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Outline 

•  Why we use Python 
•  How we use Python 
•  Parallel Python with pyMPI 
•  Our graphics model with Pygist 
•  Parallel Python drawbacks and resolutions 

–  Start up time 
–  Static building 

•  Conclusions 
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Why Python? 

•  Python is a high level, interpreted and interactive language 
•  This allows for flexible and rapid application development 

–  It is easy to develop, test, and apply scripts, with quick turn around 
–  The language is full featured, allowing high level programming when 

needed (object orientation for example) 

•  Allows “steering” of simulations, via scripting and/or interactivity 
•  Interactivity allows on-the-fly diagnostics and post processing 

•  It is reasonably fast 
•  …and when not fast enough, can easily connect to compiled code 

•  Large available library of standard and third party packages 
–  The most important (for us) is numpy for fast array operations 
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Python provides the user interface to Warp 

•  Warp is a framework for particle accelerator modeling 

Fortran & C for performance module;real y(:) 
subroutine doitfast(n,x) 

Forthon (http://hifweb.lbl.gov/Forthon) 

Python – convenience layer 
§  Diagnostics 
§  Post-processing tools  

class Species(): 
    def y(self,options) 
def doit(x) 
    doitfast(len(x),x) 

Interactive user Input file (Python) 
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Parallel Python 

•  The goal is to have the parallelism invisible to the user 

•  However, complete invisibility is not quite possible (nor desirable) 
–  Sometimes low level access is needed for flexibility and performance 
–  Impossible to eliminate gotchas when user can access everything 

Forthon (http://hifweb.lbl.gov/Forthon) 

Domain decomposition 

Python – convenience layer 
§  Aware of decomposition 
§  Wraps routines and data 

Interactive user Input file (Python) 
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Parallel Python with pyMPI 

•  Originally developed by Pat Miller (at LLNL) 
•  Serves two purposes: 

–  Provides Python level interface to MPI routines 
–  Allow interactivity in a parallel environment 

pyMPI pyMPI pyMPI pyMPI pyMPI pyMPI pyMPI pyMPI 

Input files Interactive user 

Output 
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Parallel build only somewhat more complicated 

•  Like the Python executable, pyMPI only needs to be built once 

•  For Warp, build includes extra parallel code – handled by the Makefile 

•  Python distutils used the same way as in serial 
–  Builds the shared object file 
– Only complication is adding MPI libraries 
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Graphics on the fly – pygist 

•  Our primary way of working is to produce graphics in line, while the 
simulation is running 
– Can easily track the progress of the simulation 
–  Efficient since data is immediately available 
– Reduces amount of data saved 

pyMPI pyMPI pyMPI pyMPI pyMPI pyMPI pyMPI pyMPI 

Graphics command 

graphicsfile.cgm 
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Major drawback – import doesn’t scale 

•  Every processor does it’s own import 

pyMPI 

>>> import pymod 

dirA dirF dirB dirC dirD dirE 
pymod.py 
pymod.pyc 
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Major drawback – import doesn’t scale 

•  Every processor does it’s own import 

•  “import warp” leads to importing over 225 modules 

>>> import pymod 

dirA dirF dirB dirC dirD dirE 
pymod.py 
pymod.pyc 

pyMPI pyMPI pyMPI pyMPI pyMPI pyMPI pyMPI pyMPI 
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Major drawback – import doesn’t scale 

•  On one Hopper node, the start up time is about a minute and is 
ignorable 

•  On a large run though, the start up time can eat hours 

This is the time it takes 
for “import warp”, the 
first statement in any 
Warp input file. 
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Avoiding the bottleneck 

•  Much of the time is spent checking the status of files 
•  Some of the time is spent reading in the files 

•  There are various possible remedies 
– Moving Python to the scratch disk improved the times, but not 

enough 
–  Precopy files to local disks to spread the load 

v  DLCache/FMCache packages do this 
v  Requires trial run and pre- and post- runs to setup cache 

– Use MPI 
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Fastest solution is to use MPI 

•  Communicating data through MPI is much faster than via disk 
•  Solution is to have one processor do the work and broadcast to the rest 

–  First processor finds the correct file and reads it in 
–  The file info and contents are broadcast via MPI 

•  Caveats: 
–  Python needs to be hacked 
– What about shared objects? 

