EXHSEEEE
COMPUTING
RELEETT

John Mellor-Crummey
Rice University

Tutorial
Mar-Apr 2021
NERSC and OLCF (Virtual)

Office of ’
Science @ RICE WISCWONSIN %

A Few More Things

e Events for CPU performance measurement

e OpenMP tools interface

o Differential performance analysis (useful for CPU and GPU)
* Kernel sampling

e Context recycling for dynamic threads

Sample Sources - |

Linux thread-centric timers

e CPUTIME (DEFAULT if no sample source is specified)
— CPU time used by the thread in microseconds

— does not include time blocked in the kernel
— disadvantage: completely overlooks time a thread is blocked
— advantage: a blocked thread is never unblocked by sampling

* REALTIME

— real time used by the thread in microseconds
— includes time blocked in the kernel

Best for analysis of
profile data

Produces more intuitive
traces

— advantage: shows where a thread spends its time, even when blocked
— disadvantages

activates a blocked thread to take a sample
a blocked thread appears active even when blocked

Note: Only use one Linux timer to measure an execution

Sample Sources - I

Linux perf_event monitoring subsystem
* Kernel subsystem for performance monitoring

e Access and manipulate
— hardware counters: cycles, instructions, ...
— software counters: context switches, page faults, ...

e Available in Linux kernels 2.6.31+

A useful explanation about events available through perf
https://sites.google.com/site/lbathen/research/perf

perf_event Hardware Event Counters

PERF_COUNT_HW_CPU_CYCLES
PERF_COUNT_HW_INSTRUCTIONS
PERF_COUNT_HW_CACHE_REFERENCES
PERF_COUNT_HW_CACHE_MISSES
PERF_COUNT_HW_BRANCH_INSTRUCTIONS
PERF_COUNT_HW_BRANCH_MISSES
PERF_COUNT_HW_BUS_CYCLES
PERF_COUNT_HW_STALLED CYCLES_FRONTEND
PERF_COUNT_HW_STALLED CYCLES_BACKEND
PERF_COUNT_HW_REF_CPU_CYCLES

perf event Hardware Cache Events

e Hardware cache

— PERF_COUNT_HW_CACHE_L1D
— PERF_COUNT_HW_CACHE_L1I

— PERF_COUNT_HW_CACHE_LL

— PERF_COUNT_HW_CACHE_DTLB
— PERF_COUNT_HW_CACHE_ITLB
— PERF_COUNT_HW_CACHE_BPU
— PERF_COUNT_HW_CACHE_NODE

e Operations
— PERF_COUNT_HW_CACHE_OP_READ
— PERF_COUNT_HW_CACHE_OP_WRITE
— PERF_COUNT_HW_CACHE_OP_PREFETCH

e Results
— PERF_COUNT_HW_CACHE_RESULT _ACCESS
— PERF_COUNT_HW_CACHE_RESULT_MISS

perf_event Software Events

PERF_COUNT_SW_CPU_CLOCK
PERF_COUNT_SW_TASK_CLOCK
PERF_COUNT_SW_PAGE_FAULTS
PERF_COUNT_SW_CONTEXT_SWITCHES
PERF_COUNT_SW_CPU_MIGRATIONS
PERF_COUNT_SW_PAGE_FAULTS_MIN
PERF_COUNT_SW_PAGE_FAULTS_MAJ
PERF_COUNT_SW_ALIGNMENT_FAULTS
PERF_COUNT_SW_EMULATION_FAULTS

Measuring Other Hardware Events

e See the full list of available events with

— hpcrun -L
* Perf events are grouped by categories indicated by a prefix
— ix86arch::<event> Il Intel architecture
— perf::<event> Il perf_event builtin
— bdw_ep::<event> I/l Broadwell EP specific

* For convenience
— you may omit the category prefix, e.g. “perf::”
— you may specify counter names using lower case

Multiplexing Events

* In a single execution, you can measure more hardware events
than the number of hardware counters available per thread

* [f you specify more events than counters available
— perf_events will automatically multiplex them

