NERSC Early KNL
Experiences

Yun (Helen) He
 NeRrsc/| [W NERSC/LBNL

at the
FOREFRONT

NCAR Multi-core 6 Workshop

| Sept 13-14, 2016 =
U.S. DEPARTMENT OF Ofﬁce of , PO, m
© ENERGY 70 o)

Introduction

A\ &K

NS |
YEARS
at the
FOREFRONT
1974-2014

~

g . _ A
£ @ U.S. DEPARTMENT OF Ofﬁce of P

ENERGY Science "2-

CERY, U.S. DEPARTMENT OF

4@ ENERGY science

NERSC Exascale Science Application

Program (NESAP)

The NESAP program was
launched in Fall 2014 to
prepare NERSC user
community for Cori KNL
architecture

20 applications were selected
as Tier 1 (with postdocs) and
Tier 2 applications to work
closely with Cray, Intel and
NERSC staff. Additional 26
Tier 3 teams.

80% of NERSC hours are
represented by Tiers 1,2,3
and proxy codes.

Office of

YEARS

at the
FOREFRONT

NESAP TIER 1 AND 2 APPLICATIONS

Application Science Area Algorithm
Boxlib Multiple AMR
Chombo Crunch Multiple AMR
CESM Climate Grid
ACME Climate Grid
MPAS-O Ocean Grid
Gromacs Chemistry / Biology MD
Meraculous Genomics Assembly
NWChem Chemistry PW DFT
PARSEC Material Sci. RS DFT
Quantum Material Sci. PW DFT
ESPRESSO
BerkeleyGW Material Sci. MBPT
EMGEO Geosciences Sparse LA
XGCl1 Fusion PIC
WARP Accelerators PIC
M3D Fusion CD/PIC
HACC Astrophysics N-Body
MILC HEP QCD
Chroma Nuclear Physics QCD
DWF HEP QCD
MFDN Nuclear Physics Sparse LA

BERKELEY LAB

NERSC KNL System: Cori Phase 2 EZ] (e

 Cori KNL: 9,304 nodes. Main features:

— Many cores: 68 cores per node, 4 hardware threads per core.
* 3 times of cores (6 times of logical cores) per node than NERSC IvyBridge Edison.

— Larger vector units (supports AVX-512 instruction set)
* Dual 512-bit SIMD units with FMA: 32 double precision flops/cycle
* Edison (lvyBridge) has 256-bit AVX: 8 double precision flops/cycle

— On package high bandwidth memory: MCDRAM
* 450 GB/sec STREAM measurement as compared to 85 GB/sec from DDR4.
* Nodirect L3 cache

— Burst Buffer
* Cori Phase 1 & Phase 2 under merge starting from Sept 19,
2016, for about 6 weeks

* NESAP teams will have access first in early Nov

e G@Gating procedure for general users
— Need to show performance and scaling effort/results

£ERY, U-S. DEPARTMENT OF Office of

a ENERGY Science 4 E;E"\l%m

N
A
rrrrrrr "“l

KNL Test Systems L.

* Carl (white boxes from Intel, single nodes only)
— BO: 64 cores @1.3 GHz
— B1: 68 cores @1.4 GHz

e Gerty (test system from Cray, with Aries network)
— Similar to real Cori Phasel & Phase2 system
— P1: Haswell. Dual sockets, 16 cores/socket @ 2.3 GHz
— P2: KNL. B1. 68 cores. @1.4 GHz

 All KNL nodes have

— 4 hardware threads per core
— 9600 GB DDR4 and 16 GB MCDRAM

U.S. DEPARTMENT OF Ofﬂce Of

ENERGY Science = E.;Eﬂ\‘%“?

