Python in a Parallel Environment

Dave Grote — LLNL & LBNL
NUG2013 User Day
Wednesday, February 15, 2013

The Heavy lon Fusion Science
Virtual National Laboratory

Slide 1

Outline

Why we use Python

How we use Python

Parallel Python with pyMPI

Our graphics model with Pygist

Parallel Python drawbacks and resolutions
— Start up time

— Static building

Conclusions

The Heavy lon Fusion Science
Virtual National Laboratory

Slide 2

Warp is a framework for particle accelerator modeling

HIF/HEDP accelerators

Multi-charge state beams

LEBT — Project X

Laser plasma acceleration

12 ng/ng 7
5'10 a——- | 6 I
8 5

> _ 3
o4 2

@
uCJ 2 1
0 1]
r A
BLLIA

Particle traps

Courtesy H. Sugimoto

Alpha anti-H trap

Paul trap

Electron cloud studies

{ p+bunches

Why Python?

Python is a high level, interpreted and interactive language
This allows for flexible and rapid application development
— It is easy to develop, test, and apply scripts, with quick turn around

— The language is full featured, allowing high level programming when
needed (object orientation for example)

Allows “steering” of simulations, via scripting and/or interactivity
Interactivity allows on-the-fly diagnostics and post processing

It is reasonably fast
...and when not fast enough, can easily connect to compiled code

Large available library of standard and third party packages
— The most important (for us) is numpy for fast array operations

NI D[ICI X
2 . The Heavy lon Fusion Science B .
usion = e I | 1 D y ‘'on FUSION SCIENCe ,rrprrp 1 ~PPPL
Seinces \{‘tﬁi{{ N Slide 4 Virtual National Laboratory ”/’;1

Python provides the user interface to Warp

« Warp is a framework for particle accelerator modeling

Interactive user

Input file (Python)

Python — convenience layer

Diagnostics
Post-processing tools

class Species():
def y(self,options)
def doit(x)
doitfast(len(x),x)

Forthon (http://hifweb.lbl.gov/Forthon)

Fortran & C for performance module;real y(:)
subroutine doitfast(n,x) /

Slide 5

The Heavy lon Fusion Science
Virtual National Laboratory

Parallel Python

* The goal is to have the parallelism invisible to the user

Interactive user Input file (Python)

Python — convenience layer
= Aware of decomposition
= Wraps routines and data

N

Forthon (http //hlfweb Ibl. gov/Forthon)

Domain decomposition
I I I

« However, complete invisibility is not quite possible (nor desirable)
— Sometimes low level access is needed for flexibility and performance
— Impossible to eliminate gotchas when user can access everything

T _:;;pppl]

IN[ID[IC[[X]
\E{%‘E{{ Side 6 The Heavy lon Fusion Science ,m 1

Virtual National Laboratory

Parallel Python with pyMPI

 Originally developed by Pat Miller (at LLNL)

« Serves two purposes:
— Provides Python level interface to MPI routines
— Allow interactivity in a parallel environment

: Input files ’
Interactive user

e

pyMPI1|pyMPI{pyMPI1[pyMPI|pyMPI|pyMPI|pyMPI|pyMPI

Slide 7 The Heavy lon Fusion Science
Virtual National Laboratory

Parallel build only somewhat more complicated

 Like the Python executable, pyMPI only needs to be built once
« For Warp, build includes extra parallel code — handled by the Makefile
» Python distutils used the same way as in serial

— Builds the shared object file
— Only complication is adding MPI libraries

— NIDCx] : : |
“,,ﬁ‘,’gy‘ -’i-"ﬁ I Siide 8 The Heavy lon Fusion Science ’\l
ciences SRS Virtual National Laboratory

Graphics on the fly — pygist

« Qur primary way of working is to produce graphics in line, while the
simulation is running

— Can easily track the progress of the simulation
— Efficient since data is immediately available
— Reduces amount of data saved

