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 NERSC: the Mission HPC Facility for DOE Office of Science Research 

Bio	Energy,		Environment	 Compu2ng	

Par2cle	Physics,	Astrophysics	

Largest funder of physical 
science research in U.S.  

Nuclear	Physics	

6,000 users, 700 projects, 700 codes, 48 states, 40 countries, universities & national labs 

Materials,	Chemistry,	Geophysics	

Fusion	Energy,	Plasma	Physics	



 
 

 
 

Current Production Systems 
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Edison 
5,560 Ivy Bridge Nodes / 24 cores/node 
 133 K cores, 64 GB memory/node 
Cray XC30 / Aries Dragonfly interconnect 
6 PB Lustre Cray Sonexion scratch FS 

Cori Haswell Nodes 
1,900 Haswell Nodes / 32 cores/node 
 52 K cores, 128 GB memory/node 
Cray XC40 / Aries Dragonfly interconnect 
24 PB Lustre Cray Sonexion scratch FS 
1.5 PB Burst Buffer 



 
 

 
 

Cori Xeon Phi KNL Nodes 
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Cray XC40 system with 9,300 Intel 
Knights Landing compute nodes 

68 cores / 96 GB DRAM / 16 GB HBM 

Support the entire Office of Science 
research community 

Begin to transition workload to energy 
efficient architectures 

Data Intensive Science Support 
10 Haswell processor cabinets (Phase 1)  

NVRAM Burst Buffer 1.5 PB, 1.5 TB/sec 

30 PB of disk, >700 GB/sec I/O bandwidth 

Integrated with Cori Ha swell nodeson 
Aries network for data / simulation / 
analysis on one system 



 
 

 
 

NERSC Allocation of Computing Time 
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2,400 

300 

300 
DOE Mission Science 

ALCC 

Directors Discretionary 

Distributed by DOE SC program managers 

Competitive awards run by DOE ASCR 

80% 

10% 

10% 
Strategic awards from NERSC 

NERSC 
hours in 
millions 



 
 

 
 

NERSC has ~100% utilization 
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Important to get support 
and allocation from DOE 
program manager (L. 
Chatterjee) or through 
ALCC! 
 
They are supportive. 

PI Allocation (Hrs) Program 

Childers/Lecompte 18,600,000 ALCC 

Hoeche  9,000,000 DOE Production 

Hinchliffe    800,000 DOE Production 

Ligeti  2,800,000 DOE Production 

Piperov  1,500,000 DOE Production 



 
 

 
 Initial Allocation Distribution Among Offices for 2016 
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 NERSC Supports Jobs of all Kinds and Sizes 
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Larger Physical Systems, 
Higher Fidelity 

High Throughput: Statistics, Systematics, Analysis, UQ 



 
 

 
 

Cori Integration Status 

July-August 
 9300 KNL nodes arrive, installed, tested 

Monday 
 P1 shut down, P2 stress test 

This week 
 Move I/O, network blades 
 Add Haswell to P1 to fill holes 
 Cabling/Re-cabling 
 Aries/LNET config 
 Cabinet reconfigs 

Now to now+6 weeks 
 …continue, test, resolve issues 
 configure SLURM 

NESAP code team access ASAP! 



 
 

 
 



 
 

 
 

Key Intel Xeon Phi (KNL) Features 

Single socket self-hosted processor 
–  (Relative!) ease of programming using portable programming models and languages 

(MPI+OpenMP) 
–  Evolutionary coding model on the path to manycore exascale systems 

Low-power manycore (68) processor with up to 4 hardware threads 
512b vector units 
–  Opportunity for 32 DP flops / clock (2 VPU * 64b * FMA) 

16 GB High bandwidth on-package memory 
–   Bandwidth 4-5X that of DDR4 DRAM memory 
–  Many scientific applications are memory-bandwidth bound 



 
 

 
 

Top Level Parallelism 

Domain Parallelism: MPI 

Opportunity cost: 9300X 



 
 

 
 

Thread-Level Parallelism for Xeon Phi Manycore 

Xeon Phi “Knights 
Landing” 
 
68 Cores with 1-4 threads 
 
Commonly using OpenMP 
to express threaded 
parallelism 



 
 

 
 

On-Chip Parallelism – Vectorization (SIMD) 

Single instruction to 
execute up to 16 DP 
floating point 
operations per cycle 
per VPU. 
 
