
Slide 1 The Heavy Ion Fusion Science
Virtual National Laboratory

Python in a Parallel Environment

Dave Grote – LLNL & LBNL
NUG2013 User Day

Wednesday, February 15, 2013

Slide 2 The Heavy Ion Fusion Science
Virtual National Laboratory

Outline

•  Why we use Python
•  How we use Python
•  Parallel Python with pyMPI
•  Our graphics model with Pygist
•  Parallel Python drawbacks and resolutions

–  Start up time
–  Static building

•  Conclusions

Slide 3 The Heavy Ion Fusion Science
Virtual National Laboratory 3

Warp	
 is	
 a	
 framework	
 for	
 par.cle	
 accelerator	
 modeling	

HIF/HEDP	
 accelerators	

Electron	
 cloud	
 studies	

Mul.-­‐charge	
 state	
 beams	

LEBT	
 –	
 Project	
 X	

Laser	
 plasma	
 accelera.on	

Par.cle	
 traps	

Alpha	
 an.-­‐H	
 trap	
 Paul	
 trap	

Courtesy	
 H.	
 Sugimoto	

2-­‐D	
 slab	
 of	
 electrons	

3-­‐D	
 beam	

s

SPS	
 -­‐	
 CERN	

p+	
 bunches	

e-­‐	
 clouds	

Slide 4 The Heavy Ion Fusion Science
Virtual National Laboratory

Why Python?

•  Python is a high level, interpreted and interactive language
•  This allows for flexible and rapid application development

–  It is easy to develop, test, and apply scripts, with quick turn around
–  The language is full featured, allowing high level programming when

needed (object orientation for example)

•  Allows “steering” of simulations, via scripting and/or interactivity
•  Interactivity allows on-the-fly diagnostics and post processing

•  It is reasonably fast
•  …and when not fast enough, can easily connect to compiled code

•  Large available library of standard and third party packages
–  The most important (for us) is numpy for fast array operations

Slide 5 The Heavy Ion Fusion Science
Virtual National Laboratory

Python provides the user interface to Warp

•  Warp is a framework for particle accelerator modeling

Fortran & C for performance module;real y(:)
subroutine doitfast(n,x)

Forthon (http://hifweb.lbl.gov/Forthon)

Python – convenience layer
§  Diagnostics
§  Post-processing tools

class Species():
 def y(self,options)
def doit(x)
 doitfast(len(x),x)

Interactive user Input file (Python)

Slide 6 The Heavy Ion Fusion Science
Virtual National Laboratory

Parallel Python

•  The goal is to have the parallelism invisible to the user

•  However, complete invisibility is not quite possible (nor desirable)
–  Sometimes low level access is needed for flexibility and performance
–  Impossible to eliminate gotchas when user can access everything

Forthon (http://hifweb.lbl.gov/Forthon)

Domain decomposition

Python – convenience layer
§  Aware of decomposition
§  Wraps routines and data

Interactive user Input file (Python)

Slide 7 The Heavy Ion Fusion Science
Virtual National Laboratory

Parallel Python with pyMPI

•  Originally developed by Pat Miller (at LLNL)
•  Serves two purposes:

–  Provides Python level interface to MPI routines
–  Allow interactivity in a parallel environment

pyMPI pyMPI pyMPI pyMPI pyMPI pyMPI pyMPI pyMPI

Input files Interactive user

Output

Slide 8 The Heavy Ion Fusion Science
Virtual National Laboratory

Parallel build only somewhat more complicated

•  Like the Python executable, pyMPI only needs to be built once

•  For Warp, build includes extra parallel code – handled by the Makefile

•  Python distutils used the same way as in serial
–  Builds the shared object file
– Only complication is adding MPI libraries

Slide 9 The Heavy Ion Fusion Science
Virtual National Laboratory

Graphics on the fly – pygist

•  Our primary way of working is to produce graphics in line, while the
simulation is running
– Can easily track the progress of the simulation
–  Efficient since data is immediately available
– Reduces amount of data saved

pyMPI pyMPI pyMPI pyMPI pyMPI pyMPI pyMPI pyMPI

Graphics command

graphicsfile.cgm

Slide 10 The Heavy Ion Fusion Science
Virtual National Laboratory

Major drawback – import doesn’t scale

•  Every processor does it’s own import

pyMPI

>>> import pymod

dirA dirF dirB dirC dirD dirE
pymod.py
pymod.pyc

Slide 11 The Heavy Ion Fusion Science
Virtual National Laboratory

Major drawback – import doesn’t scale

•  Every processor does it’s own import

•  “import warp” leads to importing over 225 modules

>>> import pymod

dirA dirF dirB dirC dirD dirE
pymod.py
pymod.pyc

pyMPI pyMPI pyMPI pyMPI pyMPI pyMPI pyMPI pyMPI

Slide 12 The Heavy Ion Fusion Science
Virtual National Laboratory

Major drawback – import doesn’t scale

•  On one Hopper node, the start up time is about a minute and is
ignorable

•  On a large run though, the start up time can eat hours

This is the time it takes
for “import warp”, the
first statement in any
Warp input file.

