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A Few More Things
• Events for CPU performance measurement 

• OpenMP tools interface 

• Differential performance analysis (useful for CPU and GPU) 

• Kernel sampling 

• Context recycling for dynamic threads



Sample Sources - I
Linux thread-centric timers 

• CPUTIME (DEFAULT if no sample source is specified) 
— CPU time used by the thread in microseconds 
— does not include time blocked in the kernel 

– disadvantage: completely overlooks time a thread is blocked 
– advantage: a blocked thread is never unblocked by sampling 

• REALTIME 
— real time used by the thread in microseconds 
— includes time blocked in the kernel 

– advantage: shows where a thread spends its time, even when blocked 
– disadvantages 

 activates a blocked thread to take a sample 
 a blocked thread appears active even when blocked
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Note: Only use one Linux timer to measure an execution

Best for analysis of  
profile data

Produces more intuitive  
traces



Sample Sources - II
Linux perf_event monitoring subsystem 

• Kernel subsystem for performance monitoring  

• Access and manipulate  
— hardware counters: cycles, instructions, … 
— software counters: context switches, page faults, … 

• Available in Linux kernels 2.6.31+
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A useful explanation about events available through perf 
https://sites.google.com/site/lbathen/research/perf



perf_event Hardware Event Counters
• PERF_COUNT_HW_CPU_CYCLES         

• PERF_COUNT_HW_INSTRUCTIONS         

• PERF_COUNT_HW_CACHE_REFERENCES         

• PERF_COUNT_HW_CACHE_MISSES         

• PERF_COUNT_HW_BRANCH_INSTRUCTIONS         

• PERF_COUNT_HW_BRANCH_MISSES         

• PERF_COUNT_HW_BUS_CYCLES         

• PERF_COUNT_HW_STALLED_CYCLES_FRONTEND         

• PERF_COUNT_HW_STALLED_CYCLES_BACKEND         

• PERF_COUNT_HW_REF_CPU_CYCLES
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perf_event Hardware Cache Events
• Hardware cache 

— PERF_COUNT_HW_CACHE_L1D 
— PERF_COUNT_HW_CACHE_L1I 
— PERF_COUNT_HW_CACHE_LL    
— PERF_COUNT_HW_CACHE_DTLB 
— PERF_COUNT_HW_CACHE_ITLB 
— PERF_COUNT_HW_CACHE_BPU 
— PERF_COUNT_HW_CACHE_NODE 

• Operations 
— PERF_COUNT_HW_CACHE_OP_READ         
— PERF_COUNT_HW_CACHE_OP_WRITE         
— PERF_COUNT_HW_CACHE_OP_PREFETCH 

• Results 
— PERF_COUNT_HW_CACHE_RESULT_ACCESS 
— PERF_COUNT_HW_CACHE_RESULT_MISS
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perf_event Software Events
• PERF_COUNT_SW_CPU_CLOCK 

• PERF_COUNT_SW_TASK_CLOCK 

• PERF_COUNT_SW_PAGE_FAULTS 

• PERF_COUNT_SW_CONTEXT_SWITCHES 

• PERF_COUNT_SW_CPU_MIGRATIONS 

• PERF_COUNT_SW_PAGE_FAULTS_MIN 

• PERF_COUNT_SW_PAGE_FAULTS_MAJ 

• PERF_COUNT_SW_ALIGNMENT_FAULTS 

• PERF_COUNT_SW_EMULATION_FAULTS
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Measuring Other Hardware Events
• See the full list of available events with   

— hpcrun -L 

• Perf events are grouped by categories indicated by a prefix 
— ix86arch::<event>                      // Intel architecture 
— perf::<event>                              // perf_event builtin 
— bdw_ep::<event>                        // Broadwell EP specific 
— … 

• For convenience 
— you may omit the category prefix, e.g. “perf::” 
— you may specify counter names using lower case
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Multiplexing Events
• In a single execution, you can measure more hardware events 

than the number of hardware counters available per thread 

• If you specify more events than counters available 
— perf_events will automatically multiplex them 

