
Analyzing CPU Applications with HPCToolkit

John Mellor-Crummey
Rice University

Tutorial
Mar-Apr 2021
NERSC and OLCF (Virtual)

1

2

A Few More Things
• Events for CPU performance measurement

• OpenMP tools interface

• Differential performance analysis (useful for CPU and GPU)

• Kernel sampling

• Context recycling for dynamic threads

Sample Sources - I
Linux thread-centric timers

• CPUTIME (DEFAULT if no sample source is specified)
— CPU time used by the thread in microseconds
— does not include time blocked in the kernel

– disadvantage: completely overlooks time a thread is blocked
– advantage: a blocked thread is never unblocked by sampling

• REALTIME
— real time used by the thread in microseconds
— includes time blocked in the kernel

– advantage: shows where a thread spends its time, even when blocked
– disadvantages

 activates a blocked thread to take a sample
 a blocked thread appears active even when blocked

3

Note: Only use one Linux timer to measure an execution

Best for analysis of
profile data

Produces more intuitive
traces

Sample Sources - II
Linux perf_event monitoring subsystem

• Kernel subsystem for performance monitoring

• Access and manipulate
— hardware counters: cycles, instructions, …
— software counters: context switches, page faults, …

• Available in Linux kernels 2.6.31+

4

A useful explanation about events available through perf
https://sites.google.com/site/lbathen/research/perf

perf_event Hardware Event Counters
• PERF_COUNT_HW_CPU_CYCLES

• PERF_COUNT_HW_INSTRUCTIONS

• PERF_COUNT_HW_CACHE_REFERENCES

• PERF_COUNT_HW_CACHE_MISSES

• PERF_COUNT_HW_BRANCH_INSTRUCTIONS

• PERF_COUNT_HW_BRANCH_MISSES

• PERF_COUNT_HW_BUS_CYCLES

• PERF_COUNT_HW_STALLED_CYCLES_FRONTEND

• PERF_COUNT_HW_STALLED_CYCLES_BACKEND

• PERF_COUNT_HW_REF_CPU_CYCLES

5

perf_event Hardware Cache Events
• Hardware cache

— PERF_COUNT_HW_CACHE_L1D
— PERF_COUNT_HW_CACHE_L1I
— PERF_COUNT_HW_CACHE_LL
— PERF_COUNT_HW_CACHE_DTLB
— PERF_COUNT_HW_CACHE_ITLB
— PERF_COUNT_HW_CACHE_BPU
— PERF_COUNT_HW_CACHE_NODE

• Operations
— PERF_COUNT_HW_CACHE_OP_READ
— PERF_COUNT_HW_CACHE_OP_WRITE
— PERF_COUNT_HW_CACHE_OP_PREFETCH

• Results
— PERF_COUNT_HW_CACHE_RESULT_ACCESS
— PERF_COUNT_HW_CACHE_RESULT_MISS

6

perf_event Software Events
• PERF_COUNT_SW_CPU_CLOCK

• PERF_COUNT_SW_TASK_CLOCK

• PERF_COUNT_SW_PAGE_FAULTS

• PERF_COUNT_SW_CONTEXT_SWITCHES

• PERF_COUNT_SW_CPU_MIGRATIONS

• PERF_COUNT_SW_PAGE_FAULTS_MIN

• PERF_COUNT_SW_PAGE_FAULTS_MAJ

• PERF_COUNT_SW_ALIGNMENT_FAULTS

• PERF_COUNT_SW_EMULATION_FAULTS

7

Measuring Other Hardware Events
• See the full list of available events with

— hpcrun -L

• Perf events are grouped by categories indicated by a prefix
— ix86arch::<event> // Intel architecture
— perf::<event> // perf_event builtin
— bdw_ep::<event> // Broadwell EP specific
— …

• For convenience
— you may omit the category prefix, e.g. “perf::”
— you may specify counter names using lower case

8

Multiplexing Events
• In a single execution, you can measure more hardware events

than the number of hardware counters available per thread

• If you specify more events than counters available
— perf_events will automatically multiplex them