N
A
rrrrrrr "“l

T
£ 0\
B 2
% @ 5
», 4
S5 iy

Intel Tools are Useful

YEARS

at the
FOREFRONT

1974-2014

~

2% U.S. DEPARTMENT OF : - A
\ Office of P

. ENERGY Science -6-

Intel Compiler Report C.T

* Use -qopt-report=5 for detailed compiler reports on
which optimizations have been performed, why
certain loops are vectorized or not, etc.

officeof i
Science "7 BERKELEY LAB

Intel VTune

YEARS

at the
FOREFRONT

* Memory Access

— Detect memory hierarchy
access issues (such as false
sharing) and NUMA problems

— measure DRAM and MCDRAM
bandwidth

— suggest data structures to
allocate to MCDRAM

* General Exploration
— Code efficiency

* Advanced Hot Spots

— MPI/OpenMP load balance,
potential gain

U.S. DEPARTMENT OF Ofﬁce of

D ENERGY Sooreo

Grouping: | Bandwidth Domain / Bandwidth Utiization Type / Memory Object / Allocation Stack v %] Q1 &

Bandwidth Domgin / Bandwidth Memory o LLC Miss e Average -
Utilization Type / Memory Object Bound Loads Stores Count Latency v
/ Allocation Stack (cycles)
DRAM, GB/sec 0.657 125,874,377,622 16,061,040... 130,507,830 40
High 0.750 28,236,084,708 5,014,875,.. 75,304,518 9
+stream.c:180 (76 MB) 900,002,700 654,009,810 18,301,098 495
tstream.c:179 (76 MB) 1,050,003,150 667,210,008 33,301,998 487
tstream.c:181 (76 MB) 1,434,004,302 907,213,608 20,101,206 412
Selected 1 row(s): 1.000 126,000,378 21,600,324 300,018 61 v

OpenMP Analysis. Collection Time : 28.061

12,2035 (43.5%)

Serial Time of your application is high. It directly impacts application Elapsed Time
and scalability. Explore options for parallelization, algorithm or microarchitecture
tuning of the serial part of the application.

Serial Time (outside any parallel region) :

Parallel Region Time : 15.858s (56.5%)
5.005s (17.8%)
10.853s (38.7%)

The time wasted on load imbalance or parallel work arrangement is significant and
negatively impacts the application performance and scalability. Explore OpenMP
regions with the highest metric values. Make sure the workload of the regions is

Estimated Ideal Time :
OpenMP Potential Gain :

enough and the loop schedule is optimal

Diagram from Intel

~

frreeerer

A
||||

YEARS
at the
FOREFRONT

Intel Advisor

* Vectorization Advisor
— Sorts loops by potential performance gain
— Vectorization analysis
— Memory access pattern data
— Roofline Analysis
* Threading advisor

— Threading design tool
— Suitability analysis with expected speedup

Filter by which loops What prevents
are vectorized! vectorization?

*“ Where shou. vectorization and/or threading parallelism? \ Intel Advisor XE 2016

Trip Counts

Elapsed time: 5444; | Vectonzed Not Vectorized ALTER: Al Modules Sources v Q
. . Tp 2) Vectorized Loops .
Function Call Sites and Loops & | @ Vector Issues Self Timew | Total Time Loop Type Why No Vectorization? =
ounts Vecto... Efficiency Vector L.,
O [loop at #tl_algo hid740 in stdtr ..] Q170s 1 0.170:1 Scalar B nonwvectorzable loop ins.
[loop afoopstlcpp:2449 in 5234_] ¥ 2Ineffective peeled/rem .. Q17051 017051 12;4 Collapse Collapse AVX E A
[loofll st loopstl.cpp:2449in 5. | Q15051 0.150:1 12 Vectorzed (Body) AVX B
i O llogll et loopsth.cpp:24dins... [] Q02051 0.020s1 4 Remainder
i loopstl.cpp: 7900 in vas_)] Q17051 0.170s1 500 Scalar @ vectorization possible but... B
U loopstlcpp:3509in 52 . ¥ 1High vector register .. 0.160s | 0.160s1 12 Expand Expand
0 loopstl.cpp:3631 in 5279) ¥ 2Ineffective peeled/rem.. Q15051 01501 125;4 Expand Epand
o loopstlcpp:6249in 5414) Q15051 0.150s1 12 Expand Expand
stl_numench:2d7instd.. || @] Assumed dependency.. 015051 0.150s1 a3 Scalar B vector dependence pre

Focus on What vectorization Which Vector instructions How efficient

hot loops issues do | have? are being used? is the code?