If pyMPI{pyMPI{pyMPI|pyMPI{pyMPI|pyMPI|pyMPI|pyMPI

00
z

iy =32 !
L_/ ' / ’ , ' ' ’

graphicsfile.cgm ’

The Heavy lon Fusion Science
Virtual National Laboratory

Slide 9

Major drawback — import doesn’t scale

» Every processor does it's own import

>>> import pymod

pyMPI

irD dirE dirF

pymod.py
pymod.pyc

The Heavy lon Fusion Science
Virtual National Laboratory

Slide 10

Major drawback — import doesn’t scale

« Every processor does it's own import

>>> import pymod

T _;g;iPPFl)

Slide 11

Virtual National Laboratory

Major drawback — import doesn’t scale

« On one Hopper node, the start up time is about a minute and is
ignorable

* On a large run though, the start up time can eat hours

10+4 ™1 T | T 1T

—
S
w
|
|

This is the time it takes
for “import warp”, the
first statement in any
Warp input file.

—_
1 1

Time to import Warp (s)
s 3

10*2 10%° 10
processors

—
)
= 5
o,

The Heavy lon Fusion Science

Slide 12 Virtual National Laboratory

Avoiding the bottleneck

* Much of the time is spent checking the status of files
« Some of the time is spent reading in the files

* There are various possible remedies

— Moving Python to the scratch disk improved the times, but not
enough

— Precopy files to local disks to spread the load

% DLCache/FMCache packages do this

s Requires trial run and pre- and post- runs to setup cache
— Use MPI

WONR (NPOHCEX . The Heavy lon Fusion Science ’\l :
nergy EREEEEL] | IS Slide 13 . .
ciences NS RNIT Virtual National Laboratory

Fastest solution is to use MPI

« Communicating data through MPI is much faster than via disk
« Solution is to have one processor do the work and broadcast to the rest
— First processor finds the correct file and reads it in

— The file info and contents are broadcast via MPI
+4

10 ot T | I T — I ‘I
e @ From disk
— Python needs to be hacked 510*3-
— What about shared objects? = With MPI
S 102 i
E
o
CR
£10"T i
|_
+0L_. ' Lo . L .
101O+1 10+2 107 1O+4

processors

N ’m'm X N2 i i ?
ueon b G T T Slide 14 The Heavy lon Fusion Science /7,2 H%‘ =PPPL
ciences NS RNIT Virtual National Laboratory 7

Hacking Python

Some of the speed up comes modifying the file search

— In a number of places in import.c calls to stat were wrapped
— The results are broadcast

| also wrapped the reading in of imported scripts

— In various places | wrapped fopen, fclose, getc etc

— This gave most of the rest of the speed up

Since | was already hacking the code, | went overboard

— | wrapped the reading in the input file on the command line
— | wrapped the reading in of files from execfile

— These gave small additional speed up, but are not necessary
One possible limitation:

— The code must be SPMD when doing imports

— NIDCx] : : |
‘ﬁé‘r’é’y" @[T Slide 15 The Heavy lon Fusion Science ’xl
ciences NS RNIT " Virtual National Laboratory

Static version of Python

There are two issues with dynamic loading:

— Startup time

— Not always supported in HPC environments

Unfortunately, static loading is not supported in Python for extensions
— More hacking is needed

Method based on what was developed for GPAW

— distutils modified to build static libraries and put them in the right
place

— The dynamic loader is replaced with code that returns builtins
— Modules/Setup needs to be modified by hand to add module info
Once this is done, it is essentially indistinguishable to the user

— NIDCx] : : |
”,,nggy" R e Slide 16 The Heavy lon Fusion Science ’\l
ciences NS RNIT Virtual National Laboratory

Can the bottleneck be fixed at the Python level?