• How multiplexing works with Linux perf_event subsystem
— at any time, the number of events being collected will not exceed

the number of hardware counters available per thread
— the kernel will partition events into sets that can be monitored

simultaneously using hardware counter resources
— the kernel will monitor one set of events for a while then switch

to another
— monitoring of event sets is scheduled in round-robin fashion
— while multiplexing is convenient, there is some loss of accuracy

– my advice: multiplexing is fine for casual execution analysis

9

Controlling perf_event Sampling Frequency

• Automatic
— HPCToolkit samples perf_event counters min(300x/second,

maximum Linux allows)
– may be higher than necessary for long executions

 reducing the frequency will reduce measurement overhead

• Specify frequency
— use the @f<freq> suffix for an event to specify frequency

– hpcrun -e CYCLES@f100 -e INSTRUCTIONS@f200 …
— Specify a different default frequency using the -c option

– example: sample both CYCLES and INSTRUCTION 200x per second
 hpcrun -c f200 -e CYCLES -e INSTRUCTIONS

• Specify period
— Use the @<period> suffix for an event to specify a period

– hpcrun -e CYCLES@1000000 -e INSTRUCTIONS@5000000 …

10

Recommended

How to Specify What to Measure
• Dynamically-linked executables

— when you launch your program, use hpcrun, e.g.
hpcrun -e perf::CYCLES -e perf::CS -e snb::PAGE_WALKS:LLC_MISS ./hello_world

• Statically-linked executable
— at compile time, link your executable with hpclink
— when you launch your program, set HPCRUN_EVENT_LIST, e.g.

export HPCRUN_EVENT_LIST=“perf::CYCLES,perf::CS,snb::PAGE_WALKS:LLC_MISS” ./hello_world

11

12

A Few More Things
• Events for CPU performance measurement

• OpenMP tools interface

• Differential performance analysis (useful for CPU and GPU)

• Kernel sampling

• Context recycling for dynamic threads

OpenMP: A Challenge for Tools

• Runtime support is necessary for tools to bridge the gap

..

User-level calling context for
code in OpenMP parallel regions
and tasks executed by worker
threads is not readily available

• Large gap between between threaded programming models
and their implementations

13

Challenges for OpenMP Node Programs
• Tools provide implementation-level view of OpenMP threads

— asymmetric threads
– master thread
– worker thread

— run-time frames are interspersed with user code

• Hard to understand causes of idleness
— long serial sections
— load imbalance in parallel regions
— waiting for critical sections or locks

14

OMPT: An OpenMP Tools API
• Goal: a standardized tool interface for OpenMP

— prerequisite for portable tools
— missing piece of the OpenMP language standard

• Design objectives
— enable tools to measure and attribute costs to application source

and runtime system
• support low-overhead tools based on asynchronous sampling
• attribute to user-level calling contexts
• associate a thread’s activity at any point with a descriptive state

— minimize overhead if OMPT interface is not in use
• features that may increase overhead are optional

— define interface for trace-based performance tools
— don’t impose an unreasonable development burden

• runtime implementers
• tool developers

15

OpenMP Tool API Status

• Currently HPCToolkit supports OMPT interface based on OpenMP 5.0

• OMPT prototype implementations
—LLVM

– interoperable with GNU, Intel compilers
– still a work in progress

—IBM LOMP (currently targets OpenMP 5)

• Ongoing work
—refining OpenMP 5.1 OMPT support in LLVM
—fine tuning OMPT support in HPCToolkit

OMPT and Tutorial Examples
• On Cori, we are using a copy of the LLVM OpenMP runtime with an

OpenMP tools interface developed by Rice
— “module load openmp/ompt”
— instead of most time in <thread root>, most time is merged into

<program root> - global user-level view
— software stack was amenable to replacing OpenMP runtime with ours

for CPU examples
— Intel OpenMP runtime in Cray’s modules has an issue that triggers an

assert in HPCToolkit
– turn off OMPT to use with Intel OpenMP: export OMP_TOOL=disabled