U.S. DEPARTM g o
frreereer ‘

~

) ENERGY 5;'{5;0;' -9- Diagram from Intel

YEARS

at the
FOREFRONT

Intel Inspector

* Detect memory errors
— memory leak
— data race, deadlock etc.

* Memory growth measurement

M Detect Deadlocks and Data Races Intel Inspector XE 2016

@ Target Analysis Type || B Collection Log m

Problems

Da @ |Type Sources | Modules State Severity

“P1 Q Data race xthi-race.c xthi-race.impi * New Error 1 item(s)

Data race xthi-race. ... xthi-race.impi Re New Type

Data race xthi-race. .. xthi-race.impi R New Data race 1 item(s)
Source
xthi-race.c 1 item(s)
Module
xthi-race.impi 1 item(s)
State
New 1 item(s)
Suppressed
Not suppressed 1 item(s)
Investigated
Not investigated item(s’

9 1 (i 1 of 4 b [All] Timeline

Description Source Function Module H
Write xthi-race.c:54 main xthi-race.impi OMF Kker Thread #3 (4430C +
52 (void)sched_getaffinity(0, sizeof(coremask), |[xthi-race.impi!main - xthi-race.c H
53 cpuset_to_cstr(&oremask, clbuf); OMP Worker Thread #7 (4431 ¢
54 global_counter++;
S5 #pragma omp barrier
56 printf("Hello from level 1: rank= %d, thread
Wiite xthi-race.c54 main xthi-race impi
52 (void)sched_getaffinity(0, sizeof(coremask), |[xthi-race.impi!main - xthi-race.c

53 cpuset_to_cstr(&coremask, clbuf);

54 global_counter++;

S5 #pragma omp barrier

56 printf("Hello from level 1: rank= %d, thread

~

U.S. DEPARTMENT OF 1 g A
Office of ’\‘)

E N E RGY Science -10- BERKELEY LAB

Lawrarce Bekeiy NatonalLaberatary

Guide and Understand
Optimization with Roofline
Model

YEARS

at the
FOREFRONT

1974-2014

2% U.S. DEPARTMENT OF : - A
\ Office of P

. ENERGY Science -11-

The Roofline Model

.
>

Peak FLOPs / sec,
Attainable

Peak GFlop/s (W/FMA) FLOPs | sec
7 0 FMA) Bandwidth Intensity

=miny Peak Memory ; Arithmetic

Total FLOPs
Total Bytes

(no FMA, no vectorization) Arithmetic IntenSily =

0o(1) O(N)

AN O log(N))
S

Al;ithmetic In

Attainable Performance (GFlop/s)

(no cache blocking)
Ideal Arithmetic Intensity

\ 4

Arithmetic Intensity (flops/bytes)

Particle Methods

FFTs

Lattice Methods
Dense Linear Algebra, (BLAS3)

Stencils (PDEs)

SpMV, BLAS1,2 -~
* .S. DEPARTMENT OF Office of rj;h‘ ‘Iﬁl

NERGY science -12- Slide from Doug Doerfler et. al., IXPUG at ISC2016 BERKELEY LAB

KNL Roofline Results

KNL Roofline: Quad Flat

Using 2 threads/core
Max L1, L2 and MCDRAM
— 1FLOP/iteration
— 4 MPI + 32 threads

