Hadoop Overview

Lavanya Ramakrishnan
Iwona Sakrejda
Shane Canon

Lawrence Berkeley National Lab

July 2011
Overview

• Concepts & Background
 – MapReduce and Hadoop

• Hadoop Ecosystem
 – Tools on top of Hadoop

• Hadoop for Science
 – Examples, Challenges

• Programming in Hadoop
 – Building blocks, Streaming, C-HDFS API
Processing Big Data

• Internet scale generates BigData
 – Terabytes of data/day
 – just reading 100 TB can be overwhelming
 • using clusters of standard commodity computers for linear scalability

• Timeline
 – Nutch open source search project (2002-2004)
 – MapReduce & DFS implementation and Hadoop splits out of Nutch (2004-2006)
MapReduce

• Computation performed on large volumes of data in parallel
 – divide workload across large number of machines
 – need a good data management scheme to handle scalability and consistency

• Functional programming concepts
 – map
 – reduce
• Map input to an output using some function
• Example
 – string manipulation
Reduces

- Aggregate values together to provide summary data
- Example
 - addition of the list of numbers
Google File System

• Distributed File System
 – accounts for component failure
 – multi-GB files and billions of objects

• Design
 – single master with multiple chunkservers per master
 – file represented as fixed-sized chunks
 – 3-way mirrored across chunkservers
Hadoop

• Open source reliable, scalable distributed computing platform
 – implementation of MapReduce
 – Hadoop Distributed File System (HDFS)
 – runs on commodity hardware

• Fault Tolerance
 – restarting tasks
 – data replication

• Speculative execution
 – handles stragglers
HDFS Architecture

- Metadata ops
 - Client
 - Namenode
 - Metadata (Name, replicas, ...): /home/foo/data, 3, ...

- Block ops
 - Datanodes
 - Replication
 - Blocks
 - Rack 2
 - Write
 - Rack 1
 - Client
 - Read
 - Datanodes
HDFS and other Parallel Filesystems

<table>
<thead>
<tr>
<th></th>
<th>HDFS</th>
<th>GPFS and Lustre</th>
</tr>
</thead>
<tbody>
<tr>
<td>Typical Replication</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Storage Location</td>
<td>Compute Node</td>
<td>Servers</td>
</tr>
<tr>
<td>Access Model</td>
<td>Custom (except with Fuse)</td>
<td>POSIX</td>
</tr>
<tr>
<td>Stripe Size</td>
<td>64 MB</td>
<td>1 MB</td>
</tr>
<tr>
<td>Concurrent Writes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Scales with</td>
<td># of Compute Nodes</td>
<td># of Servers</td>
</tr>
<tr>
<td>Scale of Largest Systems</td>
<td>O(10k) Nodes</td>
<td>O(100) Servers</td>
</tr>
<tr>
<td>User/Kernel Space</td>
<td>User</td>
<td>Kernel</td>
</tr>
</tbody>
</table>
Who is using Hadoop?

- A9.com
- Amazon
- Adobe
- AOL
- Baidu
- Cooliris
- Facebook
- NSF-Google university initiative
- IBM
- LinkedIn
- Ning
- PARC
- Rackspace
- StumbleUpon
- Twitter
- Yahoo!
Hadoop Stack

Source: Hadoop: The Definitive Guide

Constantly evolving!

Source: Hadoop: The Definitive Guide
Google Vs Hadoop

<table>
<thead>
<tr>
<th>Google</th>
<th>Hadoop</th>
</tr>
</thead>
<tbody>
<tr>
<td>MapReduce</td>
<td>Hadoop MapReduce</td>
</tr>
<tr>
<td>GFS</td>
<td>HDFS</td>
</tr>
<tr>
<td>Sawzall</td>
<td>Pig, Hive</td>
</tr>
<tr>
<td>BigTable</td>
<td>Hbase</td>
</tr>
<tr>
<td>Chubby</td>
<td>Zookeeper</td>
</tr>
<tr>
<td>Pregel</td>
<td>Hama, Giraph</td>
</tr>
</tbody>
</table>
Pig

• Platform for analyzing large data sets
• Data-flow oriented language “Pig Latin”
 – data transformation functions
 – datatypes include sets, associative arrays, tuples
 – high-level language for marshalling data
• Developed at Yahoo!
Hive