* How multiplexing works with Linux perf_event subsystem

— at any time, the number of events being collected will not exceed
the number of hardware counters available per thread

— the kernel will partition events into sets that can be monitored
simultaneously using hardware counter resources

— the kernel will monitor one set of events for a while then switch
to another

— monitoring of event sets is scheduled in round-robin fashion

— while multiplexing is convenient, there is some loss of accuracy
— my advice: multiplexing is fine for casual execution analysis

Controlling perf_event Sampling Frequency

e Automatic Recommended

— HPCToolkit samples perf_event counters min(300x/second,
maximum Linux allows)

— may be higher than necessary for long executions
reducing the frequency will reduce measurement overhead

» Specify frequency
— use the @f<freq> suffix for an event to specify frequency
— hpcrun -e CYCLES@f100 -e INSTRUCTIONS@f200 ...

— Specify a different default frequency using the -c option
— example: sample both CYCLES and INSTRUCTION 200x per second
hpcrun -c 200 -e CYCLES -e INSTRUCTIONS

e Specify period
— Use the @<period> suffix for an event to specify a period
— hpcrun -e CYCLES@1000000 -e INSTRUCTIONS@5000000 ...

10

How to Specify What to Measure

Dynamically-linked executables

— when you launch your program, use hpcrun, e.g.
hpcrun -e perf::CYCLES -e perf::CS -e snb::PAGE_WALKS:LLC_MISS ./hello_world

Statically-linked executable
— at compile time, link your executable with hpclink

— when you launch your program, set HPCRUN_EVENT _LIST, e.g.
export HPCRUN_EVENT_LIST="perf::CYCLES,perf::CS,snb::PAGE_WALKS:LLC_MISS” ./hello_world

11

A Few More Things

Events for CPU performance measurement

OpenMP tools interface

Differential performance analysis (useful for CPU and GPU)
Kernel sampling

Context recycling for dynamic threads

12

OpenMP: A Challenge for Tools

e Large gap between between threaded programming models
and their implementations

0600 2-hpcviewer: LULESH_OMPhost .

Rt Moy .
T e el e / User-level calling context for

1289

1290 . -

1291 #pragma omp parallel for firstprivate(numElem, hourg) Cod e I n O e n M P a ral Iel re IO n S
1292 for(Index_t i2-0; i2<numElem; ++i2){|

1293 Real_t *fx_local, *fy_local, *fz_local ;

1294 Real_t hgfx[8], hgfy[8], hgfz[8] ;

and tasks executed by worker
threads is not readily available

'% Calling Context View 23 "\\ Callers View .T'»- Flat View

|2 2|6 fo||5 A A

Scope |REALTIME (usec):Sum () ¥ |REALTIME (usec):Sum (E)
Experiment Aggregate Metrics 6.32e+08 100 % 6.32e+08 100 %
¥monitor_begin_thread 6.06e+08 95.8%
¥ B»940: __kmp_launch_worker(void*) 5.80e+08 91.8%
¥ B 729: __kmp_launch_thread 5.80e+08 91.8% 1.51e+04 0.0%
¥ B»6314: __kmp_invoke_task_func 3.38e+08 53.5%
-~k i ke pa A 3.38e+08 53.5%
__Z28CalcFBH pal 6.48e+07 10.3% 4.14e+07 6.5%
» B»L__Z22CalcKinematicsForElemsid_1931__par_loop0_2_855 5.36e+07 8.5% 1.72e407 2.7%
» B»L__Z28CalcHourglassControlForElemsPdd_1516__par_loop0_2_424 4.73e+07 7.5% 1.64e+07 2.6%
» B»L__Z23IntegrateStressForElemsiPdS_S_S__864__par_loop0_2_125 4.34e+07 6.9% 8.66e+06 1.4%
> B»L_Z31CalcMonotonicQGradientsForElemsv 2040 _par loop0 2 965 2.82e+07 4.5% 1.59e407 2.5%
» B»6333: __kmp_join_barrier(int) 1.63e+07 2.6% 2.50e+04 0.0%
> B»6302: __kmp_clear_x87_fpu_status_word 2.00e+04 0.0% 2.00e+04 0.0%
kmp_runtime.c: 6236
» B»940: __kmp_launch_monitor(void*) 2.53e+07 4.0%
¥monitor_main 2.63e+07 4.2%
¥ B»483: main 2.63e+07 4.2% 2.10e+05 0.0%
» B»3187: LagrangeleapFrog() 2.52e+07 4.0%
» B»3049: Domain::AllocateNodeElemIndexes() 4.66e+05 0.1% 2.15e+05 0.0%
> B»2995: Domain::AllocateElemPersistent(unsigned long) 8.09e+04 0.0%