• On Summit, the OpenMP runtime was not amenable to replacement
simply by adding an entry at the front of LD_LIBRARY_PATH
— only practical choice: use the IBM and PGI implementations that are

wired into binary library paths

17

A Note about OMPT on Cori

• Thread <omp idle> time is unfortunately reported as <omp barrier> with
the LLVM OpenMP + HPCToolkit installed on Cori
— both mean that the thread is idle, so while disconcerting, it still is meaningful

• The barrier is reported with the call stack where the thread was last
working

• This “mistake” comes from too literally reporting the runtime internal
state
— we plan to diagnose and fix the problem
— couldn’t be done before the workshop

18

If you are working on Cori, you can observe the effect of the OpenMP tools interface by editing
the run script for amg2013 or hpcg, add

export OMP_TOOL=disabled
in one of the Cori “run” scripts before collecting data with hpcrun

19

A Few More Things
• Events for CPU performance measurement

• OpenMP tools interface

• Differential performance analysis (useful for CPU and GPU)

• Kernel sampling

• Context recycling for dynamic threads

20

The Problem of Scaling

Ef
fic

ie
nc

y

0.500

0.625

0.750

0.875

1.000

CPUs

1 4 16 64 25
6

10
24

40
96

16
38

4
65

53
6

Ideal efficiency
Actual efficiency

?

Note: higher is better

21

Goal: Automatic Scalability Analysis

• Pinpoint scalability bottlenecks

• Guide user to problems

• Quantify the magnitude of each problem

• Diagnose the nature of the problem

22

Challenges for Pinpointing Scalability Bottlenecks
• Parallel applications

— modern software uses layers of libraries
— performance is often context dependent

• Monitoring
— bottleneck nature: computation, data movement, synchronization?
— 2 pragmatic constraints

– acceptable data volume
– low perturbation for use in production runs

Example climate code skeleton

main

ocean atmosphere

wait wait

sea ice

wait

land

wait

23

Performance Analysis with Expectations
• You have performance expectations for your parallel code

— strong scaling: linear speedup
— weak scaling: constant execution time

• Put your expectations to work
— measure performance under different conditions

– e.g. different levels of parallelism or different inputs
— express your expectations as an equation
— compute the deviation from expectations for each calling context

– for both inclusive and exclusive costs
— correlate the metrics with the source code
— explore the annotated call tree interactively

200K

400K600K

24

Pinpointing and Quantifying Scalability Bottlenecks

=−

Q P

1/Q ×

coefficients for analysis
of weak scaling

1/P ×

Scalability Analysis
• Difference call

path profile
from two
executions
— different

number of
nodes

— different
number of
threads

• Pinpoint and
quantify
scalability
bottlenecks
within and
across nodes

25

significant scaling
losses caused by
passing data around
a ring of processors

See the HPCToolkit manual for the detailed description of how to do this in practice

26

Using Differential Performance Analysis
• The example shown was constructed by building a database with

a single MPI rank from each of two executions at different scales
— you can call hpcprof/hpcprof-mpi with .hpcrun files as arguments

instead of analyzing a whole measurement directory

• You can do strong or weak scaling analysis on your own by
— providing two measurement directories to hpcprof/hpcprof-mpi
— writing an equation to compute the scaling loss from one to the other

• Tree vs. forest?
— the Flash example shown had a calling context tree
— when analyzing OpenMP programs without the OpenMP Tools API

(OMPT), you get a forest
– typically two roots for OpenMP codes: <program root>, <thread root>
– top-down scaling comparisons are problematic for a forest
– bottom-up scaling comparisons can be informative for a forest

 they focus on WHAT you are doing at the leaves, irrespective of
whether the OpenMP master thread or a worker thread did the work

27

A Few More Things
• Events for CPU performance measurement

• OpenMP tools interface

• Differential performance analysis (useful for CPU and GPU)

• Kernel sampling

• Context recycling for dynamic threads

Kernel Sampling in HPCToolkit
• When sampling using the Linux perf_event subsystem