To a degree, yes
Major bottle neck is finding and verifying the correct file
Asher Langton of LLNL wrote alternatives
— Python allows modification of the import mechanism
— The locations of modules are cached (and possibly broadcast)
— Finding the module is done using the cache
— Each processor reads in the appropriate file
This can make an improvement in the import time

— He reported a reduction from 5.5 hours to 6 minutes on 32k
processor Blue Gene

WONR (NPOHCEX . The Heavy lon Fusion Science ’\l :
nergy EEREEEEL | DS Slide 17 . .
ciences NS RNIT " Virtual National Laboratory

However, | don’t see the same speed up

* Running on Hopper
* Itis not clear why

1O+4 | T T 1 T 1
From disk

e With Cache
Q- [
g With MP
S 10"°F -
E
o
€ 10'1H i
=

1070 T

10" 102 1% 10"
processors
Slide 18 The Heavy lon Fusion Science

Virtual National Laboratory

Conclusions

« Python has proven to be an extremely valuable tool for computational
science

 In a parallel environment, it can become even more valuable for easy of
use, simplicity, and convenience

 However, there are drawback that must be dealt with

* The problems are solvable, but sometimes require getting your hands
dirty

* ...but the payoff is well worth it

« This version of Python is available on Hopper, if there is interest
(but with minimal support)

e (APRHCHE |, : The Heavy lon Fusion Science
nergy EREEEEL] | IS Slide 19 . .
ciences NS RNIT Virtual National Laboratory

Extras

" DjC] . -

Fusion | % -’i-"vt ..l@\}\.’/\é Slide 20 The Heavy lon Fusion Science ::}l
o Q) " —

\ BERKELEY LAS

\ Sciences Virtual National Laboratory

CED

Python provides the user interface to Warp

Warp is a framework for particle accelerator modeling

Lower level is Fortran and C

— Compiled for performance

— This is wrapped by Forthon (http://hifweb.Ibl.gov/Forthon)

— Subroutines are callable and data is accessible from Python
Middle level is Python

— Higher level wrappers around the compiled data

— Wrappers around the compiled routines for simpler, convenient
interface

— Extensive diagnostics and post processing tools
Top level, the user interface, is Python

— Input file is Python

— Interactivity

e (APRHCHE |, : The Heavy lon Fusion Science
nergy EREEEEL] | IS Slide 21 . .
ciences NS RNIT ! Virtual National Laboratory

Parallel Python

* The goal is to have the parallelism invisible to the user

— Identical input files (Python scripts) for serial and parallel

— Interactivity the same as in serial
* Much can be done at the middle level to hide the parallelism

— Provides wrappers around domain decomposed data

— Provides high level routines that automatically handle the parallelism
« However, invisibility is not quite possible

— Sometimes low level access is needed for flexibility and performance

— Impossible to eliminate gotchas and lockups when user can access
everything

— NIDCx] : : |
o b R LI T e Slide 22 The Heavy lon Fusion Science .2
ciences NS RNIT " Virtual National Laboratory

Parallel Python with pyMPI

Originally developed by Pat Miller (at LLNL)

Serves two purposes:

— Provides Python level interface to MPI routines

— Allow interactivity in a parallel environment

PYMPI is a separate executable that incorporates Python

PYMPI runs on every processor and all execute the same Python code
First processor handles interactivity

— All input read in by first processor and sent to all other processors

— Qutput can be controlled — either only from first processor, all
processors or a mix

Extensive (though not complete) wrapping of MPI
— Point-to-point and global operations
— Any “pickle-able” object can be sent

— NIDCx] : : |
o b R LI T e Slide 23 The Heavy lon Fusion Science .2
ciences NS RNIT " Virtual National Laboratory

Graphics on the fly — pygist

« Qur primary way of working is to produce graphics in line, while the
simulation is running

— Can easily track the progress of the simulation

— Efficient since data is immediately available

— Reduces amount of data saved
« Matches Python'’s scripting and interactivity

— The input file can make arbitrary plots

— The graphics window is interactive (zooming and panning)
« Matches the parallelism

— Computations done in parallel (down selections, slicing, reductions
etc)

— Only a small amount of data is written out by the master

— NIDCx] : : |
”,,nggy" R e Slide 24 The Heavy lon Fusion Science ’\l
ciences NS RNIT Virtual National Laboratory