 Runtime support is necessary for tools to bridge the gap

13

Challenges for OpenMP Node Programs

* Tools provide implementation-level view of OpenMP threads

— asymmetric threads
— master thread
— worker thread

— run-time frames are interspersed with user code

* Hard to understand causes of idleness
— long serial sections
— load imbalance in parallel regions
— waiting for critical sections or locks

14

OMPT: An OpenMP Tools API

* Goal: a standardized tool interface for OpenMP
— prerequisite for portable tools
— missing piece of the OpenMP language standard

* Design objectives
— enable tools to measure and attribute costs to application source
and runtime system

* support low-overhead tools based on asynchronous sampling
e attribute to user-level calling contexts

* associate a thread’s activity at any point with a descriptive state
— minimize overhead if OMPT interface is not in use

» features that may increase overhead are optional
— define interface for trace-based performance tools
— don’t impose an unreasonable development burden

* runtime implementers

* tool developers

15

OpenMP Tool API Status

e Currently HPCToolkit supports OMPT interface based on OpenMP 5.0

e OMPT prototype implementations
—LLVM
— interoperable with GNU, Intel compilers
— still a work in progress

—IBM LOMP (currently targets OpenMP 5)

¢ Ongoing work
—refining OpenMP 5.1 OMPT support in LLVM
—fine tuning OMPT support in HPCToolkit

OMPT and Tutorial Examples

On Cori, we are using a copy of the LLVM OpenMP runtime with an
OpenMP tools interface developed by Rice
— “module load openmp/ompt”

— instead of most time in <thread root>, most time is merged into
<program root> - global user-level view

— software stack was amenable to replacing OpenMP runtime with ours
for CPU examples

— Intel OpenMP runtime in Cray’s modules has an issue that triggers an
assert in HPCToolkit

— turn off OMPT to use with Intel OpenMP: export OMP_TOOL=disabled

On Summit, the OpenMP runtime was not amenable to replacement
simply by adding an entry at the front of LD_LIBRARY_PATH

— only practical choice: use the IBM and PGl implementations that are
wired into binary library paths

17

A Note about OMPT on Cori

Thread <omp idle> time is unfortunately reported as <omp barrier> with
the LLVM OpenMP + HPCToolkit installed on Cori

— both mean that the thread is idle, so while disconcerting, it still is meaningful

The barrier is reported with the call stack where the thread was last
working

This “mistake” comes from too literally reporting the runtime internal
state

— we plan to diagnose and fix the problem
— couldn’t be done before the workshop

If you are working on Cori, you can observe the effect of the OpenMP tools interface by editing
the run script for amg2013 or hpcg, add
export OMP_TOOL=disabled

in one of the Cori “run” scripts before collecting data with hpcrun

18

A Few More Things

Events for CPU performance measurement

OpenMP tools interface

Differential performance analysis (useful for CPU and GPU)

Kernel sampling

Context recycling for dynamic threads

19

Efficiency

The Problem of Scaling

1.000 [e—
?
0.750
— ldeal efficiency
— Actual efficiency
0.625
0.500

N [©] © O © e ©
CPUs

Note: higher is better
20

Goal: Automatic Scalability Analysis

* Pinpoint scalability bottlenecks
e Guide user to problems
* Quantify the magnitude of each problem

* Diagnose the nature of the problem

21

Challenges for Pinpointing Scalability Bottlenecks

e Parallel applications
— modern software uses layers of libraries
— performance is often context dependent

Example climate code skeleton

* Monitoring
— bottleneck nature: computation, data movement, synchronization?