— sample user space activity
— sample kernel space activity

• When a thread is active in the kernel, the user calling context
is frozen

• Attribute kernel activity to the point where it occurred in the
user calling context
— form a calling context that has

– user calling context as the prefix
– kernel calling context as the suffix

28

Kernel Sampling Yields Insight

29

• Q: Why is MPI
communication
bandwidth so
low on node
(6-9 GB/s)?

user space

kernel space

Investigating MPI Performance with Kernel Sampling

• A: Bounded by single
thread memory
bandwidth

• Memcpy 12 GB/s

• Stream (1T) 8-9 GB/s
• Stream (OMP) 60 GB/s

Platform
• Intel Broadwell
• Infiniband network

Measure Thread Blocking using perf_events

30

Example: Thread Blocking in “tar”

31

hpcrun -e CYCLES -e BLOCKTIME -e PAGE-FAULTS tar xzf \
~/Downloads/eclipse-rcp-indigo-linux-gtk-x86_64.tar.gz

32

A Few More Things
• Events for CPU performance measurement

• OpenMP tools interface

• Differential performance analysis (useful for CPU and GPU)

• Kernel sampling

• Context recycling for dynamic threads

Context Recycling for Short-lived Threads

• Problem
— some codes create many short-

lived threads
– DCA+ 160 ranks generated 1.2M

thread profiles and traces
— time-centric views of such codes

are problematic

33

• Solution
— when a thread completes, put its

(CCT, trace) in a free list
— when a new thread starts, look for

an available (CCT, trace) pair to
augment

— create a new one only if needed

Credit: Laksono Adhianto

DCA+ using Context Recycling
DCA+ 10 ranks, 12 threads each with context recycling

34Credit: Laksono Adhianto

Detailed HPCToolkit Documentation
 http://hpctoolkit.org/documentation.html

• Comprehensive user manual:
— http://hpctoolkit.org/manual/HPCToolkit-users-manual.pdf
— Quick start guide

– essential overview that almost fits on one page
— Using HPCToolkit with statically linked programs
— The hpcviewer’s profile and trace views
— Effective strategies for analyzing program performance with

HPCToolkit
– analyzing scalability, waste, multicore performance ...

— HPCToolkit and MPI
— HPCToolkit Troubleshooting

• Installation guide
— http://hpctoolkit.org/software-instructions.html

35

Advice for Using HPCToolkit

36

Advice and Troubleshooting Tips
• Compile your program with a -g in addition to optimization

— with -g the compiler records info about line mappings and inlined
code for hpcstruct’s binary analyzer

• If more than just your program is of interest, use hpcstruct to
analyze your libraries of interest as well
— you can provide more than one structure file to hpcprof/hpcprof-

mpi by passing multiple -S options
– e.g. hpcprof -S my-executable -S my-library1 -S my-library-2 …

• If you lack detailed information about loops in hpcviewer
— make sure you analyzed your binary with hpcstruct
— make sure that you provided the structure file to hpcprof/

hpcprof-mpi

37

Monitoring Large Executions
• Collecting performance data on every node is typically not

necessary

• Can improve scalability of data collection by recording data
for only a fraction of processes
— set environment variable HPCRUN_PROCESS_FRACTION
— e.g. collect data for 10% of your processes

– set environment variable HPCRUN_PROCESS_FRACTION=0.10

38

Digesting your Performance Data
• Use hpcstruct to reconstruct program structure

— e.g. hpcstruct your_app
– creates your_app.hpcstruct

• Correlate measurements to source code with hpcprof and
hpcprof-mpi
— run hpcprof on the front-end to analyze data from small runs
— run hpcprof-mpi on the compute nodes to analyze data from lots

of nodes/threads in parallel

• Digesting performance data in parallel with hpcprof-mpi
— srun -n 8 hpcprof-mpi \

-S your_app.hpcstruct \
-I /path/to/your_app/src/+ \
hpctoolkit-your_app-measurements.jobid

39

