
Yun (Helen) He !
NERSC/LBNL!
!
NCAR Multi-core 6 Workshop!
Sept 13-14, 2016

NERSC Early KNL
Experiences

Introduction

-	2	-	

NERSC Exascale Science Application
Program (NESAP)

•  The	NESAP	program	was	
launched	in	Fall	2014	to	
prepare	NERSC	user	
community	for	Cori	KNL	
architecture	

•  20	applicaDons	were	selected	
as	Tier	1	(with	postdocs)	and	
Tier	2	applicaDons	to	work	
closely	with	Cray,	Intel	and	
NERSC	staff.		AddiDonal	26	
Tier	3	teams.		

•  80%	of	NERSC	hours	are	
represented	by	Tiers	1,2,3	
and	proxy	codes.	

-	3	-	

NERSC KNL System: Cori Phase 2

•  Cori	KNL:	9,304	nodes.		Main	features:	

–  Many	cores:	68	cores	per	node,	4	hardware	threads	per	core.		
•  3	9mes	of	cores	(6	9mes	of	logical	cores)	per	node	than	NERSC	IvyBridge	Edison.		

–  Larger	vector	units	(supports	AVX-512	instruc9on	set)	
•  Dual	512-bit	SIMD	units	with	FMA:	32	double	precision	flops/cycle	
•  Edison	(IvyBridge)	has	256-bit	AVX:	8	double	precision	flops/cycle	

–  On	package	high	bandwidth	memory:	MCDRAM	
•  450	GB/sec	STREAM	measurement	as	compared	to	85	GB/sec	from	DDR4.	
•  No	direct	L3	cache	

–  Burst	Buffer	
•  Cori	Phase	1	&	Phase	2	under	merge	starDng	from	Sept	19,	

2016,	for	about	6	weeks	
•  NESAP	teams	will	have	access	first	in	early	Nov	
•  GaDng	procedure	for	general	users		

–  Need	to	show	performance	and	scaling	effort/results	
-	4	-	

KNL Test Systems

•  Carl	(white	boxes	from	Intel,	single	nodes	only)	
–  B0:	64	cores	@1.3	GHz	
–  B1:	68	cores	@1.4	GHz	

•  Gerty	(test	system	from	Cray,	with	Aries	network)	
–  Similar	to	real	Cori	Phase1	&	Phase2	system	
–  P1:	Haswell.	Dual	sockets,	16	cores/socket	@	2.3	GHz	
–  P2:	KNL.	B1.	68	cores.	@1.4	GHz	

•  All	KNL	nodes	have		
–  4	hardware	threads	per	core	
–  9600	GB	DDR4	and	16	GB	MCDRAM	

-	5	-	

Intel Tools are Useful

-	6	-	

Intel Compiler Report

•  Use	-qopt-report=5	for	detailed	compiler	reports	on	
which	opDmizaDons	have	been	performed,	why	
certain	loops	are	vectorized	or	not,	etc.		

-	7	-	

Intel VTune

•  Memory	Access	
–  Detect	memory	hierarchy	

access	issues	(such	as	false	
sharing)	and	NUMA	problems	

–  measure	DRAM	and	MCDRAM	
bandwidth	

–  suggest	data	structures	to	
allocate	to	MCDRAM	

•  General	ExploraDon	
–  Code	efficiency	

•  Advanced	Hot	Spots	
–  MPI/OpenMP	load	balance,	

poten9al	gain	
	

-	8	-	

Diagram	from	Intel	

Intel Advisor

•  VectorizaDon	Advisor	

–  Sorts	loops	by	poten9al	performance	gain	
–  Vectoriza9on	analysis	
–  Memory	access	paeern	data	
–  Roofline	Analysis	

•  Threading	advisor	
–  Threading	design	tool	
–  Suitability	analysis	with	expected	speedup	

-	9	-	 Diagram	from	Intel	

Intel Inspector

•  Detect	memory	errors	

–  memory	leak		
–  data	race,	deadlock	etc.	

