
How to properly misuse Hadoop

Marcel Huntemann
NERSC tutorial session

2/12/13

History
• Created by Doug Cutting (also creator of Apache Lucene).

2002

• Origin in Apache Nutch (open source web search engine).

• Realized architecture wouldn’t scale to the billions of
pages on the Web.

2003

• Paper about Google’s distributed file system, GFS.
(http://research.google.com/archive/gfs.html)

2004

• Open source implementation, Nutch Distributed File
System (NDFS).

• Paper about Google’s MapReduce.
(http://research.google.com/archive/mapreduce.html)

History (cont.)

2005

• All major Nutch algorithms ported to run using
MapReduce and NDFS.

2006

• Independent subproject of Lucene called Hadoop.

• Doug Cutting joins Yahoo!.

2008

• Hadoop made top-level project at Apache.

• Yahoo!’s productions search index generated by a
10,000-core Hadoop cluster.

• Terabyte sort record, 209 seconds on 910-node cluster.

 [later 68 seconds by Google, then 62 seconds by
Yahoo!, now at 55 seconds with GCE and MapR].

 What is ?

• Open source software project.

• Framework that allows for the distributed processing of
large data sets across clusters of computers using simple
programming models.

• Designed to scale up from single servers to thousands of
machines with a very high degree of fault tolerance.

 Achieved via detection and handling of failures at the
application layer.

• Consist of several modules, with the two main ones being:

1. Hadoop Distributed File System (HDFS)

2. MapReduce

HDFS

• Distributed file system with a master/slave architecture.

• Single NameNode, manages the file system namespace
and regulates access to files by clients.

• Multiple DataNodes (usually one per node in the cluster),
manage storage attached to the nodes that they run on.

• Files are (internally) split into one or more blocks.

• Blocks are stored on a set of DataNodes.

• Built in replication.

HDFS (cont.)

Source: http://developer.yahoo.com/hadoop/tutorial/module2.html

MapReduce

• Programming model for processing data.

• Breaks processing into two phases:

1. Map phase

2. Reduce phase

(Programmer specifies both functions.)

• Each phase has key-value pairs as input and output.

 (Types chosen by programmer.)

MapReduce (word count example)

Pseudo code:

 map (line_offset, line):

 for each word in line:

 emit (word, 1)

 reduce (word, values):

 sum = 0

 for each value in values:

 sum = sum + value

 emit (word, sum)

MapReduce (word count input)

marcelh@palmdale:~$ ll wordCountExample/input/

total 8.0K

-rw-rw---- 1 marcelh marcelh 27 Feb 8 23:25 theTruth.txt

-rw-rw---- 1 marcelh marcelh 72 Feb 8 23:26 theTruth.txt.addendum

marcelh@palmdale:~$ cat wordCountExample/input/theTruth.txt

I don't like giving talks.

marcelh@palmdale:~$ cat wordCountExample/input/theTruth.txt.addendum

But I can be bribed with a pitcher of beer :),

since I like beer a lot.

marcelh@palmdale:~$

MapReduce (word count data flow)

Input

(“I”, 1)
(“don’t”, 1)
(“like”, 1)
(“giving”, 1)
(“talks.”, 1)

1st map call

(“But”, 1)
(“I”, 1)
(“can”, 1)
(“be”, 1)
(“bribed”, 1)
(“with”, 1)
(“a”, 1)
(“pitcher”, 1)
(“of”, 1)
(“beer”, 1)
(“:),”, 1)

2nd map call

(“since”, 1)
(“I”, 1)
(“like”, 1)
(“beer”, 1)
(“a”, 1)
(“lot.”, 1)

3rd map call

(“I”, (1, 1, 1))

(“don’t”, (1))

(“like”, (1, 1))

(“giving”, (1))

(“talks.”, (1))

(“But”, (1))

(“can”, (1))

(“be”, (1))

(“bribed”, (1))

(“with”, (1))

(“a”, (1, 1))

(“pitcher”, (1))

(“of”, (1))

(“beer”, (1, 1))

(“:),”, (1))

(“since”, (1))

(“lot.”, (1))

(“I”, 3)

(“don’t”, 1)

(“like”, 2)

(“giving”, 1)

(“talks.”, 1)

(“But”, 1)

(“can”, 1)

(“be”, 1)

(“bribed”, 1)

(“with”, 1)

(“a”, 2)

(“pitcher”, 1)

(“of”, 1)

(“beer”, 2)

(“:),”, 1)

(“since”, 1)

(“lot.”, 1)

Output

map shuffle reduce

(0 , “But … beer :),”)

MapReduce (word count output)

marcelh@palmdale:~$ hadoop jar dev/hadoop/hadoop-examples-*.jar wordcount wordCountExample/input/ wordCountExample/output/
<SNIP>

13/02/08 23:37:02 INFO mapred.JobClient: map 100% reduce 100%

13/02/08 23:37:02 INFO mapred.JobClient: Job complete: job_local_0001
<SNIP>

marcelh@palmdale:~$ cat wordCountExample/output/part-r-00000

:), 1

But 1

I 3

a 2

be 1

beer 2

bribed 1

can 1

don't 1

giving 1

like 2

lot. 1

of 1

pitcher 1

since 1

talks. 1

with 1

marcelh@palmdale:~$

All together now

• MapReduce job consists of input data, MapReduce program and
configuration information.

• Job gets divided into tasks (map tasks and reduce tasks).

• Two types of nodes control job execution process:

 Jobtracker, coordinates all jobs and keeps track of progress.

 Tasktrackers, run tasks and send progress reports.

• Input gets divided into splits.

• One map task per split, which runs map function on each record
in the split.

• Data locality optimization.

All together now (data locality optimization)

Source: Hadoop: The Definitive Guide

Data-local (a), rack-local (b), and off-rack (c) map tasks

All together now (data flow)

Source: Hadoop: The Definitive Guide

JGI setup and experience

• No dedicated Hadoop cluster -> on-the-fly approach

• No HDFS -> GPFS

• Centralized Java/Hadoop installation -> local installation

• Memory abuse -> *.java.child.opts -Xmx

• Unbalanced reducer running time -> Partitioner

• Localize DBs, etc. -> Rob’s localize_file

• Large data sets vs. 12 hours and number of nodes

• Large data sets vs. shuffle phase

No reducer

Eager beaver?

http://developer.yahoo.com/hadoop/tutorial/

Tom White

Hadoop: The Definitive Guide

O’Reilly Media, Inc.

Donald Miner, Adam Shook

MapReduce Design Patterns

O’Reilly Media, Inc.

Acknowledgements

 Kostas Mavrommatis (WIP)

 Amrita Pati

 Shane Canon

 Seung-Jin Sul

 Rob Egan

 NERSC consulting team

Questions?

	How to properly misuse Hadoop
	History
	History (cont.)
	 What is ?
	HDFS
	HDFS (cont.)
	MapReduce
	MapReduce (word count example)
	MapReduce (word count input)
	MapReduce (word count data flow)
	MapReduce (word count output)
	All together now
	All together now (data locality optimization)
	All together now (data flow)
	JGI setup and experience
	Eager beaver?
	Acknowledgements
	Questions?

