

Using NERSC for Research in
High Energy Physics Theory

Richard Gerber
Senior Science Advisor

HPC Department Head (Acting)

 NERSC: the Mission HPC Facility for DOE Office of Science Research

Bio	Energy,		Environment	 Compu2ng	

Par2cle	Physics,	Astrophysics	

Largest funder of physical
science research in U.S.

Nuclear	Physics	

6,000 users, 700 projects, 700 codes, 48 states, 40 countries, universities & national labs

Materials,	Chemistry,	Geophysics	

Fusion	Energy,	Plasma	Physics	

Current Production Systems

3

Edison
5,560 Ivy Bridge Nodes / 24 cores/node
 133 K cores, 64 GB memory/node
Cray XC30 / Aries Dragonfly interconnect
6 PB Lustre Cray Sonexion scratch FS

Cori Haswell Nodes
1,900 Haswell Nodes / 32 cores/node
 52 K cores, 128 GB memory/node
Cray XC40 / Aries Dragonfly interconnect
24 PB Lustre Cray Sonexion scratch FS
1.5 PB Burst Buffer

Cori Xeon Phi KNL Nodes

4

Cray XC40 system with 9,300 Intel
Knights Landing compute nodes

68 cores / 96 GB DRAM / 16 GB HBM

Support the entire Office of Science
research community

Begin to transition workload to energy
efficient architectures

Data Intensive Science Support
10 Haswell processor cabinets (Phase 1)

NVRAM Burst Buffer 1.5 PB, 1.5 TB/sec

30 PB of disk, >700 GB/sec I/O bandwidth

Integrated with Cori Ha swell nodeson
Aries network for data / simulation /
analysis on one system

NERSC Allocation of Computing Time

5

2,400

300

300
DOE Mission Science

ALCC

Directors Discretionary

Distributed by DOE SC program managers

Competitive awards run by DOE ASCR

80%

10%

10%
Strategic awards from NERSC

NERSC
hours in
millions

NERSC has ~100% utilization

6

Important to get support
and allocation from DOE
program manager (L.
Chatterjee) or through
ALCC!

They are supportive.

PI Allocation (Hrs) Program

Childers/Lecompte 18,600,000 ALCC

Hoeche 9,000,000 DOE Production

Hinchliffe 800,000 DOE Production

Ligeti 2,800,000 DOE Production

Piperov 1,500,000 DOE Production

 Initial Allocation Distribution Among Offices for 2016

- 7 -

 NERSC Supports Jobs of all Kinds and Sizes

- 8 -

Larger Physical Systems,
Higher Fidelity

High Throughput: Statistics, Systematics, Analysis, UQ

Cori Integration Status

July-August
 9300 KNL nodes arrive, installed, tested

Monday
 P1 shut down, P2 stress test

This week
 Move I/O, network blades
 Add Haswell to P1 to fill holes
 Cabling/Re-cabling
 Aries/LNET config
 Cabinet reconfigs

Now to now+6 weeks
 …continue, test, resolve issues
 configure SLURM

NESAP code team access ASAP!

Key Intel Xeon Phi (KNL) Features

Single socket self-hosted processor
–  (Relative!) ease of programming using portable programming models and languages

(MPI+OpenMP)
–  Evolutionary coding model on the path to manycore exascale systems

Low-power manycore (68) processor with up to 4 hardware threads
512b vector units
–  Opportunity for 32 DP flops / clock (2 VPU * 64b * FMA)

16 GB High bandwidth on-package memory
–  Bandwidth 4-5X that of DDR4 DRAM memory
–  Many scientific applications are memory-bandwidth bound

Top Level Parallelism

Domain Parallelism: MPI

Opportunity cost: 9300X

Thread-Level Parallelism for Xeon Phi Manycore

Xeon Phi “Knights
Landing”

68 Cores with 1-4 threads

Commonly using OpenMP
to express threaded
parallelism

On-Chip Parallelism – Vectorization (SIMD)

Single instruction to
execute up to 16 DP
floating point
operations per cycle
per VPU.