10000

2,199 GFLOP/s

1000

L1

& 100 * Max GFLOP/s
: -2
§ — 64 FLOPs/iteration
G o RN 2 MPI + 64 thread
—oDRE — + 64 threads
1
0.01 0.1 1 10 100
0.1 Arithmetic Intensity (FLOPs/Byte)
All Bandwidths are in GB/s
Quad . (a) Values assume an AVX
Cache Quad Flat | SNC2 | SNC4 | Peak frequency of 1.1 GHz
GFLOP/s | 2,205 | 2,199 2,224 | 2,212 | 2,253 (b) L2 assumed ~(L1 / 4)?
c) MCDRAM BW is for 1R/1W
L1 5,804 | 6,040 | 5,889 | 6,055 | 9,011 (c) MCDRAM BW i /
per iteration
L2 1,834 | 1,827 1,829 | 1,840 | 2,252
C
MCDRAM | 345 e 381 415 420 Slide from Doug Doerfler et. al.,

DDR 77.0 76.9 76.9 102 IXPUG at ISC2016 /‘\‘
@mm Science S13- BERKELEY LAB

How to Measure Arithmetic Intensity e

 http://www.nersc.gov/users/application-performance/
measuring-arithmetic-intensity/

* Intel SDE measures “Total Flops”
* Intel Vtune measures “Total Bytes”

* Haswell consistently attains a higher arithmetic intensity
than KNL

— KNL generally moves more data to/from memory than Haswell due to
lack of L3 cache

— The higher theoretical performance benefits of MCDRAM bandwidth
may not be fully realized due to this extra data movement

o““"“""fa,‘ U.S. DEPARTMENT OF Ofﬂce Of

1 ENERGY science S EERKE/_*;L‘&B

<
A
rrrrrrr ""|

PICSAR Example Y o

* Optimizations
— Original code spatially decomposes the problem with MPI

— MPI subdomains are subdivided into large number of tiles handled with OpenMP, improving
memory locality, hence cache reuse of tiles, and load balance.

— Deposition and Interpolation steps were rewritten to enable more efficient vectorization, plus
particle cell sorting was added to again improve memory locality and hence cache reuse.

e Observations

— Tiling and vectorization increase the arithmetic intensity to take advantage of additional
effective memory bandwidth.

— Not memory bound so more optimization potential.

10000 10000 T ——
1000 1000
£ / ==Roofline Model s ==Roofline Model
0 = *wo/FMA 9 100 = “wo/FMA
S 100 7 / S / % /
0 g ° i Original O A i Original
10 L w/Tiling 10 W L w/Tiling
1 ¢ w/Tiling+Vect 1 ¢ w/Tiling+Vect
0.1 1 10 0.1 1 10
Arithmetic Intensity (FLOP/byte) Arithmetic Intensity (FLOP/byte)
@B V5. o=PARTMENTOF | (ffice of Work by Mathieu Lobet et. al. TN

ENERGY Science -15- Slide adapted from Doug Doerfler et. al., IXPUG at I1SC20 BaEIEAE:

MFDn Example Nites /N

BN FOREFRONT

* Optimizations

— Use case requires all memory on node (HBM + DDR). Explicitly place important arrays into
MCDRAM with FASTMEM directives.

— Use blocked (nRHS) to improve bandwidth and locality (the larger sparse matrix resides in DDR4)
* Observations
— Code is highly memory bandwidth bound

— More RHS helps to increase arithmetic intensity. However, the number of RHS is limited by
MCDRAM capacity.

10000

10000 |
/ KNL MCDRAM

1000 1000
===Roofline Model / ===Roofline Model
100 & = ‘wo/FMA 100

= “wo/FMA
/ W 1RHS A’ i 1RHS

10 A ARHS 10 / A 4RHS

¢ 8RHS

GFLOP/s
GFLOP/s

1 T T 1
0.01 0.1 1 10

Arithmetic Intensity (FLOP/byte)

1 T T 1
0.01 0.1 1 10

Arithmetic Intensity (FLOP/byte)

Work by Brandon Cook et al. -
ZER, U.S. DEPARTMENT OF i [¥
ENER GY gcf:filgrc]aczf _16. Slide adapted from Doug Doerfler et. al., IXPUG at ISC2016 f\L‘AB