From disk 

With MPI 
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Hacking Python 

•  Some of the speed up comes modifying the file search 
–  In a number of places in import.c calls to stat were wrapped 
–  The results are broadcast 

•  I also wrapped the reading in of imported scripts 
–  In various places I wrapped fopen, fclose, getc etc 
–  This gave most of the rest of the speed up 

•  Since I was already hacking the code, I went overboard 
–  I wrapped the reading in the input file on the command line 
–  I wrapped the reading in of files from execfile 
–  These gave small additional speed up, but are not necessary 

•  One possible limitation: 
–  The code must be SPMD when doing imports 
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Static version of Python 

•  There are two issues with dynamic loading: 
–  Startup time 
– Not always supported in HPC environments 

•  Unfortunately, static loading is not supported in Python for extensions 
– More hacking is needed 

•  Method based on what was developed for GPAW 
–  distutils modified to build static libraries and put them in the right 

place 
–  The dynamic loader is replaced with code that returns builtins 
– Modules/Setup needs to be modified by hand to add module info 

•  Once this is done, it is essentially indistinguishable to the user 
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Can the bottleneck be fixed at the Python level? 

•  To a degree, yes 
•  Major bottle neck is finding and verifying the correct file 
•  Asher Langton of LLNL wrote alternatives 

–  Python allows modification of the import mechanism 
–  The locations of modules are cached (and possibly broadcast) 
–  Finding the module is done using the cache 
–  Each processor reads in the appropriate file 

•  This can make an improvement in the import time 
– He reported a reduction from 5.5 hours to 6 minutes on 32k 

processor Blue Gene 
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However, I don’t see the same speed up 

•  Running on Hopper 
•  It is not clear why 

From disk 
With Cache 
With MPI 



Slide 19 The Heavy Ion Fusion Science 
Virtual National Laboratory 

Conclusions 

•  Python has proven to be an extremely valuable tool for computational 
science 

•  In a parallel environment, it can become even more valuable for easy of 
use, simplicity, and convenience 

•  However, there are drawback that must be dealt with 
•  The problems are solvable, but sometimes require getting your hands 

dirty 
•  …but the payoff is well worth it 

•  This version of Python is available on Hopper, if there is interest 
(but with minimal support) 
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Extras 
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Python provides the user interface to Warp 

•  Warp is a framework for particle accelerator modeling 
•  Lower level is Fortran and C 

– Compiled for performance 
–  This is wrapped by Forthon (http://hifweb.lbl.gov/Forthon) 
–  Subroutines are callable and data is accessible from Python 

•  Middle level is Python 
– Higher level wrappers around the compiled data 
– Wrappers around the compiled routines for simpler, convenient 

interface 
–  Extensive diagnostics and post processing tools 

•  Top level, the user interface, is Python 
–  Input file is Python 
–  Interactivity 



Slide 22 The Heavy Ion Fusion Science 
Virtual National Laboratory 

Parallel Python 

•  The goal is to have the parallelism invisible to the user 
–  Identical input files (Python scripts) for serial and parallel 
–  Interactivity the same as in serial 

•  Much can be done at the middle level to hide the parallelism 
–  Provides wrappers around domain decomposed data 
–  Provides high level routines that automatically handle the parallelism 

•  However, invisibility is not quite possible 
–  Sometimes low level access is needed for flexibility and performance 
–  Impossible to eliminate gotchas and lockups when user can access 

everything 
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Parallel Python with pyMPI 

•  Originally developed by Pat Miller (at LLNL) 
•  Serves two purposes: 

–  Provides Python level interface to MPI routines 
–  Allow interactivity in a parallel environment 

•  pyMPI is a separate executable that incorporates Python 
•  pyMPI runs on every processor and all execute the same Python code 
•  First processor handles interactivity 

–  All input read in by first processor and sent to all other processors 
– Output can be controlled – either only from first processor, all 

processors or a mix 
•  Extensive (though not complete) wrapping of MPI 

–  Point-to-point and global operations 
–  Any “pickle-able” object can be sent 
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Graphics on the fly – pygist 

•  Our primary way of working is to produce graphics in line, while the 
simulation is running 
– Can easily track the progress of the simulation 
–  Efficient since data is immediately available 
– Reduces amount of data saved 

•  Matches Python’s scripting and interactivity 
–  The input file can make arbitrary plots 
–  The graphics window is interactive (zooming and panning) 

•  Matches the parallelism 
– Computations done in parallel (down selections, slicing, reductions 

etc) 
– Only a small amount of data is written out by the master 