32 Flop / cycle / core
44 Gflops / core
3 TFlops / node

Cache
Model

Let the hardware automatically manage the
integrated on-package memory as an “L3” cache
between KNL CPU and external DDR

Flat
Model

Manually manage how your application uses the
integrated on-package memory and external DDR
for peak performance

Hybrid
Model

Harness the benefits of both cache and flat models
by segmenting the integrated on-package memory

Maximum performance through higher memory bandwidth and
flexibility

Knights Landing Integrated On-Package Memory

Near
Memory

HBW
In-Package
Memory

KNL CPU

HBW
In-Package
Memory

HBW
In-Package
Memory

HBW
In-Package
Memory

HBW
In-Package
Memory

HBW
In-Package
Memory

. . .

. . .

CPU Package

DDR

DDR

DDR

. . .

Cache

PCB

Near
Memory

Far
 Memory

Side
View

Top
View

 Data layout crucial for

performance

Enables efficient
vectorization

Cache “blocking”

Fit important data
structures in 16 GB of
MCDRAM

MCDRAM memory/core
= 235 MB

DDR4 memory/core =
1.4 GB

NERSC Exascale Scientific Application Program (NESAP)

17

Goal:	Prepare	DOE	Office	of	Science	users	for	many	core	
Partner	closely	with	~20	applica2on	teams	and	apply	lessons	

learned	to	broad	NERSC	user	community	

NESAP	ac2vi2es	include:	

Leverage	
community	
efforts	

Close	
interac4ons	

with	
vendors	

Developer	
Workshops	

Early	
engagement	
with	code	
teams	

Postdoc	
Program	

	

Training	
and	

online	
modules	

Early	
access	to	

KNL	

 Resources for Code Teams

•  Early	access	to	hardware	
–  Early	“white	box”	test	systems	and	testbeds	
–  Early	access	and	significant	2me	on	the	full	Cori	system	

•  Technical	deep	dives	
–  Access	to	Cray	and	Intel	staff	on-site	staff	for	applica2on	op2miza2on	and	

performance	analysis	
–  Mul2-day	deep	dive	(‘dungeon’	session)	with	Intel	staff	at	Oregon	Campus	to	

examine	specific	op2miza2on	issues	
•  User	Training	Sessions		

–  From	NERSC,	Cray	and	Intel	staff	on	OpenMP,	vectoriza2on,	applica2on	profiling	
–  Knights	Landing	architectural	briefings	from	Intel	