BerkeleyGW Example

YEARS

at the
FOREFRONT

Optimization Steps
1. Refactor (3 Loops for MPI, OpenMP, Vectors)
Add OpenMP

Cache-Blocking to better reuse last level cache
Improved Vectorization
6. Add hyper-threading

vk wnN

Observations

Initial Vectorization (loop reordering, conditional removal)

— Arithmetic Intensity reduced from step 2 to 3. Problem size

larger than L2 but Haswell has L3 to catch

Sigma Optimization Process

200

150

100

Walltime (Sec)

50

— From step 3 to 4: No Haswell speedup since it fits in L3. Good

improvement for KNL
— Has potential for further optimization
Haswell Roofline Optimization Path

2 —e— Peak
1000 —e=-ILP
s / ——_ AVX
-
, + BGW
£ 100 5) 3.4
9 5 2
[N
(O] 2 1

0.01 2 5 01 2 5 1 2 5 10 2 5 100

Arithmetic Intensity

U.S. DEPARTMENT OF Ofﬁce of

ENERGY Science

GFLOP/s

-17 -

1 2 3 4

Optimization Step

® Haswell
= KNL (DDR)
® KNL (HBM)

KNL Roofline Optimization Path

2
1000

()

-
o
[@JEEN]
W

wn

N

10 2

0.01 2 5 01 2 5 1 2 5 10 2

Arithmetic Intensity

From Jack Deslippe

5 100

—e— Peark (HBM)
—e— Peak (DDR)
—e—_ |LP (HBM)
—e—_ |LP (DDR)
- - AVX (HBM)
—e— - AVX (DDR)
=o= BGW (DDR)
== BGW (HBM)

~

\
frreeee ""

NG /1 YEARS

Boxlib Example =RJ:

¢ O pti m izatio n N){x LyA Op}enMP strong scaling;
1287 grid, 128° Box size; 1 time step;
ol . . . 102 KNL quadrant/cache mode; 1 MPI proc
— Loop tiling: Divide boxes into smaller e
tiles. Divide tiles among OpenMP ~ ety

threads

 Observations
— Memory bandwidth bound

wall time (sec)
S

— Effective L2 and L3 cache reuse on 10005 5 4
H I I total # threads
asweill.
Nyx roofline fpr IVB Nyx roofline for KNL (MCDRAM)
103 |
102}
2 g
) o2
@) o 102 L
10"} i
| — AI(DRAM) : | — AI(DRAM)
@@ GFLOPS T @@ GFLOPS
1 i i i
10T o0 10! 10 10T 100 107

FLOP/byte FLOP/byte

~

ST s, - From Brian Friesen A
‘7 3 \Q, U.S. DEPARTMENT OF Ofﬁce of rjr—rh‘ (]
& ENERGY scicnce

)

Overall NESAP Optimization
Results

Results from the NESAP teams

‘ - 5 >
N\
YEARS
at the
FOREFRONT
1974-2014

X y U.S. DEPARTMENT OF Offlce of

& ENERGY sconce

~
- A
rrrrrrr ""‘

NESAP Speedups sl o

NESAP* Speedups

Speedup Factor

B B Xeon

11 B KNL

10

9

8

7

6

5

4

3

2

1

0

@O*//b (770/)7 QCS/W 4@4(0 ”4@/_6 @@%e Q &p &, o *GC} /1430 44/4(‘ 7 oo Oyyp beo /14,4\0/‘/
//l/y* 60 /’S’O //S'O C(//O 0 /@yGM/ /‘PgSS (@) 600\% Mo (s ,044
g (N 1, o S O,))
Y, Y é‘,tb*

* Significant speed usually involves code restructuring to improve vectorization and
data locality.
* Speedup is mostly larger on KNL since fewer and faster Haswell (with L3 cache) is
more forgiving to imperfect thread scaling and vectorization. (WARP, BerkeleyGW)
— Boxlib is an exception. Tiling has more benefit for memory bandwidth bound on Haswell (no HBM)

~

ST U.S. DEPARTMENT OF Office of

&Y ENERGY science 20 RIS

Speedup on KNLvs Haswell mﬂ

Speedup on KNL vs Haswell

288 B Speedup vs Haswell (Optimized)

B Speedup vs Haswell (Original
700 P P (Original)