•  Memory	growth	measurement	

	

-	10	-	

 Guide and Understand
Optimization with Roofline
Model

-	11	-	

The Roofline Model

Arithmetic Intensity (flops/bytes)

A
tt
a

in
a

b
le

 P
e

rf
o

rm
a

n
ce

 (
G

F
lo

p
/s

)

Peak GFlop/s (w/FMA)

Cac
he

 B
an

dw
idt

h
(G

B/s)

M
em

or
y B

an
dw

idt
h
(G

B/s)

(no FMA)

(no FMA, no vectorization)

Id
e

a
l A

ri
th

m
e

tic
 I
n

te
n

si
ty

(n
o

 c
a

ch
e

 b
lo

ck
in

g
)

A r i t h m e t i c I n t e n s i t y

O(1)	

O(log(N))	

SpMV,	BLAS1,2	

Stencils	(PDEs)				

Lagce	Methods	

FFTs	

Dense	Linear	Algebra,	(BLAS3)	

Par9cle	Methods	

O(N)	

Arithmetic Intensity = Total FLOPs
Total Bytes

Attainable
FLOPs / sec

=min

Peak FLOPs / sec,

PeakMemory
Bandwidth

x Arithmetic
Intensity

!

"
#

$
#

Slide	from	Doug	Doerfler	et.	al.,	IXPUG	at	ISC2016	-	12	-	

KNL Roofline Results

Quad	
Cache	 Quad	Flat	 SNC2	 SNC4	 Peaka	

GFLOP/s	 2,205	 2,199	 2,224	 2,212	 2,253	

L1	 5,894	 6,040	 5,889	 6,055	 9,011	

L2	 1,834	 1,827	 1,829	 1,840	 2,252b	

MCDRAM	 345	 372	 381	 415	 420c	

DDR	 77.0	 76.9	 76.9	 102	

All	Bandwidths	are	in	GB/s	
(a)		Values	assume	an	AVX			

frequency	of	1.1	GHz	
(b)	L2	assumed	~(L1	/	4)?	
(c)	MCDRAM	BW	is	for	1R/1W	

per	iteraDon	

•  Using	2	threads/core	
•  Max	L1,	L2	and	MCDRAM	

–  1	FLOP/iteraDon	
–  4	MPI	+	32	threads	

•  Max	GFLOP/s	
–  64	FLOPs/iteraDon	
–  2	MPI	+	64	threads	

0.1$

1$

10$

100$

1000$

10000$

0.01$ 0.1$ 1$ 10$ 100$

G
FL
O
P
s/
se
c$

Arithme4c$Intensity$(FLOPs/Byte)$

KNL$Roofline:$Quad$Flat$

L1$

L2$

MCDRAM$

DDR4$

6,04
0$GB

/s$

1,82
7$GB

/s$

372
$GB/

s$

77$G
B/s$

2,199$GFLOP/s$

Slide	from	Doug	Doerfler	et.	al.,	
IXPUG	at	ISC2016	

-	13	-	

How to Measure Arithmetic Intensity

-	14	-	

•  hlp://www.nersc.gov/users/applicaDon-performance/
measuring-arithmeDc-intensity/	

•  Intel	SDE	measures	“Total	Flops”	
•  Intel	Vtune	measures	“Total	Bytes”	
•  Haswell	consistently	alains	a	higher	arithmeDc	intensity	

than	KNL	
–  KNL	generally	moves	more	data	to/from	memory	than	Haswell	due	to	

lack	of	L3	cache	
–  The	higher	theore9cal	performance	benefits	of	MCDRAM	bandwidth	

may	not	be	fully	realized	due	to	this	extra	data	movement	

PICSAR Example

1"

10"

100"

1000"

10000"

0.1" 1" 10"

G
FL
O
P
/s
"

Arithme3c"Intensity"(FLOP/byte)"

Roofline"Model"

wo/FMA"

Original"

w/Tiling"

w/Tiling+Vect" 1"

10"

100"

