adaptive Techniques for Clustered N-body Cosmological Simulations.

Prepared using sagej.cls

28 The International Journal of High Performance Computing Applications XX(X)

Computational Astrophysics and Cosmology 2, art. id 1. DOI:10.1186/
s40668-015-0007-9. http://adsabs.harvard.edu/abs/2015ComAC...2....1M.

Montiel EJ, Clayton GC, Marcello DC and Lockman FJ (2015) What Is the Shell
Around R Coronae Borealis? Astronomical Journal (AJ) 150(1, art. id 14).
DOI:10.1088/0004-6256/150/1/14. http://adsabs.harvard.edu/abs/2015AJ...
.150...14M.

Motl PM, Frank J, Staff J, Clayton GC, Fryer CL, Even W, Diehl S and Tohline JE
(2017) A Comparison of Grid-based and SPH Binary Mass-transfer and Merger
Simulations. Astrophysical Journal, Supplement (ApJS) 229(2, art. id 27). DOI:
10.3847/1538-4365/aa5bde. http://adsabs.harvard.edu/abs/2017ApJS..229.
..27M.

Motl PM, Frank J, Tohline JE and D’Souza MCR (2007) The Stability of Double
White Dwarf Binaries Undergoing Direct-Impact Accretion. Astrophysical Journal
(ApJ) 670(2): 1314–1325. DOI:10.1086/522076. http://adsabs.harvard.edu/
abs/2007ApJ...670.1314M.

NERSC (2017a) Cray MPICH 7.4.4 documentation for NERSC Cori.
https://www.nersc.gov/users/computational-systems/cori/programming/
compiling-codes-on-cori/.

NERSC (2017b) National Energy Research Scientific Computing Center (NERSC)
Cori System Details. http://www.nersc.gov/users/computational-systems/
cori/configuration/.

Open MPI (2017) hwloc 1.11.6 source and binary distributions. https://www.
open-mpi.org/software/hwloc/v1.11/. Available under the 3-Clause BSD
License.

Ott CD, Ou S, Tohline JE and Burrows A (2005) One-armed Spiral Instability in
a Low-T/—W— Postbounce Supernova Core. Astrophysical Journal, Letters
(ApJL) 625(2): L119–L122. DOI:10.1086/431305. http://adsabs.harvard.edu/
abs/2005ApJ...625L.119O.

Pakmor R, Hachinger S, Röpke FK and Hillebrandt W (2011) Violent Mergers
of Nearly Equal-Mass White Dwarf as Progenitors of Subluminous Type Ia
Supernovae. Astronomy & Astrophysics 528, art. id A117. DOI:10.1051/
0004-6361/201015653. http://adsabs.harvard.edu/abs/2011A&A...528A.117P.

Raskin C, Scannapieco E, Fryer C, Rockefeller G and Timmes FX (2012) Remnants
of Binary White Dwarf Mergers. Astrophysical Journal (ApJ) 746(1, art. id 62).
DOI:10.1088/0004-637X/746/1/62. http://adsabs.harvard.edu/abs/2012ApJ.
..746...62R.

Sankrit R and Blair W (2004) X-ray, Optical & Infrared Composite (CXO/HST/SST)
of Kepler’s Supernova Remnant. Technical report, NASA/ESA/JHU. http:
//chandra.harvard.edu/photo/printgallery/2004.

Schaller M, Gonnet P, Chalk ABG and Draper PW (2016) SWIFT: Using Task-
Based Parallelism, Fully Asynchronous Communication, and Graph Partition-
Based Domain Decomposition for Strong Scaling on More Than 100,000 Cores. In:
Proceedings of the ACM Platform for Advanced Scientific Computing Conference
(PASC), art. id 2. ISBN 978-1-4503-4126-4. DOI:10.1145/2929908.292991. https:
//arxiv.org/abs/1606.02738.

Prepared using sagej.cls

29

Schwab J, Shen KJ, Quataert E, Dan M and Rosswog S (2012) The Viscous Evolution
of White Dwarf Merger Remnants. Monthly Notices of the Royal Astronomical
Society (MNRAS) 427(1): 190–203. DOI:10.1111/j.1365-2966.2012.21993.x. http:
//adsabs.harvard.edu/abs/2012MNRAS.427..190S.

Shende S and Malony A (2006) The TAU Parallel Performance System.
International Journal of High Performance Computing Applications (IJHPCA)
20(2): 287–311. DOI:10.1177/1094342006064482. https://dx.doi.org/10.1177/
1094342006064482.