600
500
400
300
200
100

Percent Speedup

-100

Cbo/% Q\SW /40445 //%f S, e © &, :WGgO*GQ p/h*?O &z C I/V’q'?,o Onye beo,h My
{/VJ/,\»/ © 0 &044 A;//O(/ ny &5, Us, C

W
Sp
2 "
S Mgy R "

e EMGeo, MILC, and Chroma see large KNL vs. Haswell speedup: memory
bandwidth bound. Speedup came from effectively use MCDRAM.

=2, U.S. DEPARTMENT OF Ofﬁce of

' ENERGY Science -21-

Speedup Factor

KNL/Haswell Memory Hierarchy Speedups mﬂ

KNL/Haswell Memory Hierarchy Speedups

B MCDRAM vs DDR

4 ‘ ‘ B KNL/Haswell DRAM Traffic

w

N

—

0
O X, 7 0/70 Cé\\s‘ ’qC‘ /.(9 @/X,G é\ *GC /1430 /14/(C % ,? W,(\ C/7/~ /14/(\ D
b /77 / é\ (@ Y/ an
2 I SN e e,
g gy O%O(’ "
)%

* EMGeo, MILC, Chroma, MFDn are memory bandwidth bound. Speedup mostly matches

MCDRAM vs. DDR bandwidth ratio

* KNL generally moves more data to/from memory than Haswell due to lack of L3 cache
* Codes effectively use L3 cache may perform better on Haswell than on KNL: Boxlib, XGC1

U.S. DEPARTMENT OF Office of

E N E RGY Science -22- BERKELEY LAB

KNL AVX and FMA Speedups 0

KNL AVX and FMA Speedups

B AVX512
m FMA

N

Speedup Factor

—_—

8 G @, & O G
g /70’775 5‘944 e Ve 9% Sert Y © &5, MG@ Yo, - Yo M Mgy O g
//Vy*} o (/\/044 Y s Q) % R&s. ,o(/s/y
Yy g

9. / Vé\’t\?*

BerkeleyGW sees large AVX512 (vectorization effect) vs. scalar instructions.
* Not many codes see large effect with FMA. However, FMA used in libraries are not
measured here.

U.S. DEPARTMENT OF Ofﬁce of

ENERGY Science -23-

MPI/OpenMP Process and
Thread Affinity

YEARS

at the
FOREFRONT

1974-2014

2 U.S. DEPARTMENT OF 1 g A
‘ Office of P10

. ENERGY Science - 24~

= = m YEARS
Affinity Goal J

* Correct process and thread affinity for hybrid MPI/OpenMP
programs is the base for getting optimal performance on KNL. It is
also essential for guiding further performance optimizations.

* Our goal is to promote OpenMP4 standard settings for portability.
For example, OMP_PROC_BIND and OMP_PLACES are preferred to
Intel specific KMP_AFFINITY settings.

* Discovered in an Intel Dungeon session with CESM HOMME that
OMP settings ran slower than KMP settings.
— What can be the cause?

— Investigation started on this ...

Office of

‘__w*'-‘i*% U.S. DEPARTMENT OF
% Y ; -25-
ENERG Science

N
A
rrrrrrr ""|

BERKELEY LAB

HOMME: 7 Test Runs NeRsc | [@ W

Expect to see same performance from all 7 cases on a 64-core KNL quad flat node

e case 1: mpirun -n 32 -env OMP_NUM_THREADS 2 -env KMP_AFFINITY compact,verbose -env
KMP_PLACE_THREADS 1T numactl -m 1 ./app

e case 2: mpirun -n 32 -env KMP_AFFINITY compact,verbose -env KMP_PLACE_THREADS 2C,1T
numactl -m 1 ./app

e case 3: mpirun -n 32 -env OMP_NUM_THREADS 2 -env KMP_AFFINITY scatter,verbose numactl -
m 1./app