32 Flop / cycle / core 
44 Gflops / core 
3 TFlops / node 



 
 

 
 

Cache  
Model 

Let the hardware automatically manage the 
integrated on-package memory as an “L3” cache 
between KNL CPU and external DDR 

Flat  
Model 

Manually manage how your application uses the 
integrated on-package memory and external DDR 
for peak performance 

Hybrid 
Model 

Harness the benefits of both cache and flat models 
by segmenting the integrated on-package memory 

Maximum performance through higher memory bandwidth and 
flexibility 

Knights Landing Integrated On-Package Memory 
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 Data layout crucial for 

performance 
 
Enables efficient 
vectorization 
 
Cache “blocking” 
 
Fit important data 
structures in 16 GB of 
MCDRAM 
 
MCDRAM memory/core 
= 235 MB 
 
DDR4 memory/core = 
1.4 GB  



 
 

 
 

NERSC Exascale Scientific Application Program (NESAP) 
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Goal:	Prepare	DOE	Office	of	Science	users	for	many	core	
Partner	closely	with	~20	applica2on	teams	and	apply	lessons	

learned	to	broad	NERSC	user	community	

NESAP	ac2vi2es	include:	

Leverage	
community	
efforts	

Close	
interac4ons	

with	
vendors	

Developer	
Workshops	

Early	
engagement	
with	code	
teams	

Postdoc	
Program	

	

Training	
and	

online	
modules	

Early	
access	to	

KNL	



 
 

 
 Resources for Code Teams 

•  Early	access	to	hardware	
–  Early	“white	box”	test	systems	and	testbeds	
–  Early	access	and	significant	2me	on	the	full	Cori	system	

•  Technical	deep	dives	
–  Access	to	Cray	and	Intel	staff	on-site	staff	for	applica2on	op2miza2on	and	

performance	analysis	
–  Mul2-day	deep	dive	(‘dungeon’	session)	with	Intel	staff	at	Oregon	Campus	to	

examine	specific	op2miza2on	issues	
•  User	Training	Sessions		

–  From	NERSC,	Cray	and	Intel	staff	on	OpenMP,	vectoriza2on,	applica2on	profiling	
–  Knights	Landing	architectural	briefings	from	Intel	

•  NERSC	Staff	as	Code	Team	Liaisons	(Hands	on	assistance)	
•  8	Postdocs	



 
 

 
 

NERSC NESAP Staff 
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Nick Wright Katie Antypas Brian Austin Zhengji Zhao Helen He


Richard Gerber

Rebecca Hartman-Baker Brandon Cook Thorsten Kurth

Stephen Leak

Woo-Sun Yang Doug Doerfler Jack Deslippe Brian Friesen



 
 

 
 

NESAP Postdocs 
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(1	FTE	Postdoc	+)		
0.2	FTE	AR	Staff	

0.25	FTE	COE	

1	Dungeon	Ses.		+	
2	Week	on	site	w/	
Chip	vendor	staff	

Target	Applica4on	Team	Concept	

1.0	FTE	User	
Dev.	

Taylor Barnes 
Quantum ESPRESSO 

Zahra 
Ronaghi 

Andrey Ovsyannikov
Chombo-Crunch 

 

Mathieu Lobet 
WARP 

Tuomas Koskela 
XGC1 

Tareq Malas 
EMGeo 



 
 

 
 

