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Warp is a framework for particle accelerator modeling

HIF/HEDP accelerators

Multi-charge state beams
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Why Python?

Python is a high level, interpreted and interactive language
This allows for flexible and rapid application development
— It is easy to develop, test, and apply scripts, with quick turn around

— The language is full featured, allowing high level programming when
needed (object orientation for example)

Allows “steering” of simulations, via scripting and/or interactivity
Interactivity allows on-the-fly diagnostics and post processing

It is reasonably fast
...and when not fast enough, can easily connect to compiled code

Large available library of standard and third party packages
— The most important (for us) is numpy for fast array operations
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Python provides the user interface to Warp

« Warp is a framework for particle accelerator modeling

Interactive user

Input file (Python)

Python — convenience layer

Diagnostics
Post-processing tools

class Species():
def y(self,options)
def doit(x)
doitfast(len(x),x)

Forthon (http://hifweb.lbl.gov/Forthon)

Fortran & C for performance module;real y(:)
subroutine doitfast(n,x) /
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Parallel Python

* The goal is to have the parallelism invisible to the user

Interactive user Input file (Python)

Python — convenience layer
= Aware of decomposition
= Wraps routines and data

N

Forthon (http //hlfweb Ibl. gov/Forthon)

Domain decomposition
I I I

« However, complete invisibility is not quite possible (nor desirable)
— Sometimes low level access is needed for flexibility and performance
— Impossible to eliminate gotchas when user can access everything

T _:;;pppl]

IN[ID[IC[ [X]
\E{%‘E{{ Side 6 The Heavy lon Fusion Science ,m 1

Virtual National Laboratory




Parallel Python with pyMPI

 Originally developed by Pat Miller (at LLNL)

« Serves two purposes:
— Provides Python level interface to MPI routines
— Allow interactivity in a parallel environment

: Input files ’
Interactive user

e

pyMPI1|pyMPI{pyMPI1[pyMPI|pyMPI|pyMPI|pyMPI|pyMPI
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Parallel build only somewhat more complicated

 Like the Python executable, pyMPI only needs to be built once
« For Warp, build includes extra parallel code — handled by the Makefile
» Python distutils used the same way as in serial

— Builds the shared object file
— Only complication is adding MPI libraries
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Graphics on the fly — pygist

« Qur primary way of working is to produce graphics in line, while the
simulation is running

— Can easily track the progress of the simulation
— Efficient since data is immediately available
— Reduces amount of data saved

If pyMPI{pyMPI{pyMPI|pyMPI{pyMPI|pyMPI|pyMPI|pyMPI

00
z

iy =32 !
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graphicsfile.cgm ’
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Major drawback — import doesn’t scale

» Every processor does it's own import

>>> import pymod

pyMPI

irD dirE  dirF

pymod.py
pymod.pyc
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Major drawback — import doesn’t scale

« Every processor does it's own import

>>> import pymod
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Major drawback — import doesn’t scale

« On one Hopper node, the start up time is about a minute and is
ignorable

* On a large run though, the start up time can eat hours
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Avoiding the bottleneck

* Much of the time is spent checking the status of files
« Some of the time is spent reading in the files

* There are various possible remedies

— Moving Python to the scratch disk improved the times, but not
enough

— Precopy files to local disks to spread the load

% DLCache/FMCache packages do this

s Requires trial run and pre- and post- runs to setup cache
— Use MPI
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Fastest solution is to use MPI

« Communicating data through MPI is much faster than via disk
« Solution is to have one processor do the work and broadcast to the rest
— First processor finds the correct file and reads it in

— The file info and contents are broadcast via MPI
+4

10 ot T | I T — I ‘I
e @ From disk
— Python needs to be hacked 510*3-
— What about shared objects? = With MPI
S 102 i
E
o
CR
£10"T i
|_
+0L_. ' Lo . L .
101O+1 10+2 107 1O+4