e case 4: mpirun -n 32 -env OMP_NUM_THREADS 2 -env OMP_PROC_BIND spread -env
OMP_PLACES threads numactl -m 1 ./app

e case 5: mpirun -n 32 -env OMP_NUM_THREADS 2 -env OMP_PROC_BIND close -env OMP_PLACES
cores numactl -m 1 ./app

e case 6: mpirun -n 32 -env KMP_AFFINITY scatter,verbose -env KMP_PLACE_THREADS=2C,1T
numactl -m 1../app

e case 7: mpirun -n 32 -env KMP_AFFINITY scatter,verbose -env KMP_PLACE_THREADS=2C,1T -env
OMP_NUM_THREADS 2 numactl -m 1 ./app

~

U.S. DEPARTMENT OF H A
Office of r:’_r>| i

ENERGY Science -26- BERKELEY LAB

ST,
S/ &
RS

AER>, U.S. DEPARTMENT OF Office of

= = = m YEARS
Affinity Analysis S

* Confirmed with another application this is the case (same performance
from all tests)

* Confirmed with my simple affinity test case that core bindings are all
equivalent

* However, initial runs see different results from the 7 test cases for
HOMMIE. Some cases are >2X slower. Also quad cache performance is
about 5% slower.

* Further investigations showed even though asking for 2 threads only, the
code is running with 4. It was discovered later nested OpenMP is set in the
code by default!

e Using the modified code with explicit num_threads clauses specified for
nested OpenMP regions, all 7 cases then perform the same on quad flat
and quad cache nodes.

N
A
rrrrrrr ""|

ENERGY Science "27- E_;E\ILEJLH\B

HOMME Single-Node Scaling m()

Good nested OpenMP scaling achieved after code bug is fixed

Single Node HOMME Performance
(perfTestWACCM, NE=8,NLEV=70,QSIZE=135)

“ KNL original

“ KNL optimized

Time (sec)

= e

16 32 64 128 256
Total # of Logical Cores Used

DEPARTMENT OF Office of

SOR 1—'5\‘\:,_" u.s.
3 (17) ENERGY Science o

What About a 68-core KNL Node? iR=c/

% mpirun -n 8 -env OMP_PROC_BIND spread -env OMP_PLACES threads -env OMP_NUM_THREADS
4 ./xthi |sort -k4n,6n

Hello from rank O, thread 0, on ekm118. (core affinity = 0) core 0: 0, 68, 136, 204
Hello from rank 0O, thread 1, on ekm118. (core affinity = 70) core 1:1, 69,137, 205
Hello from rank 0O, thread 2, on ekm118. (core affinity = 72) core 2: 2,70, 138, 206
Hello from rank O, thread 3, on ekm118. (core affinity = 142)

Hello from rank 1, thread 0, on ekm118. (core affinity = 144) core 64: 64, 132, 200, 268

Hello from rank 1, thread 1, on ekm118. (core affinity = 214)
Hello from rank 1, thread 2, on ekm118. (core affinity = 216)

Hello from rank 1, thread 3, on ekm118. (core affinity = 15) core 67: 67, 135, 203, 271

core 68: 68, 136, 204, 272

Use | MPI_PIN_DOMAIN to set to number of logical cores per MPI task. Otherwise, OMP tasks are
crossing tile boundaries. Good to waste extra 4 cores on purpose if #MPI tasks is not divisible by 68.

% mpirun -n 8 -env OMP_PROC_BIND spread -env OMP_PLACES threads -env OMP_NUM_THREADS 4

-env |_MPI_PIN_DOMAIN 32 ./xthi |sort -k4n,6n

Hello from rank 0, thread 0, on ekm118. (core affinity = 0) . .
Hello from rank O, thread 1, on ekm118. (core affinity = 2) * xthi.c and xthi-nested.c test codes

Hello from rank O, thread 2, on ekm118. (core affinity = 4) available upon request
Hello from rank 0, thread 3, on ekm118. (core affinity = 6) . Requested to OpenM P Standard to