• How multiplexing works with Linux perf_event subsystem 
— at any time, the number of events being collected will not exceed 

the number of hardware counters available per thread 
— the kernel will partition events into sets that can be monitored 

simultaneously using hardware counter resources 
— the kernel will monitor one set of events for a while then switch 

to another 
— monitoring of event sets is scheduled in round-robin fashion 
— while multiplexing is convenient, there is some loss of accuracy 

– my advice: multiplexing is fine for casual execution analysis
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Controlling perf_event Sampling Frequency 

• Automatic 
— HPCToolkit samples perf_event counters min(300x/second, 

maximum Linux allows) 
– may be higher than necessary for long executions 

 reducing the frequency will reduce measurement overhead 

• Specify frequency 
— use the @f<freq> suffix for an event to specify frequency 

– hpcrun -e CYCLES@f100 -e INSTRUCTIONS@f200 … 
— Specify a different default frequency using the -c option  

– example: sample both CYCLES and INSTRUCTION 200x per second 
 hpcrun -c f200 -e CYCLES -e INSTRUCTIONS 

• Specify period 
— Use the @<period> suffix for an event to specify a period 

– hpcrun -e CYCLES@1000000 -e INSTRUCTIONS@5000000 …
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Recommended



How to Specify What to Measure
• Dynamically-linked executables 

— when you launch your program, use hpcrun, e.g. 
hpcrun -e perf::CYCLES  -e perf::CS -e snb::PAGE_WALKS:LLC_MISS  ./hello_world 

• Statically-linked executable 
— at compile time, link your executable with hpclink 
— when you launch your program, set HPCRUN_EVENT_LIST, e.g. 

export HPCRUN_EVENT_LIST=“perf::CYCLES,perf::CS,snb::PAGE_WALKS:LLC_MISS” ./hello_world
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A Few More Things
• Events for CPU performance measurement 

• OpenMP tools interface 

• Differential performance analysis (useful for CPU and GPU) 

• Kernel sampling 

• Context recycling for dynamic threads



OpenMP: A Challenge for Tools

• Runtime support is necessary for tools to bridge the gap

..

User-level calling context for 
code in OpenMP parallel regions 
and tasks executed by worker 
threads is not readily available

• Large gap between between threaded programming models 
and their implementations
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Challenges for OpenMP Node Programs
• Tools provide implementation-level view of OpenMP threads 

— asymmetric threads 
– master thread 
– worker thread 

— run-time frames are interspersed with user code 

• Hard to understand causes of idleness 
— long serial sections 
— load imbalance in parallel regions 
— waiting for critical sections or locks
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OMPT: An OpenMP Tools API
• Goal: a standardized tool interface for OpenMP 

— prerequisite for portable tools 
— missing piece of the OpenMP language standard 

• Design objectives 
— enable tools to measure and attribute costs to application source 

and runtime system 
• support low-overhead tools based on asynchronous sampling 
• attribute to user-level calling contexts 
• associate a thread’s activity at any point with a descriptive state 

— minimize overhead if OMPT interface is not in use 
• features that may increase overhead are optional 

— define interface for trace-based performance tools 
— don’t impose an unreasonable development burden  

• runtime implementers 
• tool developers
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OpenMP Tool API Status

• Currently HPCToolkit supports OMPT interface based on OpenMP 5.0 

• OMPT prototype implementations 
—LLVM 

– interoperable with GNU, Intel compilers 
– still a work in progress 

—IBM LOMP (currently targets OpenMP 5) 

• Ongoing work 
—refining OpenMP 5.1 OMPT support in LLVM 
—fine tuning OMPT support in HPCToolkit



OMPT and Tutorial Examples
• On Cori, we are using a copy of the LLVM OpenMP runtime with an 

OpenMP tools interface developed by Rice 
— “module load openmp/ompt” 
— instead of most time in <thread root>, most time is merged into 

<program root> - global user-level view 
— software stack was amenable to replacing OpenMP runtime with ours 

for CPU examples 
— Intel OpenMP runtime in Cray’s modules has an issue that triggers an 

assert in HPCToolkit 
– turn off OMPT to use with Intel OpenMP: export OMP_TOOL=disabled 