— 2 pragmatic constraints
— acceptable data volume
— low perturbation for use in production runs 22

Performance Analysis with Expectations

* You have performance expectations for your parallel code
— strong scaling: linear speedup
— weak scaling: constant execution time

* Put your expectations to work

— measure performance under different conditions
— e.g. different levels of parallelism or different inputs

— express your expectations as an equation

— compute the deviation from expectations for each calling context
— for both inclusive and exclusive costs

— correlate the metrics with the source code
— explore the annotated call tree interactively

23

Pinpointing and Quantifying Scalability Bottlenecks

4) 4

/

d
I 4 - o= I 4 ===
1 oo - P | AN ook

24

Scalability Analysis

lefe rence Ca" 000 hpcviewer: FLASH/white dwarf: IBM BG/P, weak 256->8192

path prOfile '-'goriver_initrlashfgo W =0

206 1----- First pass only add lrefine = 1 blocks to tree(s)
07 Second pass add the rest of the blocks.
from tWO)8 Do ipass = 1,2
209 . . gn .
execuﬂons 210 1nblocks_old = lnblocks Slgnlflcant Scallng
211 proc = mype
. 212 1-==-- Loop through all processors Iosses caused by
_— dlfferent 213 Do iproc = @, nprocs-1 .
214
number of e Cioroc — 6) Then passing data around
216 ff_ - .False. H
nodes 21 Off-proc = False a ring of processors
R d iffe re nt ‘ "X Calling Context View 53 » R, Callers View | fy, Flat View | = B8 |
number of 0|6 || A A
'Scope 9% scalability loss ¥| 256/WALLCLOCK (u |
th reads Experiment Aggregate Metrics 2.46e+01 100 & 5.07e+08 :
¥flash 2.46e+01 100 s 5.07e+08 :
- - » By driver_evolveflash 1.4le+01 57.5% 4.46e+08 ¢
Pl"pOlnt and v B driver_initflash 1.04e+01 42.5% 6.02e+07 :
. ¥ B grid_initdomain 8.58e+00 34.9% 3.45e+07
quantlfy ¥ B gr_expanddomain 8.58e+00 34.9% 3.45e+07
Vloop at gr_expandDomain.FS0: 119 6.85e+00 27.9% 3.42e+07
HH v B> amr_refine_derefine 5.56e+00 22.6% 2.87e+06
Scalablllty ¥ B> amr_morton_process 5.45e+00 22.2% 9.75e+05
¥ B find_surrblks 5.18e+00 21.1% 8.40e+05
bOttIeneCKs ¥ B local_tree_build 5.18e+00 21.1% 8.25e+05
. - ¥loop at local_tree_build.F90: 211 5.18e+00 21.1% 8.25e+05
WIth I n a n d Vloop at local_tree_build.F90: 216 5.18e+00 21.1% 8.25e+05
P loop at local_tree_build.F90: 286 1.14e+00 4.6% 2.55e+05
across nOdes P B pmpi_sendrecv_replace 5.47e-01 2.2% 5.00e+04

See the HPCToolkit manual for the detailed description of how to do this in practice

Using Differential Performance Analysis

* The example shown was constructed by building a database with
a single MPI rank from each of two executions at different scales

— you can call hpcprof/hpcprof-mpi with .hpcrun files as arguments
instead of analyzing a whole measurement directory

* You can do strong or weak scaling analysis on your own by
— providing two measurement directories to hpcprof/hpcprof-mpi
— writing an equation to compute the scaling loss from one to the other

* Tree vs. forest?
— the Flash example shown had a calling context tree
— when analyzing OpenMP programs without the OpenMP Tools API
(OMPT), you get a forest
— typically two roots for OpenMP codes: <program root>, <thread root>
— top-down scaling comparisons are problematic for a forest
— bottom-up scaling comparisons can be informative for a forest

they focus on WHAT you are doing at the leaves, irrespective of
whether the OpenMP master thread or a worker thread did the work