# processors

N ’m'm X N2 i i ?
ueon b G T T Slide 14 The Heavy lon Fusion Science /7,2 H%‘ =PPPL
ciences NS RNIT Virtual National Laboratory 7




Hacking Python

Some of the speed up comes modifying the file search

— In a number of places in import.c calls to stat were wrapped
— The results are broadcast

| also wrapped the reading in of imported scripts

— In various places | wrapped fopen, fclose, getc etc

— This gave most of the rest of the speed up

Since | was already hacking the code, | went overboard

— | wrapped the reading in the input file on the command line
— | wrapped the reading in of files from execfile

— These gave small additional speed up, but are not necessary
One possible limitation:

— The code must be SPMD when doing imports
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Static version of Python

There are two issues with dynamic loading:

— Startup time

— Not always supported in HPC environments

Unfortunately, static loading is not supported in Python for extensions
— More hacking is needed

Method based on what was developed for GPAW

— distutils modified to build static libraries and put them in the right
place

— The dynamic loader is replaced with code that returns builtins
— Modules/Setup needs to be modified by hand to add module info
Once this is done, it is essentially indistinguishable to the user
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Can the bottleneck be fixed at the Python level?

To a degree, yes
Major bottle neck is finding and verifying the correct file
Asher Langton of LLNL wrote alternatives
— Python allows modification of the import mechanism
— The locations of modules are cached (and possibly broadcast)
— Finding the module is done using the cache
— Each processor reads in the appropriate file
This can make an improvement in the import time

— He reported a reduction from 5.5 hours to 6 minutes on 32k
processor Blue Gene
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However, | don’t see the same speed up

* Running on Hopper
* Itis not clear why
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Conclusions

« Python has proven to be an extremely valuable tool for computational
science

 In a parallel environment, it can become even more valuable for easy of
use, simplicity, and convenience

 However, there are drawback that must be dealt with

* The problems are solvable, but sometimes require getting your hands
dirty

* ...but the payoff is well worth it

« This version of Python is available on Hopper, if there is interest
(but with minimal support)
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Extras
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Python provides the user interface to Warp

Warp is a framework for particle accelerator modeling

Lower level is Fortran and C

— Compiled for performance

— This is wrapped by Forthon (http://hifweb.Ibl.gov/Forthon)

— Subroutines are callable and data is accessible from Python
Middle level is Python

— Higher level wrappers around the compiled data

— Wrappers around the compiled routines for simpler, convenient
interface

— Extensive diagnostics and post processing tools
Top level, the user interface, is Python

— Input file is Python

— Interactivity
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Parallel Python

* The goal is to have the parallelism invisible to the user

— Identical input files (Python scripts) for serial and parallel

— Interactivity the same as in serial
* Much can be done at the middle level to hide the parallelism

— Provides wrappers around domain decomposed data

— Provides high level routines that automatically handle the parallelism
« However, invisibility is not quite possible

— Sometimes low level access is needed for flexibility and performance

— Impossible to eliminate gotchas and lockups when user can access
everything
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Parallel Python with pyMPI

Originally developed by Pat Miller (at LLNL)

Serves two purposes:

— Provides Python level interface to MPI routines

— Allow interactivity in a parallel environment

PYMPI is a separate executable that incorporates Python

PYMPI runs on every processor and all execute the same Python code
First processor handles interactivity

— All input read in by first processor and sent to all other processors

— Qutput can be controlled — either only from first processor, all
processors or a mix

Extensive (though not complete) wrapping of MPI
— Point-to-point and global operations
— Any “pickle-able” object can be sent
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Graphics on the fly — pygist

« Qur primary way of working is to produce graphics in line, while the
simulation is running

— Can easily track the progress of the simulation

— Efficient since data is immediately available

— Reduces amount of data saved
« Matches Python'’s scripting and interactivity

— The input file can make arbitrary plots

— The graphics window is interactive (zooming and panning)
« Matches the parallelism

— Computations done in parallel (down selections, slicing, reductions
etc)

— Only a small amount of data is written out by the master
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