1000"

10000"

0.1" 1" 10"

G
FL
O
P
/s
"

Arithme3c"Intensity"(FLOP/byte)"

Roofline"Model"

wo/FMA"

Original"

w/Tiling"

w/Tiling+Vect"

Haswell	 KNL	MCDRAM	

•  OpDmizaDons	
–  Original	code	spa9ally	decomposes	the	problem	with	MPI		
–  MPI	subdomains	are	subdivided	into	large	number	of	9les	handled	with	OpenMP,	improving	

memory	locality,	hence	cache	reuse	of	9les,	and	load	balance.	
–  Deposi9on	and	Interpola9on	steps	were	rewrieen	to	enable	more	efficient	vectoriza9on,	plus	

par9cle	cell	sor9ng	was	added	to	again	improve	memory	locality	and	hence	cache	reuse.	
•  ObservaDons	

–  Tiling	and	vectoriza9on	increase	the	arithme9c	intensity	to	take	advantage	of	addi9onal	
effec9ve	memory	bandwidth.	

–  Not	memory	bound	so	more	op9miza9on	poten9al.	

Work	by	Mathieu	Lobet	et.	al.		
Slide	adapted		from	Doug	Doerfler	et.	al.,	IXPUG	at	ISC2016	-	15	-	

1"

10"

100"

1000"

10000"

0.01" 0.1" 1" 10"

G
FL
O
P
/s
"

Arithme3c"Intensity"(FLOP/byte)"

Roofline"Model"

wo/FMA"

1"RHS"

4"RHS"

8"RHS"1"

10"

100"

1000"

10000"

0.01" 0.1" 1" 10"

G
FL
O
P
/s
"

Arithme3c"Intensity"(FLOP/byte)"

Roofline"Model"

wo/FMA"

1"RHS"

4"RHS"

8"RHS"

MFDn Example

Haswell	 KNL	MCDRAM	

•  OpDmizaDons	
–  Use	case	requires	all	memory	on	node	(HBM	+	DDR).	Explicitly	place	important	arrays	into	

MCDRAM	with	FASTMEM	direc9ves.	
–  Use	blocked	(nRHS)	to	improve	bandwidth	and	locality	(the	larger	sparse	matrix	resides	in	DDR4)	

•  ObservaDons	
–  Code	is	highly	memory	bandwidth	bound	
–  More	RHS	helps	to	increase	arithme9c	intensity.	However,	the	number	of	RHS	is	limited	by	

MCDRAM	capacity.	

Work	by	Brandon	Cook	et	al.	
Slide	adapted		from	Doug	Doerfler	et.	al.,	IXPUG	at	ISC2016	-	16	-	

BerkeleyGW Example

	From	Jack	Deslippe		

•  OpDmizaDon	Steps		
1.  Refactor	(3	Loops	for	MPI,	OpenMP,	Vectors)	
2.  Add	OpenMP	
3.  Ini9al	Vectoriza9on	(loop	reordering,	condi9onal	removal)	
4.  Cache-Blocking	to		beeer	reuse	last	level	cache	
5.  Improved	Vectoriza9on	
6.  Add	hyper-threading	

•  ObservaDons	
–  Arithme9c	Intensity	reduced	from	step	2	to	3.	Problem	size	

larger	than	L2	but	Haswell	has	L3	to	catch	
–  From	step	3	to	4:	No	Haswell	speedup	since	it	fits	in	L3.	Good	

improvement	for	KNL	
–  Has	poten9al	for	further	op9miza9on	

-	17	-	

Boxlib Example

	From	Brian	Friesen	

•  OpDmizaDon		
–  Loop	9ling:	Divide	boxes	into	smaller	

9les.	Divide	9les	among	OpenMP	
threads	

•  ObservaDons	
–  Memory	bandwidth	bound	
–  Effec9ve	L2	and	L3	cache	reuse	on	

Haswell.		
–  Faster	on	Haswell	than	on	KNL	

-	18	-	

Overall NESAP Optimization
Results

-	19	-	

Results	from	the	NESAP	teams	

NESAP Speedups

-	20	-	

•  Significant	speed	usually	involves	code	restructuring	to	improve	vectorizaDon	and	
data	locality.	

