
1

Deep Learning at
NERSC

Grads@NERSC: How to Do Deep Learning
with Jupyter Notebooks and Beyond
April 11, 2024

Steven Farrell
Shashank Subramanian

Data, AI, and Analytics Services

2

The Deep Learning revolution

3

AI is transforming science
Across all domains
● Especially those with Big Data

Across many application areas
● Analyzing data better, faster
● Accelerating expensive simulations
● Control + design of complex systems

Embraced by the DOE and other
funding agencies

4

Scientific AI users

5

The need for HPC

Growing computational cost
of training AI models
● bigger datasets + models,

more complexity
Researchers need large scale
resources
● Rapid iteration, reduce time

to discovery

blog.openai.com/ai-and-compute/

https://medium.com/riselab/ai-and-memory-wall-2cb4265cb0b8

Deep Learning

Large Language
Models

https://blog.openai.com/ai-and-compute/
https://medium.com/riselab/ai-and-memory-wall-2cb4265cb0b8

6

The AI for Science lifecycle
● Experimentation

○ Jupyter, interactive sessions
○ Data engineering
○ Testing architecture types

● Full scale training,
hyperparameter tuning,
validation

○ Batch jobs
○ Parallelism

● Deployment
○ Offline/online data processing
○ Streaming, as-a-service

7

NERSC AI Strategy

● Deploy optimized hardware and software systems
● Apply AI for science using cutting-edge methods
● Empower through seminars, workshops, training and schools

Systems w/
Accelerators

EmpowermentDeployment Methods and Applications

Software Frameworks and Libraries

Automation Interactivity

8

Perlmutter

35 PB
All-Flash
Scratch

>5 TB/s

1,792 GPU-accelerated nodes
 4 NVIDIA A100 GPUs + 1 AMD “Milan” CPU
 448 TB (CPU) + 320 TB (GPU) memory
3,072 CPU-only nodes
 2 AMD “Milan” CPUs
 1,536 TB CPU memory

HPE Slingshot 11
ethernet-compatible
interconnect
4 NICs/GPU node,
1 NIC/CPU node

HPSS Tape Archive >1 EB

Community File System 240 PB

/home 450 TB

Off Platform Storage

#12, 113PF Peak

Deep Learning on Perlmutter:
Software stack and best practices

10

Perlmutter deep learning software stack overview
General strategy:

● Provide functional, performant installations of the most
popular frameworks and libraries

● Enable flexibility for users to customize and deploy their
own solutions

Frameworks:

Distributed training libraries:
● PyTorch distributed
● NCCL, MPI
● Horovod

Productive tools and services:
● Jupyter, Shifter

https://docs.nersc.gov/machinelearning/

https://docs.nersc.gov/machinelearning/

11

How to use the Perlmutter DL software stack

We have modules you can load which contain python and DL libraries:
module load pytorch/2.1.0-cu12

module load tensorflow/2.15.0

Check which software versions are available with:
module spider pytorch

You can install your own packages on top to customize:
pip install --user MY-PACKAGE

Or, clone a conda environment from our modules:
conda create -n my-env --clone /path/to/module/installation

Or, create custom conda environments from scratch:
conda create -n my-env MY-PACKAGES

More on how to customize your setup can be found in the docs (PyTorch, TensorFlow).

https://docs.nersc.gov/machinelearning/pytorch/
https://docs.nersc.gov/machinelearning/tensorflow/

12

Containerized DL: using Shifter on Perlmutter

NERSC currently supports containers with Perlmutter via Shifter

• Easy, performant: our top500 entry used a container!

To see images currently available:
shifterimg images | grep pytorch

To pull desired docker images onto Perlmutter:
shifterimg pull <dockerhub_image_tag>

To use interactively:

shifter --module gpu --image=nersc/pytorch:ngc-23.07-v1

Use Slurm image shifter options for best performance in batch jobs:

#SBATCH --image=nersc/pytorch:ngc-23.07-v1
#SBATCH –-module=gpu,nccl-2.18
srun shifter python my_python_script.py

https://docs.nersc.gov/development/containers/shifter/how-to-use/

13

Jupyter for deep learning

JupyterHub service provides a rich,
interactive notebook ecosystem on Cori
● Very popular service with thousands of users
● A favorite way for users to develop ML code

Users can run their deep learning workloads
● on dedicated Perlmutter GPU nodes
● using our pre-installed DL software kernels
● using their own custom kernels

https://docs.nersc.gov/services/jupyter/how-to-guides/#how-to-use-a-conda-environment-as-a-python-kernel

Distributed Deep Learning

Reference material: SC23 Deep Learning at Scale Tutorial

https://github.com/NERSC/sc23-dl-tutorial

15

Distribute the training across multiple processors
● Multi-GPU, multi-node training: data and/or model parallel
● Use best practices for large scale training and convergence
● Use best optimized libraries for communication, tune settings