26

A Few More Things

Events for CPU performance measurement
OpenMP tools interface

Differential performance analysis (useful for CPU and GPU)

Kernel sampling

Context recycling for dynamic threads

27

Kernel Sampling in HPCToolkit

e When sampling using the Linux perf_event subsystem
— sample user space activity
— sample kernel space activity

e When a thread is active in the kernel, the user calling context
is frozen

e Attribute kernel activity to the point where it occurred in the
user calling context

— form a calling context that has
— user calling context as the prefix
— kernel calling context as the suffix

28

Kernel Sampling Yields Insight

Investigating MPI Performance with Kernel Sampling

Platform [X X] hpcviewer: mpibw
* Intel Broadwell = osu_bibwe X _

103 for‘(i = 0; i < options.loop + options.skip; i++) {

* Infiniband network ifCi 2= options.skip) {

105 t_start = MPI_Wtime();
106 3
107
108 for(j = 0; j < window_size; j++) {
109 MPI_Irecv(r_buf, size, MPI_CHAR, (myid + numprocs/2)%numprocs, 10, MPI_COMM_WORLD,
- 110 recv_request + j);
Q: Why is MPI 111 }
H H 113 for(j = @; j < window_size; j++) {
communlcatlon 114 MPI_Isend(s_buf, size, MPI_CHAR, (myid + numprocs/2)%numprocs, 100, MPI_COMM_WORLD,
= 115 send_request + j);
bandwidth so }
117
Iow on nOde 118 MPI_Waitall(window_size, send_request, regstat);|
7 119 MPI_Waitall(window_size, recv_request, regstat);
- 120 1
(6-9 GB/s)*
% Calling Context View | %, Callers View X |}, Flat View =
A: Bounded by single T 0 b M TA N

Scope CYCLES:Sum (E) CACHE_LL:READ:Sum (v CACHE_LL:WRITE:Sum (E) INSTRUCTIONS:Sum (E)
thread memory v @l copy_user_enhanced_fast_string kernel space 1.53e+11 39.5% 1.46e+08 93.3% 1.40e+07 87.8% 1.18e+10 2.2%
bandwidth v ¢ process_vm_rw 1.53e+11 39.5% 1.46e+08 93.3% 1.40e+07 87.8% 1.18e+10 2.2%
v ¢l sys_process_vm_readv 1.53e+11 39.5% 1.46e+08 93.3% 1.40e+07 87.8% 1.18e+10 2.2%
v ¢l system_call_fastpath 1.53e+11 39.5% 1.46e+08 93.3% 1.40e+07 87.8% 1.18e+10 2.2%
Memcpy 12 GBIS vl Gl process vm_readv . 1.53e+11 39.5% 1.46e+08 93.3% 1.40e+07 87.8% 1.18e+10 2.2%
v &2 <unknown procedure> 0xd161 [libpsm2.s0.2.1] 1.53e+11 39.5% 1.46e+08 93.3% 1.40e+07 87.8% 1.18e+10 2.2%
v @i <unknown procedure> Oxcc82 [libpsm2.s0.2.1] 8.08e+10 20.9% 1.19e+08 76.3% 9.88e+06 61.9% 6.30e+09 1.2%
Stream (1 T) 8_9 G BIS v 4 <unknown procedure> Ox5aa3 [libpsm2.50.2.1] 8.08e+10 20.9% 1.19e+08 76.3% 9.88e+06 61.9% 6.30e+09 1.2%
v @l <unknown procedure> Oxc3eb [libpsm2.50.2.1] 8.08e+10 20.9% 1.19e+08 76.3% 9.88e+06 61.9% 6.30e+09 1.2%
v 4 <unknown procedure> 0x1d4e6 [libpsm2.50.2.1] 6.15e+10 15.9% 7.66e+07 49.1% 6.39e+06 40.1% 4.89e+09 0.9%
Stream (OMP) 60 GB/S v 44 189: MPIDI_CH3_Progress_start 6.15e+10 15.9% 7.66e+07 49.1% 6.39e+06 40.1% 4.89e+09 0.9%
v ¢ 145: MPIR_Waitall_impl 6.15e+10 15.9% 7.66e+07 49.1% 6.39e+06 40.1% 4.89e+09 0.9%
user space v 4 309: PMPI_Waitall 6.15e+10 15.9% 7.66e+07 49.1% 6.39e+06 40.1% 4.89e+09 0.9%
v 4 118: main 6.15e+10 15.9% 7.66e+07 49.1% 6.39e+06 40.1% 4.89e+09 0.9%