•  Speedup	is	mostly	larger	on	KNL	since	fewer	and	faster	Haswell	(with	L3	cache)	is	
more	forgiving	to	imperfect	thread	scaling	and	vectorizaDon.	(WARP,	BerkeleyGW)	
–  Boxlib	is	an	excep9on.		Tiling	has	more	benefit	for	memory	bandwidth	bound	on	Haswell	(no	HBM)	

Speedup on KNLvs Haswell

-	21	-	

•  EMGeo,	MILC,	and	Chroma	see	large	KNL	vs.	Haswell	speedup:	memory	
bandwidth	bound.	Speedup	came	from	effecDvely	use	MCDRAM.	

KNL/Haswell Memory Hierarchy Speedups

-	22	-	

•  EMGeo,	MILC,	Chroma,	MFDn	are	memory	bandwidth	bound.	Speedup	mostly	matches	
MCDRAM	vs.	DDR	bandwidth	raDo	

•  KNL	generally	moves	more	data	to/from	memory	than	Haswell	due	to	lack	of	L3	cache	
•  Codes	effecDvely	use	L3	cache	may	perform	beler	on	Haswell	than	on	KNL:	Boxlib,	XGC1	
	

KNL AVX and FMA Speedups

-	23	-	

•  BerkeleyGW	sees	large	AVX512	(vectorizaDon	effect)	vs.	scalar	instrucDons.	
•  Not	many	codes	see	large	effect	with	FMA.	However,	FMA	used	in	libraries	are	not	

measured	here.	

MPI/OpenMP Process and
Thread Affinity

-	24	-	

Affinity Goal

•  Correct	process	and	thread	affinity	for	hybrid	MPI/OpenMP	
programs	is	the	base	for	gepng	opDmal	performance	on	KNL.	It	is	
also	essenDal	for	guiding	further	performance	opDmizaDons.		

•  Our	goal	is	to	promote	OpenMP4	standard	sepngs	for	portability.	
For	example,	OMP_PROC_BIND	and	OMP_PLACES	are	preferred	to	
Intel	specific	KMP_AFFINITY	sepngs.		

•  Discovered	in	an	Intel	Dungeon	session	with	CESM	HOMME	that	
OMP	sepngs	ran	slower	than	KMP	sepngs.		
–  What	can	be	the	cause?	
–  InvesDgaDon	started	on	this	…	

	

-	25	-	

HOMME: 7 Test Runs

Expect	to	see	same	performance	from	all	7	cases	on	a	64-core	KNL	quad	flat	node	

•  case	1:	mpirun	-n	32	-env	OMP_NUM_THREADS	2	-env	KMP_AFFINITY	compact,verbose	-env	
KMP_PLACE_THREADS	1T	numactl	-m	1	./app	

•  case	2:	mpirun	-n	32	-env	KMP_AFFINITY	compact,verbose	-env	KMP_PLACE_THREADS	2C,1T	
numactl	-m	1	./app	

•  case	3:	mpirun	-n	32		-env	OMP_NUM_THREADS	2		-env	KMP_AFFINITY	scaler,verbose		numactl	-
m	1	./app	

•  case	4:	mpirun	-n	32	-env	OMP_NUM_THREADS	2	-env	OMP_PROC_BIND	spread	-env	
OMP_PLACES	threads	numactl	-m	1	./app	

•  case	5:	mpirun	-n	32	-env	OMP_NUM_THREADS	2	-env	OMP_PROC_BIND	close	-env	OMP_PLACES	
cores	numactl	-m	1	./app	

•  case	6:		mpirun	-n	32	-env	KMP_AFFINITY	scaler,verbose	-env	KMP_PLACE_THREADS=2C,1T	
numactl	-m	1	../app	