- SQL-based data warehousing application
 - features similar to Pig
 - more strictly SQL-type
- Supports SELECT, JOIN, GROUP BY, etc
- Analyzing very large data sets
 - log processing, text mining, document indexing
- Developed at Facebook
HBase

- Persistent, distributed, sorted, multidimensional, sparse map
 - based on Google BigTable
 - provides interactive access to information
- Holds extremely large datasets (multi-TB)
- High-speed lookup of individual (row, column)
ZooKeeper

• Distributed consensus engine
 – runs on a set of servers and maintains state consistency

• Concurrent access semantics
 – leader election
 – service discovery
 – distributed locking/mutual exclusion
 – message board/mailboxes
 – producer/consumer queues, priority queues and multi-phase commit operations
Other Related Projects [1/2]

- Chukwa – Hadoop log aggregation
- Scribe – more general log aggregation
- Mahout – machine learning library
- Cassandra – column store database on a P2P backend
- Dumbo – Python library for streaming
- Spark – in memory cluster for interactive and iterative
- Hadoop on Amazon – Elastic MapReduce
Other Related Projects [2/2]

- Sqoop – import SQL-based data to Hadoop
- Jaql – JSON (JavaScript Object Notation) based semi-structured query processing
- Oozie – Hadoop workflows
- Giraph – Large scale graph processing on Hadoop
- Hcatlog – relational view of HDFS
- Fuse-DS – POSIX interface to HDFS
Hadoop for Science
Magellan and Hadoop

• DOE funded project to determine appropriate role of cloud computing for DOE/SC midrange workloads

• Co-located at Argonne Leadership Computing Facility (ALCF) and National Energy Research Scientific Center (NERSC)

• Hadoop/Magellan research questions
 – Are the new cloud programming models useful for scientific computing?
• Evaluating hardware and software choices for supporting next generation data problems

• Evaluation of Hadoop
 – using mix of synthetic benchmarks and scientific applications
 – understanding application characteristics that can leverage the model
 • data operations: filter, merge, reorganization
 • compute-data ratio

(collaboration w/ Shane Canon, Nick Wright, Zacharia Fadika)
MapReduce and HPC

• Applications that can benefit from MapReduce/Hadoop
 – Large amounts of data processing
 – Science that is scaling up from the desktop
 – Query-type workloads

• Data from Exascale needs new technologies
 – Hadoop On Demand lets one run Hadoop through a batch queue
Hadoop for Science

• Advantages of Hadoop
 – transparent data replication, data locality aware scheduling
 – fault tolerance capabilities

• Hadoop Streaming
 – allows users to plug any binary as maps and reduces
 – input comes on standard input
BioPig

• Analytics toolkit for Next-Generation Sequence Data

• User defined functions (UDF) for common bioinformatics programs
 – BLAST, Velvet
 – readers and writers for FASTA and FASTQ
 – pack/unpack for space conservation with DNA sequences
Application Examples

• Bioinformatics applications (BLAST)
 – parallel search of input sequences
 – Managing input data format

• Tropical storm detection
 – binary file formats can’t be handled in streaming

• Atmospheric River Detection
 – maps are differentiated on file and parameter
HDFS vs GPFS (Time)

Teragen (1TB)

Time (minutes)

Number of maps

HDFS
GPFS
Linear (HDFS)
Expon. (HDFS)
Linear (GPFS)
Expon. (GPFS)
Wikipedia data set
On ~ 75 nodes, GPFS performs better with large nodes

- Identical data loads and processing load
- Amount of writing in application affects performance
Hadoop: Challenges

• Deployment
 – all jobs run as user “hadoop” affecting file permissions
 – less control on how many nodes are used - affects allocation policies

• Programming: No turn-key solution
 – using existing code bases, managing input formats and data

• Additional benchmarking, tuning needed, Plug-ins for Science
Comparison of MapReduce Implementations

Collaboration w/ Zacharia Fadika, Elif Dede, Madhusudhan Govindaraju, SUNY Binghamton

Producing random floating point numbers

Load balancing

Hadoop Twister LEMO-MR

Processing 5 million 33 x 33 matrices
Programming Hadoop
Programming with Hadoop

- Maps and reduces handle key value pairs
- Write Map and reduce as Java programs using Hadoop API
- Pipes and Streaming can help with existing applications in other languages
- Higher-level languages such as Pig might help with some applications
- C- HDFS API
Keys and Values

