
Analyzing GPU-accelerated
Applications Using HPCToolkit

Keren Zhou

Rice University

3/28/2021 1

Outline

• HPCToolkit GPU Overview

• Tutorial Examples
• Laghos

• Quicksilver

• PeleC

• Case Studies
• SuperLU_DIST

• STRUMPACK

• Summary

3/28/2021 2

HPCToolkit GPU Highlights

• HPCToolkit support calling context sensitive profiling for
GPU-accelerated applications
• CPU calling context

• Unwind at each GPU API call

• GPU calling context
• Reconstruct offline by analyzing GPU functions’ call graphs

• Trace view
• A series of events that happen over time on each process, thread, and

GPU stream

• Profile view
• A correlation of GPU performance metrics with full program calling

contexts that span both CPU and GPU

3/28/2021 3

HPCToolkit Packages on Summit and Cori

• Use CUDA < 11.2
• CUDA 11 is recommended

• Cori
• module load cgpu

• module load hpctoolkit/2021.03.01-gpu

• Summit
• module load hpctoolkit/2021.03.01

3/28/2021 4

HPCToolkit GPU Workflow

3/28/2021 5

HPCToolkit GPU Workflow

3/28/2021 5

Step 1:
• Add -g to the host compiler
• Add -g and -lineinfo to the target

compiler

HPCToolkit GPU Workflow

3/28/2021 6

Step 2:
• hpcrun collects call path profiles of

events of interest

hpcrun

• Measure GPU and CPU execution unobtrusively with hpcrun
• GPU profiling (-e gpu=[nvidia,amd,opencl,level0])

• hpcrun -e gpu=nvidia <app>

• GPU tracing (-t)
• hpcrun -e gpu=nvidia -t <app>

• GPU PC sampling (NVIDIA GPU only)
• hpcrun -e gpu=nvidia,pc -t <app>

• CPU and GPU profiling
• hpcrun -e REALTIME -e gpu=nvidia -t <app>

• Use hpcrun with job launchers
• jsrun -n 1 -g 1 -a 1 hpcrun -e gpu=nvidia <app>
• srun -n 1 -G 1 hpcrun -e gpu=nvidia <app>

• Specify output directory
• hpcrun -o <measurements-dir>

• List supported events (hundreds of CPU events)
• hpcrun -L

3/28/2021 7

HPCToolkit GPU Workflow

3/28/2021 8

Step 3:
• hpcstruct recovers program structure
about lines, loops, and inlined functions

hpcstruct

• Recover program structure with hpcstruct
• Analyze CPU binaries

• hpcstruct <app>

• Analyze all GPU binaries in <measurements-dir>
• hpcstruct <measurements-dir>

• Parse GPU CFG to recover loop structures and device calling context

• hpcstruct --gpucfg yes <measurements-dir>

• Parse binaries in parallel (-j)
• hpcstruct -j <threads> <binary>, or

• hpcstruct -j <threads> <measurements-dir>

• Control parallelism level
• Adjust the number of threads

• Adjust the lower bound size to parse GPU binary in parallel

• hpcstruct --gpu-size <n> -j <threads> <measurements-dir>

3/28/2021 9

HPCToolkit GPU Workflow

3/28/2021 10

Step 4:
• hpcprof combines profiles from

multiple threads and correlate metrics
to static & dynamic program structure

hpcprof/hpcprof-mpi

• Correlate performance data with program structure using
hpcprof
• Use a single process to combine performance data

• hpcprof -S <app>.hpcstruct <measurements-dir>

• Specify output directory
• hpcprof -o <database-dir> -S <app>.hpcstruct <measurements-dir>

• Use multiple processes to combine performance data
• jsrun -n <np> hpcprof-mpi -S <app>.hpcstruct <measurements-dir>

• srun -n <np> hpcprof-mpi -S <app>.hpcstruct <measurements-dir>

3/28/2021 11

HPCToolkit GPU Workflow

3/28/2021 12

Step 5:
• hpcviewer presents calling context

sensitive GPU and CPU metrics and
behaviors over time

Outline

• HPCToolkit GPU Overview

• Tutorial Examples
• Laghos

• Quicksilver

• PeleC

• Case Studies
• SuperLU_DIST

• STRUMPACK

• Summary

3/28/2021 13

GPU Performance Metrics

• Execution time
• GPUOPS (sec)

• The total amount of GPU times spent on kernels and memory operations.