General strategy for optimizing deep learning at NERSC
Start with an appropriate model which trains on a single CPU or GPU

Optimize the single-node / single-GPU performance
● Using performance analysis tools
● Tuning and optimizing the data pipeline
● Make effective use of the hardware (e.g. mixed precision)

Advanced parallelism
● Model/hybrid parallelism design considerations
● Implementation & analysis

16

Parallel training strategies

Data Parallelism
● Distribute input

samples
● Model replicated

across devices
● Most common

Model Parallelism
● Distribute network structure,

within or across layers
● Needed for massive models that

don’t fit in device memory
● Becoming more common

17

Parallel training strategies

Data Parallelism
● Distribute input

samples
● Model replicated

across devices
● Most common

✅ Conceptually simple
✅ Easy implementation

● PyTorch, TensorFlow have built-in functionality
⚠ Some additional considerations

● Data loading at scale
● Modified hyperparameters

18

Data parallelism
Batches are sharded across GPUs
● Local batch-size = B
● Global batch-size = N * B

Gradients averaged across GPUs via
all-reduce calls
● Incurs communication cost
● Can be partially overlapped

(hidden) by computation
Speed up model training by scaling
● More GPUs => larger batch size
● Increase learning rates for larger,

faster steps to convergence

B

B

B

.

.

.

P1

P2

PN

A
ll-

re
du

ce

gradients
P1

P2

PN

synced

gradients

w0

w1

w2

w3

w’1

3 SGD steps w. learning-rate = η
1 SGD step w. learning-rate = 3 * η

19

Distributed Training Tools
Framework built-in
● PyTorch DistributedDataParallel (DDP)
● TensorFlow Distribution Strategies

Other popular libraries
● Lightning: DDP + convenient features
● DeepSpeed: ZeRO optimizations, 3D parallelism
● HuggingFace accelerate: DDP + features
● Ray: DDP + HPO
● Horovod: MPI+NCCL, easy to use, examples
● LBANN: multi-level parallelism, ensemble learning, etc., docs

Communication backends
● NCCL is the backend of choice for GPU nodes on Perlmutter
● The NCCL OFI plugin (from AWS) enables RDMA performance on the libfabric-based

Perlmutter Slingshot network (see our docs)

https://github.com/horovod/horovod/tree/master/examples
https://lbann.readthedocs.io/en/latest/index.html

20

Workflow tools
Some high level tools will be vital to your success as you scale up
● Hyper-parameter optimization (HPO) is critical for getting the most out of your

models and data, but can be complex and computationally expensive
● Experiment tracking and visualization tools make your work reproducible,

shareable, and more interpretable

Helpers / examples / docs
● NERSC HPO docs
● W&B template (new)
● Ray cluster helper (new)
● Tensorboard jupyter launcher

https://docs.nersc.gov/machinelearning/hpo/
https://github.com/NERSC/nersc-dl-wandb
https://github.com/asnaylor/nersc_cluster_deploy
https://docs.nersc.gov/machinelearning/tensorboard/

Outreach & additional resources

22

Training events
The Deep Learning for Science School at Berkeley Lab (https://dl4sci-school.lbl.gov/)
● Comprehensive program with lectures, demos, hands-on sessions, posters
● 2019 material (videos, slides, code) online: https://sites.google.com/lbl.gov/dl4sci2019
● 2020 webinar series material: https://dl4sci-school.lbl.gov/agenda

The Deep Learning at Scale Tutorial
● Jointly organized with NVIDIA (+ previously Cray, ORNL)
● Presented at SC18-23, ECP Annual 2019, ISC19
● Detailed lectures + hands-on material covering distributed training, scaling, profiling, and

optimization on Perlmutter
● See the full SC23 material here

NERSC training events
● NERSC-NVIDIA LLM Bootcamp 2024 (Apply now!)
● NVIDIA AI for Science Bootcamp 2023
● Data Day 2024, New User Training Sep 2023

NERSC Data Seminar Series:
● https://github.com/NERSC/data-seminars
● https://www.youtube.com/playlist?list=PL20S5EeApOSvkewFIuz2scAEkbnBIlzYy

https://dl4sci-school.lbl.gov/
https://sites.google.com/lbl.gov/dl4sci2019
https://dl4sci-school.lbl.gov/agenda
https://github.com/NERSC/sc23-dl-tutorial/tree/main
https://www.openhackathons.org/s/siteevent/a0CUP00000Gms6o2AB/se000337
https://www.nersc.gov/users/training/events/2023/ai-for-scientific-computing-oct-2023/
https://www.nersc.gov/users/training/past-training-events/2024/nersc-data-day-feb-21-22-2024/
https://www.nersc.gov/users/training/past-training-events/2023/new-user-training-sept2023/
https://github.com/NERSC/data-seminars
https://www.youtube.com/playlist?list=PL20S5EeApOSvkewFIuz2scAEkbnBIlzYy

23

Conclusions
Deep learning for science is here and growing
● Powerful capabilities; enthusiastic community
● We’re excited to see what you accomplish with it!