4y

Measure Thread Blocking using perf_events

Original idea: Kernel blocking time

Application/User A==\, Jreeeee
In ut In ut In

p— __/ __/

Blocking Blocking

Our approach: Estimated kernel blocking time

Application/User '“a’
ut E

NN

Estimated blocking

30

Example: Thread Blocking in “tar”

hpcrun -e CYCLES -e BLOCKTIME -e PAGE-FAULTS tar xzf \

~/Downloads/eclipse-rcp-indigo-linux-gtk-x86_64.tar.gz

hpcviewer: tar (on ori.cs.rice.edu)

File Filter View Window Help

s unistd.h §3 =58
return read chk (__ fd, buf, nbytes, bos® (__ buf));

4¢ .
i 17 [ohyins = best . beth} Measure and attribute
42 return read chk warn (fd, buf, nbytes, bos® (_ buf)); tlme a thread is blocked
43 }
EEY return read alias (fd, buf, nbytes) ; | in the kernel
45} =
K|]
"X Calling Context View £3 2, Callers View f;, Flat View =8
T3¢ S0 M S A A u 2
Scope CYCLES:Sum (I) BLOCKTIME:Sum (1) PAGE-FAULTS:Sum (1)
Experiment Aggregate Metrics 7 4
- <program root=> |

v B 500: main

v B 2734: read_and

v B»177: open_archive

3.70e+01 42.0%

v [B»2032: [I] _open_archive
v [B»838: find_next_block

¥ [B»619: flush_archive

v B 1011: [1] flush_read

v B> 2017: gnu_flush_read

Time blocked in the
kernel dominates the
computation time
associated with reads

TYTETTOTT T VYT

v Bp1916: [I] _gnu_flush_read
- loop at buffer.c: 1880
v [B» 1879: safe_read
v loop at safe-read.c: 66
v B 66: [I] read
- |z 44: __read_nocancel 3.0 65.0%

<~ B)entry_SYSCALL_64_fastpath

v B)SyS_read
Kernel v B vfs_read
frames v By _vfs_read

v B pipe_read

v B pipe_wait

31

A Few More Things

Events for CPU performance measurement
OpenMP tools interface
Differential performance analysis (useful for CPU and GPU)

Kernel sampling

Context recycling for dynamic threads

32

Context Recycling for Short-lived Threads

* Problem
— some codes create many short-
lived threads

— DCA+ 160 ranks generated 1.2M
thread profiles and traces

— time-centric views of such codes -
are problematic z

e Solution

— when a thread completes, put its
(CCT, trace) in a free list

— when a new thread starts, look for

an available (CCT, trace) pair to
augment

— create a new one only if needed

<
H
H
G
&

<

L]
g
E]

Credit: Laksono Adhianto 33

DCA+ using Context Recycling

th context recycling

DCA+ 10 ranks, 12 threads each w

/hpctoolkit-main_dca-database

E
]
7
£
]
2
3
>
2
]
-]
=
s
-]
3
]
T
-
]
£
4
]
H
]
>
]
]
e
-
£
1]
-
4]