• Maps and reduces produce key-value pairs
 – arbitrary number of values can be output
 – may map one input to 0,1, ….100 outputs
 – reducer may emit one or more outputs

• Example: Temperature recordings
 – 94089 8:00 am, 59
 – 27704 6:30 am, 70
 – 94089 12:45 pm, 80
 – 47401 1 pm, 90
Keys divide the reduce space
Data Flow

Pre-loaded local input data

Intermediate data from mappers

Values exchanged by shuffle process

Reducing process generates outputs

Outputs stored locally
Mechanics[1/2]

• Input files
 – large 10s of GB or more, typically in HDFS
 – line-based, binary, multi-line, etc.

• InputFormat
 – function defines how input files are split up and read
 – TextInputFormat (default), KeyValueInputFormat, SequenceFileInputFormat

• InputSplits
 – unit of work that comprises a single map task
 – FileInputFormat divides it into 64MB chunks
Mechanics [2/2]

- **RecordReader**
 - loads data and converts to key value pair
- **Sort & Partition & Shuffle**
 - intermediate data from map to reducer
- **Combiner**
 - reduce data on a single machine
- **Mapper & Reducer**
- **OutputFormat, RecordWriter**
public static class TokenizerMapper
 extends Mapper<Object, Text, Text, IntWritable>{
 private final static IntWritable one = new IntWritable(1);
 private Text word = new Text();

 public void map(Object key, Text value, Context context
) throws IOException, InterruptedException {
 StringTokenizer itr = new StringTokenizer(value.toString);
 while (itr.hasMoreTokens()) {
 word.set(itr.nextToken());
 context.write(word, one);
 }
 }
}
public static class IntSumReducer
 extends Reducer<Text, IntWritable, Text, IntWritable> {
 private IntWritable result = new IntWritable();

 public void reduce(Text key, Iterable<IntWritable> values,
 Context context) throws IOException, InterruptedException {
 int sum = 0;
 for (IntWritable val : values) {
 sum += val.get();
 }
 result.set(sum);
 context.write(key, result);
 }
}
public static void main(String[] args) throws Exception {
 Configuration conf = new Configuration();
 String[] otherArgs = new GenericOptionsParser(conf, args).getRemainingArgs();
 ...
 Job job = new Job(conf, "word count");
 job.setJarByClass(WordCount.class);
 job.setMapperClass(TokenizerMapper.class);
 job.setCombinerClass(IntSumReducer.class);
 job.setReducerClass(IntSumReducer.class);
 job.setOutputKeyClass(Text.class);
 job.setOutputValueClass(IntWritable.class);
 FileInputFormat.addInputPath(job, new Path(otherArgs[0]));
 FileOutputFormat.setOutputPath(job, new Path(otherArgs[1]));
 System.exit(job.waitForCompletion(true) ? 0 : 1);
}
Pipes

• Allows C++ code to be used for Mapper and Reducer
• Both key and value inputs to pipes programs are provided as std::string
• $ hadoop pipes
C-HDFS API

- Limited C API to read and write from HDFS

```c
#include "hdfs.h"
int main(int argc, char **argv)
{
    hdfsFS fs = hdfsConnect("default", 0);
    hdfsFile writeFile = hdfsOpenFile(fs, writePath, O_WRONLY|O_CREAT, 0, 0, 0);
    tSize num_written_bytes = hdfsWrite(fs, writeFile, (void*)buffer, strlen(buffer)+1);
    hdfsCloseFile(fs, writeFile);
}
```
Hadoop Streaming

• Generic API that allows programs in any language to be used as Hadoop Mapper and Reducer implementations
• Inputs written to stdin as strings with tab character separating
• Output to stdout as key \t value \n
$ hadoop jar contrib/streaming/hadoop-[version]-streaming.jar
Debugging

• Test core functionality separate
• Use Job Tracker
• Run “local” in Hadoop
• Run job on a small data set on a single node
• Hadoop can save files from failed tasks
Acknowledgements

- US Department of Energy DE-AC02-05CH11232
- Elif Dede
- Zacharia Fadika
- Devarshi Ghoshal
- Tina Declerck
Questions?

Magellan Website: http://magellan.nersc.gov

Lavanya Ramakrishnan
LRamakrishnan@lbl.gov