NESAP Code Status ( Work in Progress ) 
GFLOP/s KNL Speedup HBM / 

DDR 
Speedup KNL / 

Haswell 

Chroma (QPhiX) 388 (SP) 4 2.71 

MILC 117.4 3.8 2.68 

CESM (HOMME) 1.8 

MFDN (SPMM) 109.1 3.6 1.62 

BGW Sigma 279 1.8 1.61 

HACC 1200 1.41 

EMGEO (SPMV) 181.0 4.2 1.16 

GFLOP/s KNL Speedup 
HBM / DDR 

Speedup KNL / 
Haswell 

DWF 600 (SP) 0.95 

WARP 60.4 1.2 1.0 

Meraculous 0.75 

Boxlib 1.13 1.1 

Quantum ESPRESSO 1 

XGC1 (Push-E) 8.2 0.82 0.2-0.5 

Chombo 0.5-1.5 

*Speedups from direct/indirect NESAP efforts as well as coordinated activity in NESAP timeframe 



 
 

 
 What has gone well 

Setting requirements for Dungeon Session (Dungeon Session 
Worksheet).  

Engagement with IXPUG and user communities (DFT, Accelerator 
Design for Exascale Workshop at CRT) 

Learned a massive amount about tools and architecture 
Large number of NERSC and vendor training events (Vectorization, 

OpenMP, Tools/Compilers)  
Cray COE VERY helpful to work with. Very pro-active. 
Pipelining code work via Cray and Intel experts 
Case studies on the web to transfer knowledge to larger community 



 
 

 
 



 
 

 
 

EXTRA SLIDES 



 
 

 
 Why You Need Parallel Computing: The End of Moore’s Law? 
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2X transistors/Chip Every 1.5 years 
Called “Moore’s Law” 

Moore’s Law 

Microprocessors have 
become smaller, denser, 
and more powerful. 

Gordon Moore (co-founder of Intel) predicted 
in 1965 that the transistor density of 
semiconductor chips would double roughly 
every 18 months.  

Slide source: Jack Dongarra 



 
 

 
 Power Density Limits Serial Performance 
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High performance serial processors waste power 
•  Speculation, dynamic dependence checking, etc. burn power 
•  Implicit parallelism discovery 

More transistors, but not faster serial processors 

Concurrent systems are more power 
efficient  

•  Dynamic power is proportional to 
V2fC 

•  Increasing frequency (f) also 
increases supply voltage (V) à  
cubic effect 

•  Increasing cores increases 
capacitance (C) but only linearly 

•  Save power by lowering clock speed 



 
 

 
 

Processor design for performance and power 
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Exponential performance 
continues 

Single-thread performance flat or 
decreasing 

Power under control (P ~ f2-3) 

Number of cores / die grows 



 
 

 
 Moore’s Law Reinterpreted 

Number of cores per chip will increase 
Clock speed will not increase (possibly decrease) 
Need to deal with systems with millions of concurrent 
threads 
Need to deal with intra-chip parallelism (OpenMP threads) 
as well as inter-chip parallelism (MPI) 
Any performance gains are going to be the result of 
increased parallelism, not faster processors 
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 Un-optimized Serial Processing = Left Behind 
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Application Portability 
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•  DOE Office of Science will have at least two HPC 
architectures 

•  NERSC and ALCF will deploy Cray-Intel Xeon Phi many core based systems 
in 2016 and 2018 

•  OLCF will deploy and IBM Power/NVIDIA based system in 2017 
•  Question: Are there best practices for achieving performance 

portability across architectures? 
•  What is “portability”? 

•  ! #ifdef 
•  Could be libraries, directives, languages, DSL,  
•  Avoid vendor-specific constructs, directives, etc? 



 
 

 
 

Application Portability 
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•  Languages 
•  Fortran? 
•  Python? 
•  C, C++? 
•  UPC? 
•  DSL? 
•  Frameworks (Kokkos, Raja, Tida) 