• GPU kernels metrics (GKER)
• GKER (sec)
• GKER:BLKS
• GKER:COUNT

• GPU memory metrics (GXCOPY and GMEM)
• GXCOPY (sec)
• GXCOPY:H2D (B)
• GXCOPY:D2H (B)

• GPU instructions (GINS)
• GINS

• Total number of instruction samples

• GINS:STL_ANY
• Total number of stalled instruction samples

• GINS:STL_GMEM
• Total number of stalled instruction samples (waiting for the results from global memory)

3/28/2021 14

Laghos

• Step-by-step profiling
• hpcstruct -j <n> for hundreds GPU binaries

• hpcviewer
• Bottom-up view

• Kernel and copy hotspots

• Top-down view
• Full context calling

• Important kernel metrics

• Compare with Nsight Systems
• HPCToolkit performs profiling and tracing, while Nsight Systems only does

tracing

• hpctoolkit-tutorial-examples/examples/gpu/laghos
• source setup-env/<platform>.sh

• make build

• make run-short

3/28/2021 15

Quicksilver

• Step-by-step profiling
• hpcrun -e gpu=nvidia,pc to collect pc sampling data

• hpcstruct --gpucfg yes to reconstruct calling context for GPU device functions
and loop nests

• hpcviewer
• Instruction stalls with their full context calling context

• Compare with Nsight Compute
• HPCToolkit does not replay GPU kernels

• HPCToolkit recovers loops and reconstructs approximate calling context trees
on GPUs

• hpctoolkit-tutorial-examples/gpu/quicksilver
• source setup-env/<platform>.sh

• make build

• make run-pc

3/28/2021 16

PeleC

• Step-by-step profiling
• hpcrun -e REALTIME -e gpu=nvidia -t to collect CPU and GPU traces

• hpcviewer
• Use filter to hide background CPU threads

• Zoom in to focus on GPU activities

• Use procedure-color map to highlight <gpu sync> activities

• Unnecessary consecutive GPU synchronizations

• hpctoolkit-tutorial-examples/gpu/pelec
• source setup-env/<platform>.sh

• make build

• make run

3/28/2021 17

Outline

• HPCToolkit GPU Overview

• Tutorial Examples
• Laghos

• Quicksilver

• PeleC

• Case Studies
• SuperLU_DIST

• STRUMPACK

• Summary

3/28/2021 18

SuperLU_DIST

• A GPU-accelerated sparse direct solver

• Test case
• Pddrive3d

• Environment
• Summit compute node

• Single MPI process

• Single GPU

3/28/2021 19

SuperLU_DIST Observations - 1

• GPU activities are sparse comparing to CPU activities
• CPU samples are usually taken at a low frequency

3/28/2021 20

CPU thread

GPU stream 1

GPU stream 2

SuperLU_DIST Observations - 2

• Expensive CPU computations delay work being offloaded to
GPUs
• Optimizing the CPU code improves this code region by 1.78x.

3/28/2021 21

SuperLU_DIST Observations - 2

• Expensive CPU computations delay work being offloaded to
GPUs
• Optimizing the CPU code improves this code region by 1.78x.

3/28/2021 21

STRUMPACK

• Solvers for sparse and dense rank-structured linear systems

• Test case
• testHelmholtz

• Environment
• Summit compute node

• Four MPI processes

• Four GPUs

3/28/2021 22

STRUMPACK Observations - 1

• cuBLAS kernels are launched to multiple streams to keep GPUs
busy

3/28/2021 23

GPU stream 1

GPU stream 2

GPU stream 3

GPU stream 4

STRUMPACK Observations - 1

• cuBLAS kernels are launched to multiple streams to keep GPUs
busy

3/28/2021 23

GPU stream 1

GPU stream 2

GPU stream 3

GPU stream 4

STRUMPACK Observations - 1

• cuBLAS kernels are launched to multiple streams to keep GPUs
busy

3/28/2021 23

cuBLAS function
call stack

GPU stream 1

GPU stream 2

GPU stream 3

GPU stream 4

STRUMPACK Observations - 1

• cuBLAS kernels are launched to multiple streams to keep GPUs
busy

3/28/2021 23

cuBLAS function
call stack

Only a small fraction of the space is white

GPU stream 1

GPU stream 2

GPU stream 3

GPU stream 4

STRUMPACK Observations - 2

• cudaMalloc and cudaFree are the main bottlenecks
• The STRUMPACK team switched their memory allocation to avoid

excessive memory allocations and frees, achieving 1.15x speedup.

3/28/2021 24

STRUMPACK Observations - 2

• cudaMalloc and cudaFree are the main bottlenecks
• The STRUMPACK team switched their memory allocation to avoid

excessive memory allocations and frees, achieving 1.15x speedup.