• On Summit, the OpenMP runtime was not amenable to replacement 
simply by adding an entry at the front of LD_LIBRARY_PATH 
— only practical choice: use the IBM and PGI implementations that are 

wired into binary library paths
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A Note about OMPT on Cori

• Thread <omp idle> time is unfortunately reported as <omp barrier> with 
the LLVM OpenMP + HPCToolkit installed on Cori 
— both mean that the thread is idle, so while disconcerting, it still is meaningful 

• The barrier is reported with the call stack where the thread was last 
working 

• This “mistake” comes from too literally reporting the runtime internal 
state 
— we plan to diagnose and fix the problem 
— couldn’t be done before the workshop
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If you are working on Cori, you can observe the effect of the OpenMP tools interface by editing  
the run script for amg2013 or hpcg, add 

export OMP_TOOL=disabled 
in one of the Cori “run” scripts before collecting data with hpcrun
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A Few More Things
• Events for CPU performance measurement 

• OpenMP tools interface 

• Differential performance analysis (useful for CPU and GPU) 

• Kernel sampling 

• Context recycling for dynamic threads
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The Problem of Scaling
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Goal: Automatic Scalability Analysis

• Pinpoint scalability bottlenecks 

• Guide user to problems 

• Quantify the magnitude of each problem 

• Diagnose the nature of the problem
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Challenges for Pinpointing Scalability Bottlenecks
• Parallel applications 

— modern software uses layers of libraries 
— performance is often context dependent 

• Monitoring 
— bottleneck nature: computation, data movement, synchronization? 
— 2 pragmatic constraints 

– acceptable data volume 
– low perturbation for use in production runs

Example climate code skeleton

main

ocean atmosphere

wait wait

sea ice

wait

land

wait
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Performance Analysis with Expectations
• You have performance expectations for your parallel code 

— strong scaling: linear speedup 
— weak scaling: constant execution time 

• Put your expectations to work 
— measure performance under different conditions 

– e.g. different levels of parallelism or different inputs 
— express your expectations as an equation 
— compute the deviation from expectations for each calling context 

– for both inclusive and exclusive costs 
— correlate the metrics with the source code  
— explore the annotated call tree interactively



200K

400K600K
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Pinpointing and Quantifying Scalability Bottlenecks

=−   

Q P

1/Q × 

coefficients for analysis 
of weak scaling

1/P ×



Scalability Analysis
• Difference call 

path profile 
from two 
executions 
— different 

number of 
nodes 

— different 
number of 
threads 

• Pinpoint and 
quantify 
scalability 
bottlenecks 
within and 
across nodes
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significant scaling 
losses caused by 
passing data around 
a ring of processors 

See the HPCToolkit manual for the detailed description of how to do this in practice 
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Using Differential Performance Analysis
• The example shown was constructed by building a database with 

a single MPI rank from each of two executions at different scales 
— you can call hpcprof/hpcprof-mpi with .hpcrun files as arguments 

instead of analyzing a whole measurement directory 

• You can do strong or weak scaling analysis on your own by  
— providing two measurement directories to hpcprof/hpcprof-mpi 
— writing an equation to compute the scaling loss from one to the other 

• Tree vs. forest? 
— the Flash example shown had a calling context tree 
— when analyzing OpenMP programs without the OpenMP Tools API 

(OMPT), you get a forest 
– typically two roots for OpenMP codes: <program root>, <thread root> 
– top-down scaling comparisons are problematic for a forest 
– bottom-up scaling comparisons can be informative for a forest 

 they focus on WHAT you are doing at the leaves, irrespective of 
whether the OpenMP master thread or a worker thread did the work
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A Few More Things
• Events for CPU performance measurement 

• OpenMP tools interface 

• Differential performance analysis (useful for CPU and GPU) 

• Kernel sampling 

• Context recycling for dynamic threads



Kernel Sampling in HPCToolkit
• When sampling using the Linux perf_event subsystem 