Hello from rank 1, thread 0, on ekm118. (core affinity = 8)
provide Intel KMP_AFFINITY=verbose or
Hello from rank 7, thread 0, on ekm118. (core affinity = 56)

Hello from rank 7, thread 1, on ekm118. (core affinity = 58) CRAY—OM P—CH ECK—AFFI NITY=TRUE
Hello from rank 7, thread 2, on ekm118. (core affinity = 60) equivalent
Hello from rank 7, thread 3, on ekm118. (core affinity = 62)

~

U.S. DEPARTMENT OF H A
Office of Pl

ENERGY Science "29- &;;a\l%B

o
P 3 e
£ ®
R &
s

Nested OpenMP Thread Affinity Rl e

* Again, |_MPI_PIN_DOMAIN is important
* Sample settings for 2 MPI tasks, 4 outer OpenMP threads, and 4 inner
OpenMP threads:
% export OMP_NUM_THREADS=4,4
% export OMP_PROC_BIND=spread,close
% export OMP_PLACES=threads
% export OMP_NESTED=true
% export |_MPI_PIN_DOMAIN=128 # 32 physical cores
% export KMP_HOT_TEAMS=1
% export KMP_HOT_TEAMS_MAX_LEVELS=2
* Use num_threads clause in source codes to set threads for nested regions.
For most other non-nested regions, use OMP_NUM_THREADS
environment variable for simplicity and flexibility.

<
A
rrrrrrr ""l

=2, U.S. DEPARTMENT OF Office of

377\\\1?‘:
&) ENERGY scionce

Choice of Default Cluster and
Memory Modes

YEARS

at the
FOREFRONT

1974-2014

2% U.S. DEPARTMENT OF : - A
\ Office of P

. ENERGY Science -31-

Available Modes for KNL Nodes Mins2/

* KNL has configurable on-chip interconnect for NUMA and
memory mode.

* Sub-NUMA Cluster (SNC) modes
— No SNC (Quad, all-2-all, Hemisphere), SNC-2, SNC-4
* Memory modes
— Cache, Flat, Hybrid
* No SNC and Cache modes are relatively easier to use

e Takes about 11 to 26 min of reboot time in order to switch
to another mode

* Ongoing analysis for setting default mode(s) for NERSC (>
5,000 users, 800 projects)?

Office of

Science -32-

General Strategies and Observations EZ (e

* |If application memory <=16GB, use Flat mode to allocate all in
MCDRAM is best. If not, manual placement is needed.

 Cache mode gives pretty good start for most apps.

* Cache mode can be beaten by Flat mode + manual data placement in
MCDRAM.

* Performance with Cache mode can vary a lot more than Flat mode.

— Different memory placement of allocations and different fragmentation caused
by previous jobs.

* SNC4/SNC2 provide small advantages over quadrant mode for some
(not all) apps, but relatively harder to use. (different number of cores
per NUMA domain for SNC4)

 We have yet to try Hybrid mode with MCDRAM

* Default cluster and memory mode(s) on Cori have not been finalized.
— Most likely, quad flat (and some quad cache and/or SNC4 flat).

— Also not finalized whether to allow users to switch modes (most likely yes to a
certain extent, but node reboot time will be billed as run time)

AER>, U.S. DEPARTMENT OF Office of

ENERGY Science "33~ E_;E\ILE.,Y.H\B

N
A
rrrrrrr ""|

Summary

e Optimizing for KNL requires good thread level scaling
(OpenMP), vectorization and effective use of HBM.

e Use available Intel tools to help identify areas to work on
for optimization.

e Use Roofline model to guide optimization potential.

e Correct process and thread affinity is the base for getting
optimal performance.

e Keep portability in mind, use portable programming
models.

Office of

‘__w*'-‘i*% U.S. DEPARTMENT OF
G (i7) Y : -34-
ENERG Science

YEARS

at the
FOREFRONT

Thank you.

FA‘ U.S. DEPARTMENT OF Office of
(&)

ENERGY Science -35-