•  case	7:	mpirun	-n	32		-env	KMP_AFFINITY	scaler,verbose	-env	KMP_PLACE_THREADS=2C,1T		-env	
OMP_NUM_THREADS	2	numactl	-m	1	./app	

-	26	-	

Affinity Analysis

•  Confirmed	with	another	applicaDon	this	is	the	case	(same	performance	

from	all	tests)	
•  Confirmed	with	my	simple	affinity	test	case	that	core	bindings	are	all	

equivalent	
•  However,	iniDal	runs	see	different	results	from	the	7	test	cases	for	

HOMME.	Some	cases	are	>2X	slower.	Also	quad	cache	performance	is	
about	5%	slower.		

•  Further	invesDgaDons	showed	even	though	asking	for	2	threads	only,	the	
code	is	running	with	4.		It	was	discovered	later	nested	OpenMP	is	set	in	the	
code	by	default!	

•  Using	the	modified	code	with	explicit	num_threads	clauses	specified	for	
nested	OpenMP	regions,	all	7	cases	then	perform	the	same	on	quad	flat	
and	quad	cache	nodes.		

-	27	-	

HOMME Single-Node Scaling

-	28	-	

Good	nested	OpenMP	scaling	achieved	aker	code	bug	is	fixed	

%	mpirun	-n	8	-env	OMP_PROC_BIND	spread	-env	OMP_PLACES	threads	-env	OMP_NUM_THREADS	
4	./xthi	|sort	-k4n,6n	
Hello	from	rank	0,	thread	0,	on	ekm118.	(core	affinity	=	0)	
Hello	from	rank	0,	thread	1,	on	ekm118.	(core	affinity	=	70)	
Hello	from	rank	0,	thread	2,	on	ekm118.	(core	affinity	=	72)	
Hello	from	rank	0,	thread	3,	on	ekm118.	(core	affinity	=	142)	
Hello	from	rank	1,	thread	0,	on	ekm118.	(core	affinity	=	144)	
Hello	from	rank	1,	thread	1,	on	ekm118.	(core	affinity	=	214)	
Hello	from	rank	1,	thread	2,	on	ekm118.	(core	affinity	=	216)	
Hello	from	rank	1,	thread	3,	on	ekm118.	(core	affinity	=	15)	
	

Use	I_MPI_PIN_DOMAIN	to	set	to	number	of	logical	cores	per	MPI	task.		Otherwise,	OMP	tasks	are	
crossing	9le	boundaries.	Good	to	waste	extra	4	cores	on	purpose	if	#MPI	tasks	is	not	divisible	by	68.		
	
%	mpirun	-n	8	-env	OMP_PROC_BIND	spread	-env	OMP_PLACES	threads	-env	OMP_NUM_THREADS	4		
-env	I_MPI_PIN_DOMAIN	32	./xthi	|sort	-k4n,6n	
Hello	from	rank	0,	thread	0,	on	ekm118.	(core	affinity	=	0)													
Hello	from	rank	0,	thread	1,	on	ekm118.	(core	affinity	=	2)									
Hello	from	rank	0,	thread	2,	on	ekm118.	(core	affinity	=	4)	
Hello	from	rank	0,	thread	3,	on	ekm118.	(core	affinity	=	6)	
Hello	from	rank	1,	thread	0,	on	ekm118.	(core	affinity	=	8)	
…	
Hello	from	rank	7,	thread	0,	on	ekm118.	(core	affinity	=	56)	
Hello	from	rank	7,	thread	1,	on	ekm118.	(core	affinity	=	58)	
Hello	from	rank	7,	thread	2,	on	ekm118.	(core	affinity	=	60)	
Hello	from	rank	7,	thread	3,	on	ekm118.	(core	affinity	=	62)	

core	0:	0,	68,	136,	204	
core	1:	1,	69,137,	205	
core	2:	2,	70,	138,	206	
…	
core	64:	64,	132,	200,	268	
…	
core	67:	67,	135,	203,	271	
core	68:	68,	136,	204,	272	

•  xthi.c	and	xthi-nested.c	test	codes	
available	upon	request	

•  Requested	to	OpenMP	Standard	to	
provide	Intel		KMP_AFFINITY=verbose	or	
CRAY_OMP_CHECK_AFFINITY=TRUE	
equivalent	

What About a 68-core KNL Node?