3/28/2021 24

cudaMalloc

STRUMPACK Observations - 2

• cudaMalloc and cudaFree are the main bottlenecks
• The STRUMPACK team switched their memory allocation to avoid

excessive memory allocations and frees, achieving 1.15x speedup.

3/28/2021 24

cudaMalloc

STRUMPACK Observations - 2

• cudaMalloc and cudaFree are the main bottlenecks
• The STRUMPACK team switched their memory allocation to avoid

excessive memory allocations and frees, achieving 1.15x speedup.

3/28/2021 24

cudaMalloccudaFree

Outline

• HPCToolkit GPU Overview

• Tutorial Examples
• Laghos

• Quicksilver

• PeleC

• Case Studies
• SuperLU_DIST

• STRUMPACK

• Summary

3/28/2021 25

Summary

• Rice University’s HPCToolkit is a measurement and analysis
tool that
• measures GPU activities and GPU instruction samples and attribute

them to their corresponding calling context;
• provides a trace view of how an execution evolves over time and a

profile view that associates metrics with a hierarchy of individual lines,
loops, and functions;

• collects, analyzes, and visualizes profiles within and across nodes

• HPCToolkit’s workflow
• hpcrun
• hpcstruct
• hpcprof/hpcprof-mpi
• hpcviewer

3/28/2021 26

HPCToolkit Caveats - 1

• hpcrun’s measurement time might be dilated if an application has many short-
lived kernels due to the cost of call path unwinding and kernel instrumentation
(concurrent kernel mode)
• you need to consider this slowdown when assessing how active the GPU is using profiles

or traces
• this issue affects both HPCToolkit and Nsight Systems

• HPCToolkit measures GPU kernels with a CUPTI activity that serializes kernels; this will
change

• hpcstruct’s control flow analysis for large GPU binaries might take long time due
to the overhead by nvdisasm
• sometimes, nvdisasm can’t analyze GPU binaries, so hpcstruct can’t always recover GPU

loops and calling contexts
• reserve longer time (e.g., two hours) on a compute node if you want CFGs of large GPU

binaries

• hpcprof’s approximately attributes costs to GPU calling contexts

• HPCToolkit does not record and present meta data; this will change
• We don’t show what cores your threads are running on
• We don’t show how many GPUs are using
• GPU streams have a thread id starting from 500

3/28/2021 27

HPCToolkit Caveats - 2

• GPU kernel metrics are attributed to
• kernel itself (useful)
• the source line for the first machine instruction in the kernel (ignore)
• erroneously attributed to “aggregate exclusive costs” (ignore)

• Currently, we need to use -t option when collecting PC samples
• ignore traces collected with PC samples
• we shouldn’t have to turn on tracing but it is currently needed to compensate for a bug in hpcprof

that causes it to omit inclusive metrics without -t

• Currently, PC sampling may significantly slow your execution
• We have asked NVIDIA to improve CUPTI to lower overhead
• You might want to collect PC samples for a shorter run

• Currently, metrics are collected in a dense format
• Not a problem for CPU only profiling with several metrics
• This leads to a huge space explosion for GPU profiling which might cause you a problem; this is

changing

• The installed HPCToolkit version does not have access to GPU hardware counters
• Needed for roofline analysis; working with the PAPI team to resolve this issue

3/28/2021 28

HPCToolkit Tutorial Example Tips

• Available on Github
• HPCToolkit/hpctoolkit-tutorial-examples: CPU and GPU tutorial examples

(github.com)

• Usage
• Clone the repository and choose an example (e.g., quicksilver)

• git clone https://github.com/HPCToolkit/hpctoolkit-tutorial-examples.git
• cd hpctoolkit-tutorial-examples/examples/gpu/quicksilver/

• Once on the login node
• export HPCTOOLKIT_TUTORIAL_PROJECTID=<project-id>
• export HPCTOOLKIT_TUTORIAL_RESERVATION=<reservation-id>

• SUMMIT: hpctoolkit1 (day1), hpctoolkit2 (day2)

• Cori-GPU: hpc1_gpu (day1), hpc2_gpu (day2)

• Cori-CPU: hpc1_knl (day1), hpc2_knl (day2)

• For each example, on the login node
• source setup-env/<platform>.sh
• make build
• make run-pc
• hpcviewer hpctoolkit-quicksilver-gpu-cuda-pc.d

3/28/2021 29

https://github.com/HPCToolkit/hpctoolkit-tutorial-examples