Slide 13 The Heavy Ion Fusion Science
Virtual National Laboratory

Avoiding the bottleneck

•  Much of the time is spent checking the status of files
•  Some of the time is spent reading in the files

•  There are various possible remedies
– Moving Python to the scratch disk improved the times, but not

enough
–  Precopy files to local disks to spread the load

v  DLCache/FMCache packages do this
v  Requires trial run and pre- and post- runs to setup cache

– Use MPI

Slide 14 The Heavy Ion Fusion Science
Virtual National Laboratory

Fastest solution is to use MPI

•  Communicating data through MPI is much faster than via disk
•  Solution is to have one processor do the work and broadcast to the rest

–  First processor finds the correct file and reads it in
–  The file info and contents are broadcast via MPI

•  Caveats:
–  Python needs to be hacked
– What about shared objects?

From disk

With MPI

Slide 15 The Heavy Ion Fusion Science
Virtual National Laboratory

Hacking Python

•  Some of the speed up comes modifying the file search
–  In a number of places in import.c calls to stat were wrapped
–  The results are broadcast

•  I also wrapped the reading in of imported scripts
–  In various places I wrapped fopen, fclose, getc etc
–  This gave most of the rest of the speed up

•  Since I was already hacking the code, I went overboard
–  I wrapped the reading in the input file on the command line
–  I wrapped the reading in of files from execfile
–  These gave small additional speed up, but are not necessary

•  One possible limitation:
–  The code must be SPMD when doing imports

Slide 16 The Heavy Ion Fusion Science
Virtual National Laboratory

Static version of Python

•  There are two issues with dynamic loading:
–  Startup time
– Not always supported in HPC environments

•  Unfortunately, static loading is not supported in Python for extensions
– More hacking is needed

•  Method based on what was developed for GPAW
–  distutils modified to build static libraries and put them in the right

place
–  The dynamic loader is replaced with code that returns builtins
– Modules/Setup needs to be modified by hand to add module info

•  Once this is done, it is essentially indistinguishable to the user

Slide 17 The Heavy Ion Fusion Science
Virtual National Laboratory

Can the bottleneck be fixed at the Python level?

•  To a degree, yes
•  Major bottle neck is finding and verifying the correct file
•  Asher Langton of LLNL wrote alternatives

–  Python allows modification of the import mechanism
–  The locations of modules are cached (and possibly broadcast)
–  Finding the module is done using the cache
–  Each processor reads in the appropriate file

•  This can make an improvement in the import time
– He reported a reduction from 5.5 hours to 6 minutes on 32k

processor Blue Gene

Slide 18 The Heavy Ion Fusion Science
Virtual National Laboratory

However, I don’t see the same speed up

•  Running on Hopper
•  It is not clear why

From disk
With Cache
With MPI

Slide 19 The Heavy Ion Fusion Science
Virtual National Laboratory

Conclusions

•  Python has proven to be an extremely valuable tool for computational
science

•  In a parallel environment, it can become even more valuable for easy of
use, simplicity, and convenience

•  However, there are drawback that must be dealt with
•  The problems are solvable, but sometimes require getting your hands

dirty
•  …but the payoff is well worth it

•  This version of Python is available on Hopper, if there is interest
(but with minimal support)

Slide 20 The Heavy Ion Fusion Science
Virtual National Laboratory

Extras

Slide 21 The Heavy Ion Fusion Science
Virtual National Laboratory

Python provides the user interface to Warp

•  Warp is a framework for particle accelerator modeling
•  Lower level is Fortran and C

– Compiled for performance
–  This is wrapped by Forthon (http://hifweb.lbl.gov/Forthon)
–  Subroutines are callable and data is accessible from Python

•  Middle level is Python
– Higher level wrappers around the compiled data
– Wrappers around the compiled routines for simpler, convenient

interface
–  Extensive diagnostics and post processing tools

•  Top level, the user interface, is Python
–  Input file is Python
–  Interactivity

Slide 22 The Heavy Ion Fusion Science
Virtual National Laboratory

Parallel Python

•  The goal is to have the parallelism invisible to the user
–  Identical input files (Python scripts) for serial and parallel
–  Interactivity the same as in serial

•  Much can be done at the middle level to hide the parallelism
–  Provides wrappers around domain decomposed data
–  Provides high level routines that automatically handle the parallelism

•  However, invisibility is not quite possible
–  Sometimes low level access is needed for flexibility and performance
–  Impossible to eliminate gotchas and lockups when user can access

everything

Slide 23 The Heavy Ion Fusion Science
Virtual National Laboratory

Parallel Python with pyMPI

•  Originally developed by Pat Miller (at LLNL)
•  Serves two purposes:

–  Provides Python level interface to MPI routines
–  Allow interactivity in a parallel environment

•  pyMPI is a separate executable that incorporates Python
•  pyMPI runs on every processor and all execute the same Python code
•  First processor handles interactivity

–  All input read in by first processor and sent to all other processors
– Output can be controlled – either only from first processor, all

processors or a mix
•  Extensive (though not complete) wrapping of MPI

–  Point-to-point and global operations
–  Any “pickle-able” object can be sent

Slide 24 The Heavy Ion Fusion Science
Virtual National Laboratory

Graphics on the fly – pygist

•  Our primary way of working is to produce graphics in line, while the
simulation is running
– Can easily track the progress of the simulation
–  Efficient since data is immediately available
– Reduces amount of data saved

•  Matches Python’s scripting and interactivity
–  The input file can make arbitrary plots
–  The graphics window is interactive (zooming and panning)

•  Matches the parallelism
– Computations done in parallel (down selections, slicing, reductions

etc)
– Only a small amount of data is written out by the master