-	29	-	

•  Again,	I_MPI_PIN_DOMAIN	is	important	
•  Sample	sepngs	for	2	MPI	tasks,	4	outer	OpenMP	threads,	and	4	inner	

OpenMP	threads:	
%	export	OMP_NUM_THREADS=4,4	
%	export	OMP_PROC_BIND=spread,close	
%	export	OMP_PLACES=threads	
%	export	OMP_NESTED=true	
%	export	I_MPI_PIN_DOMAIN=128									#	32	physical	cores	
%	export	KMP_HOT_TEAMS=1	
%	export	KMP_HOT_TEAMS_MAX_LEVELS=2	

•  Use	num_threads	clause	in	source	codes	to	set	threads	for	nested	regions.	
For	most	other	non-nested	regions,	use	OMP_NUM_THREADS	
environment	variable	for	simplicity	and	flexibility.		

Nested OpenMP Thread Affinity

-	30	-	

Choice of Default Cluster and
Memory Modes

-	31	-	

Available Modes for KNL Nodes

•  KNL	has	configurable	on-chip	interconnect	for	NUMA	and	
memory	mode.	

•  Sub-NUMA	Cluster	(SNC)	modes		
–  No	SNC	(Quad,	all-2-all,	Hemisphere),	SNC-2,	SNC-4		

•  Memory	modes		
–  Cache,	Flat,	Hybrid		

•  No	SNC	and	Cache	modes	are	relaDvely	easier	to	use	
•  Takes	about	11	to	26	min	of	reboot	Dme	in	order	to	switch	

to	another	mode	
•  Ongoing	analysis	for	sepng	default	mode(s)	for	NERSC	(>	

5,000	users,	800	projects)?	

-	32	-	

General Strategies and Observations

•  If	applicaDon	memory	<=16GB,	use	Flat	mode	to	allocate	all	in	

MCDRAM	is	best.	If	not,	manual	placement	is	needed.	
•  Cache	mode	gives	prely	good	start	for	most	apps.		
•  Cache	mode	can	be	beaten	by	Flat	mode	+	manual	data	placement	in	

MCDRAM.		
•  Performance	with	Cache	mode	can	vary	a	lot	more	than	Flat	mode.		

–  Different	memory	placement	of	alloca9ons	and	different	fragmenta9on	caused	
by	previous	jobs.		

•  SNC4/SNC2	provide	small	advantages	over	quadrant	mode	for	some	
(not	all)	apps,	but	relaDvely	harder	to	use.	(different	number	of	cores	
per	NUMA	domain	for	SNC4)		

•  We	have	yet	to	try	Hybrid	mode	with	MCDRAM	
•  Default	cluster	and	memory	mode(s)	on	Cori	have	not	been	finalized.		

–  Most	likely,	quad	flat	(and	some	quad	cache	and/or	SNC4	flat).		
–  Also	not	finalized	whether	to	allow	users	to	switch	modes	(most	likely	yes	to	a	

certain	extent,	but	node	reboot	9me	will	be	billed	as	run	9me)	

-	33	-	

Summary

• OpDmizing	for	KNL	requires	good	thread	level	scaling	
(OpenMP),	vectorizaDon	and	effecDve	use	of	HBM.	

• Use	available	Intel	tools	to	help	idenDfy	areas	to	work	on	
for	opDmizaDon.	

• Use	Roofline	model	to	guide	opDmizaDon	potenDal.		

• Correct	process	and	thread	affinity	is	the	base	for	gepng	
opDmal	performance.	

• Keep	portability	in	mind,	use	portable	programming	
models.	

-	34	-	

Thank you.

-	35	-	