•  NERSC	Staff	as	Code	Team	Liaisons	(Hands	on	assistance)	
•  8	Postdocs	

NERSC NESAP Staff

19

Nick Wright Katie Antypas Brian Austin Zhengji Zhao Helen He

Richard Gerber

Rebecca Hartman-Baker Brandon Cook Thorsten Kurth

Stephen Leak

Woo-Sun Yang Doug Doerfler Jack Deslippe Brian Friesen

NESAP Postdocs

20

(1	FTE	Postdoc	+)		
0.2	FTE	AR	Staff	

0.25	FTE	COE	

1	Dungeon	Ses.		+	
2	Week	on	site	w/	
Chip	vendor	staff	

Target	Applica4on	Team	Concept	

1.0	FTE	User	
Dev.	

Taylor Barnes
Quantum ESPRESSO

Zahra
Ronaghi

Andrey Ovsyannikov
Chombo-Crunch

Mathieu Lobet
WARP

Tuomas Koskela
XGC1

Tareq Malas
EMGeo

NESAP Code Status (Work in Progress)
GFLOP/s KNL Speedup HBM /

DDR
Speedup KNL /

Haswell

Chroma (QPhiX) 388 (SP) 4 2.71

MILC 117.4 3.8 2.68

CESM (HOMME) 1.8

MFDN (SPMM) 109.1 3.6 1.62

BGW Sigma 279 1.8 1.61

HACC 1200 1.41

EMGEO (SPMV) 181.0 4.2 1.16

GFLOP/s KNL Speedup
HBM / DDR

Speedup KNL /
Haswell

DWF 600 (SP) 0.95

WARP 60.4 1.2 1.0

Meraculous 0.75

Boxlib 1.13 1.1

Quantum ESPRESSO 1

XGC1 (Push-E) 8.2 0.82 0.2-0.5

Chombo 0.5-1.5

*Speedups from direct/indirect NESAP efforts as well as coordinated activity in NESAP timeframe

 What has gone well

Setting requirements for Dungeon Session (Dungeon Session
Worksheet).

Engagement with IXPUG and user communities (DFT, Accelerator
Design for Exascale Workshop at CRT)

Learned a massive amount about tools and architecture
Large number of NERSC and vendor training events (Vectorization,

OpenMP, Tools/Compilers)
Cray COE VERY helpful to work with. Very pro-active.
Pipelining code work via Cray and Intel experts
Case studies on the web to transfer knowledge to larger community

EXTRA SLIDES

 Why You Need Parallel Computing: The End of Moore’s Law?

25

2X transistors/Chip Every 1.5 years
Called “Moore’s Law”

Moore’s Law

Microprocessors have
become smaller, denser,
and more powerful.

Gordon Moore (co-founder of Intel) predicted
in 1965 that the transistor density of
semiconductor chips would double roughly
every 18 months.

Slide source: Jack Dongarra

 Power Density Limits Serial Performance

26

4004
8008
8080

8085

8086

286 386
486

Pentium®
P6

1

10

100

1000

10000

1970 1980 1990 2000 2010
Year

Po
w

er
 D

en
si

ty
 (W

/c
m

2)

Hot Plate

Nuclear

Reactor

Rocket
Nozzle

Sun’s
Surface Source: Patrick Gelsinger,

Shenkar Bokar, Intel®

High performance serial processors waste power
•  Speculation, dynamic dependence checking, etc. burn power
•  Implicit parallelism discovery

More transistors, but not faster serial processors

Concurrent systems are more power
efficient

•  Dynamic power is proportional to
V2fC

•  Increasing frequency (f) also
increases supply voltage (V) à
cubic effect

•  Increasing cores increases
capacitance (C) but only linearly

•  Save power by lowering clock speed

Processor design for performance and power

27

Exponential performance
continues

Single-thread performance flat or
decreasing

Power under control (P ~ f2-3)

Number of cores / die grows

 Moore’s Law Reinterpreted

Number of cores per chip will increase
Clock speed will not increase (possibly decrease)
Need to deal with systems with millions of concurrent
threads
Need to deal with intra-chip parallelism (OpenMP threads)
as well as inter-chip parallelism (MPI)
Any performance gains are going to be the result of
increased parallelism, not faster processors

28

 Un-optimized Serial Processing = Left Behind

29

10

100

1,000

10,000

100,000

1,000,000

1985 1990 1995 2000 2005 2010 2015 2020
Year of Introduction

 Expectation Gap

Microprocessor
Performance

Do nothing

Modern
software
users

Application Portability

30

•  DOE Office of Science will have at least two HPC
architectures

•  NERSC and ALCF will deploy Cray-Intel Xeon Phi many core based systems
in 2016 and 2018

•  OLCF will deploy and IBM Power/NVIDIA based system in 2017
•  Question: Are there best practices for achieving performance

portability across architectures?
•  What is “portability”?

•  ! #ifdef
•  Could be libraries, directives, languages, DSL,
•  Avoid vendor-specific constructs, directives, etc?

Application Portability

31

•  Languages
•  Fortran?
•  Python?
•  C, C++?
•  UPC?
•  DSL?
•  Frameworks (Kokkos, Raja, Tida)