— sample user space activity 
— sample kernel space activity 

• When a thread is active in the kernel, the user calling context 
is frozen 

• Attribute kernel activity to the point where it occurred in the 
user calling context 
— form a calling context that has  

– user calling context as the prefix 
– kernel calling context as the suffix
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Kernel Sampling Yields Insight
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• Q: Why is MPI      
communication 
bandwidth so  
low on node  
(6-9 GB/s)?

user space

kernel space

Investigating MPI Performance with Kernel Sampling

• A: Bounded by single 
thread memory 
bandwidth 

• Memcpy 12 GB/s 

• Stream (1T) 8-9 GB/s  
• Stream (OMP) 60 GB/s

Platform 
• Intel Broadwell 
• Infiniband network



Measure Thread Blocking using perf_events
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Example: Thread Blocking in “tar”
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hpcrun -e CYCLES -e BLOCKTIME -e PAGE-FAULTS tar xzf \
~/Downloads/eclipse-rcp-indigo-linux-gtk-x86_64.tar.gz
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A Few More Things
• Events for CPU performance measurement 

• OpenMP tools interface 

• Differential performance analysis (useful for CPU and GPU) 

• Kernel sampling 

• Context recycling for dynamic threads



Context Recycling for Short-lived Threads

• Problem 
— some codes create many short-

lived threads 
– DCA+ 160 ranks generated 1.2M 

thread profiles and traces 
— time-centric views of such codes 

are problematic
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• Solution 
— when a thread completes, put its 

(CCT, trace) in a free list 
— when a new thread starts, look for 

an available (CCT, trace) pair to 
augment 

— create a new one only if needed

Credit: Laksono Adhianto



DCA+ using Context Recycling
DCA+ 10 ranks, 12 threads each with context recycling

34Credit: Laksono Adhianto



Detailed HPCToolkit Documentation
  http://hpctoolkit.org/documentation.html 

• Comprehensive user manual: 
— http://hpctoolkit.org/manual/HPCToolkit-users-manual.pdf  
— Quick start guide  

– essential overview that almost fits on one page 
— Using HPCToolkit with statically linked programs  
— The hpcviewer’s profile and trace views 
— Effective strategies for analyzing program performance with 

HPCToolkit  
– analyzing scalability, waste, multicore performance ... 

— HPCToolkit and MPI  
— HPCToolkit Troubleshooting 

• Installation guide 
— http://hpctoolkit.org/software-instructions.html 
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Advice for Using HPCToolkit
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Advice and Troubleshooting Tips
• Compile your program with a -g in addition to optimization 

— with -g the compiler records info about line mappings and inlined 
code for hpcstruct’s binary analyzer 

• If more than just your program is of interest, use hpcstruct to 
analyze your libraries of interest as well 
— you can provide more than one structure file to hpcprof/hpcprof-

mpi by passing multiple -S options 
– e.g. hpcprof -S my-executable -S my-library1 -S my-library-2 … 

• If you lack detailed information about loops in hpcviewer 
— make sure you analyzed your binary with hpcstruct 
— make sure that you provided the structure file to hpcprof/

hpcprof-mpi
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Monitoring Large Executions
• Collecting performance data on every node is typically not 

necessary 

• Can improve scalability of data collection by recording data 
for only a fraction of processes 
— set environment variable HPCRUN_PROCESS_FRACTION 
— e.g. collect data for 10% of your processes 

– set environment variable HPCRUN_PROCESS_FRACTION=0.10 
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Digesting your Performance Data
• Use hpcstruct to reconstruct program structure  

— e.g. hpcstruct your_app
– creates your_app.hpcstruct  

• Correlate measurements to source code with hpcprof and 
hpcprof-mpi 
— run hpcprof on the front-end to analyze data from small runs 
— run hpcprof-mpi on the compute nodes to analyze data from lots 

of nodes/threads in parallel 

• Digesting performance data in parallel with hpcprof-mpi 
— srun -n 8 hpcprof-mpi  \ 

-S your_app.hpcstruct \ 
-I /path/to/your_app/src/+ \ 
hpctoolkit-your_app-measurements.jobid
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