View Window Help

File

I} y 4 o> > = o E EE (A
] & 8CEEGQ =
] R iR - == @
2225z 88 % s @9
T o9 9 OElE B YV =283
T awyy®m R - I - S 5o 2 &
A A £ = ERER 2289 m
riisssEsS8284 maARmT
Lzrgg2 2 i s EE o 9 5 o ©
aa oo 8 58" e o % -
. T Lorgg [-] - R
<P S NN g o T2y totom S e e BT
B yv e nom L Ry Y Naa 2335823
SovVyiZiPEEzEeg 28822
Ee 522 sfElzszs S 2 SEEESg
S Eaapgtis ==X =20 Egw™mn
R 1 * % 2 U @ 0 S mw 7 o~
v g g OO 3 S o9 2 ¥ v mb98ee
C U e & TV T 'S ® 2 ‘G
= 2 ! s |8 [NN N U
S22+ 080 866G 8 &z E N U U oo
g@EEL L e T L L ooa o5 X X5 X
MESSSEE [EEEEE £h%aan
IR EEE] - EEEEEE gpppepy
pVvggavny A A B 5555353
£ 3 v w &t & & coLoLEEZ g 82238 % %
| 22 0 U u o U U U o N £ =
v Eoo>2>:>HE>5>3223 |§ 258888
© A z2TIEET©SoT@ ©c e o o & a V < £ £ EEE
SR & wmaam awwwy 3 o s g 2 acsaan
S PcERwonwiinn g owobuw™mEE3IEEESEEE
5 - o ¥ EE 222 222 22u334YY38333 32
= Sy PEs Lz ZZEZZE8¥3ssic2ez2e
£ § 53528 sosaa=ddEcC g g g g =
e A o
3 R 8888583855555 MM
f§] Vet w B tswvuvB |D23VVVVV z
=, EEEER EEnm EEEEEEN . =

3 o

€

3+ &

. Trace View ‘

Time Range: [8.113s, 412.819s] Rank Range: [0.0,1.11] Cross Hair: (109.049s, 1.7)

1 ‘l']ll[!!‘!”"winm"}1 | i‘ll"‘!'“""{"!["" l!Hli'l'!!u“lllrﬂg'q'[lg CITY
I

& pepth View “ Summary View

1Tl

34

to

1an

Laksono Adhi

Cred

Detailed HPCToolkit Documentation

http://hpctoolkit.org/documentation.html

e Comprehensive user manual:

— http://hpctoolkit.org/manual/HPCToolkit-users-manual.pdf
— Quick start guide
— essential overview that almost fits on one page

— Using HPCToolkit with statically linked programs
— The hpcviewer’s profile and trace views

— Effective strategies for analyzing program performance with
HPCToolkit

— analyzing scalability, waste, multicore performance ...
— HPCToolkit and MPI

— HPCToolkit Troubleshooting

* Installation guide
— http://hpctoolkit.org/software-instructions.htmi

35

Advice for Using HPCToolkit

36

Advice and Troubleshooting Tips

e Compile your program with a -g in addition to optimization
— with -g the compiler records info about line mappings and inlined
code for hpcstruct’s binary analyzer

* [f more than just your program is of interest, use hpcstruct to
analyze your libraries of interest as well

— you can provide more than one structure file to hpcprof/hpcprof-
mpi by passing multiple -S options
— e.g. hpcprof -S my-executable -S my-library1 -S my-library-2 ...

e [f you lack detailed information about loops in hpcviewer
— make sure you analyzed your binary with hpcstruct

— make sure that you provided the structure file to hpcprof/
hpcprof-mpi

37

Monitoring Large Executions

e Collecting performance data on every node is typically not
necessary

 Can improve scalability of data collection by recording data
for only a fraction of processes

— set environment variable HPCRUN_PROCESS_FRACTION

— e.g. collect data for 10% of your processes
— set environment variable HPCRUN_PROCESS_FRACTION=0.10

38

Digesting your Performance Data

* Use hpcstruct to reconstruct program structure
— e.g. hpestruct your app
— creates your_app.hpcstruct

e Correlate measurements to source code with hpcprof and
hpcprof-mpi
— run hpcprof on the front-end to analyze data from small runs

— run hpcprof-mpi on the compute nodes to analyze data from lots
of nodes/threads in parallel

* Digesting performance data in parallel with hpcprof-mpi

— srun -n 8 hpcprof-mpi \
-S your_app.hpcstruct \
-| /path/to/your_app/src/+ \
hpctoolkit-your_app-measurements.jobid

39