Sodani A (2015) Knights Landing (KNL): 2nd Generation Intel Xeon Phi Processor.
In: Hot Chips Symposium. https://goo.gl/a6haUm.

Staff JE, Menon A, Herwig F, Even W, Fryer CL, Motl PM, Geballe T, Pignatari
M, Clayton GC and Tohline JE (2012) Do R Coronae Borealis Stars Form from
Double White Dwarf Mergers? Astrophysical Journal (ApJ) 757(1, art id. 76).
DOI:10.1088/0004-637X/757/1/76. http://adsabs.harvard.edu/abs/2012ApJ.
..757...76S.

STE||AR Group (2017a) HPX GitHub repository. https://github.com/
STEllAR-GROUP/hpx. Available under the Boost Software License 1.0 (a BSD-style
open source license).

STE||AR Group (2017b) HPX GitHub repository, commit
19bd11a. https://github.com/STEllAR-GROUP/hpx/commit/
19bd11a521f878580316f7f4c7754298b7b45563. Available under the Boost
Software License 1.0 (a BSD-style open source license).

STE||AR Group (2017c) Octopus AMR Framework GitHub repository. https://
github.com/STEllAR-GROUP/octopus. Available under the Boost Software License
1.0 (a BSD-style open source license).

STE||AR Group (2017d) OctoTiger AMR Framework GitHub repository. https:
//github.com/STEllAR-GROUP/octotiger. Available under the Boost Software
License 1.0 (a BSD-style open source license).

STE||AR Group (2017e) Octotiger AMR Framework GitHub repository,
commit 0b6cd60. https://github.com/STEllAR-GROUP/octotiger/commit/
0b6cd60d0405be700f191f03e2a011f7503b7af1. Available under the Boost
Software License 1.0 (a BSD-style open source license).

Syme D, Petricek T and Lomov D (2011) The F# Asynchronous Programming Model.
In: Proceedings of the International Conference on Practical Aspects of Declarative
Languages (PADL). ISBN 978-3-642-18377-5, pp. 175–189. DOI:10.1007/
978-3-642-18378-2 15. https://dx.doi.org/10.1007/978-3-642-18378-2_15.

USDOE (2012) X-Stack: Programming Challenges, Runtime Systems, and Tools
(DoE-FOA-0000619). Technical report, US Department of Energy Office
of Science. https://science.energy.gov/˜/media/grants/pdf/foas/2012/SC_
FOA_0000619.pdf.

Wheeler K, Murphy R and Thain D (2008) Qthreads: An API for Programming
with Millions of Lightweight Threads. In: Proceedings of the IEEE
International Symposium on Parallel Distributed Processing, Workshops and PhD
Forum (IPDPSW), Workshop on Multithreaded Architectures and Applications
(MTAAP). ISBN 978-1-4244-1693-6. DOI:10.1109/IPDPS.2008.4536359. https:

Prepared using sagej.cls

30 The International Journal of High Performance Computing Applications XX(X)

//dx.doi.org/10.1109/IPDPS.2008.4536359.
XPRESS APEX (2017) APEX Performance Monitoring Framework GitHub

repository. https://github.com/khuck/xpress-apex. Available under the Boost
Software License 1.0 (a BSD-style open source license).

Zingale M, Almgren AS, Bell JB, Nonaka A and Woosley SE (2009) Low Mach Number
Modeling of Type IA Supernovae. IV. White Dwarf Convection. Astrophysical
Journal (ApJ) 704(1): 196–210. DOI:10.1088/0004-637X/704/1/196. http:
//adsabs.harvard.edu/abs/2009ApJ...704..196Z.

Željko Ivezić, Axelrod TS, Brandt WN, Burke DL, Claver CF, Connolly AJ, Cook KH,
Gee P, Gilmore DK, Jacoby SH, Jones RL, Kahn SM, Kantor JP, Krabbendam
VL, Lupton RH, Monet DG, Pinto PA, Saha A, Schalk TL, Schneider DP,
Strauss MA, Stubbs CW, Sweeney DW, Szalay A, Thaler JJ, Tyson JA and
the LSST Collaboration (2008) Large Synoptic Survey Telescope: From Science
Drivers To Reference Design. Serbian Astronomical Journal (176): 1–13. DOI:
10.2298/SAJ0876001I. http://adsabs.harvard.edu/abs/2008SerAJ.176....1I.

Prepared using sagej.cls