Perlmutter has a productive, performant software stack for deep learning
● Optimized frameworks and solutions for small to large scale DL workloads
● Support for productive workflows (Jupyter, HPO)

Join the NERSC Users Slack

Take the ML@NERSC 2024 Survey!!!

https://www.nersc.gov/users/NUG/nersc-users-slack/
https://forms.gle/RbTfLQ5aPZKijw7UA

24

Thank You!
Next: run through
of GitHub material

https://github.com/NERSC/nersc-dl-multigpu

25

Growing scientific AI workload at NERSC
We track ML software usage
● Instrument user python imports
● DL users >10x from 2017 to 2021

Also track ML trends through 2-yearly survey

https://conference.scipy.org/proceedings/scipy2021/rollin_thomas.html

26

NESAP and Perlmutter are Enabling Adoption of Large-scale
and Groundbreaking AI

Brandon Wood
former NERSC

Postdoc now Meta AI

FourCastNet
Pathak et al. 2022 arXiv:2202.11214
Collab with Nvidia, Caltech, … (+ now LBL EESA)

● Forecasts global weather at
high-resolution.

● Prediction skill of numerical
model; 10000s times faster

CatalysisDL
Chanussot et al. 2021
Collab with CMU, MetaAI, …
arXiv:2010.09990

● NeurIPS 2021-23
Competitions

● Pre-trained models
now used with DFT -
e.g. FineTuna;
AdsorbML

Jaideep Pathak
former NERSC

Postdoc now NVIDIA

Shashank
Subramanian
Former NERSC
Postdoc now Staff

Jared Willard
NERSC Postdoc

Wenbin Xu
NERSC postdoc

Vinicius Mikuni
NERSC Postdoc

● AI “Unfolding” extracts new
physics insights from data
○ Requires Perlmutter for

1000s of UQ runs

HEP-ML
Collab with LBL Physics division (and H1 Collaboration)

https://arxiv.org/abs/2202.11214
https://arxiv.org/abs/2010.09990
https://neurips.cc/Conferences/2021/CompetitionTrack
https://neurips.cc/Conferences/2021/CompetitionTrack
https://github.com/ulissigroup/finetuna
https://arxiv.org/abs/2211.1648
https://newscenter.lbl.gov/2022/10/25/solving-the-proton-puzzle/

27

Need for AI at scale

Large problems

Large scale
training

28

Deep Learning parallelization strategies

Data Parallelism
Distribute input samples.

Model (tensor) Parallelism
Distribute network structure
(layers).

Layer Pipelining
Partition by layer.

Fig. credit: arXiv:1802.09941

Hybrid parallelism example: Megatron-Turing NLG 530B

https://arxiv.org/abs/1802.09941
https://www.microsoft.com/en-us/research/blog/using-deepspeed-and-megatron-to-train-megatron-turing-nlg-530b-the-worlds-largest-and-most-powerful-generative-language-model/

29

Best Practices for DL + Shifter on Perlmutter

NVIDIA provides containers optimized for deep learning on GPUs with

• Pytorch or TensorFlow+Horovod
• Optimized drivers, CUDA, NCCL, cuDNN, etc
• Many different versions available

We also provide images based on NVIDIA's, which have a few useful extras

You can also build your own custom containers (easy to build on top of NVIDIA’s)

Notes
● Customization: from inside the container, do pip install --user MY-PACKAGE

(make sure to set $PYTHONUSERBASE to a custom path for the desired container)

● NVIDIA NGC containers use OpenMPI, which requires specific options if you require MPI.
Instructions: https://docs.nersc.gov/development/shifter/how-to-use/#shifter-mpich-module

https://docs.nvidia.com/deeplearning/frameworks/
https://github.com/NERSC/nersc-ml-images
https://docs.nersc.gov/machinelearning/tensorflow/#containers
https://docs.nersc.gov/development/shifter/how-to-use/#shifter-mpich-module

30

General guidelines for deep learning at NERSC
NERSC documentation: https://docs.nersc.gov/analytics/machinelearning/overview/

Use our provided modules/containers if appropriate
● They have the recommended builds and libraries tested for functionality and performance
● We can track usage which informs our software support strategy

For developing and testing your ML workflows
● Use interactive QOS or Jupyter for on-demand compute resources
● Visualize your models and results with TensorBoard or Weights & Biases

For performance tuning
● Check cpu/gpu utilization to indicate bottlenecks (e.g. with top, nvidia-smi)
● Data pipeline is the most common source of bottlenecks

○ Use framework-recommended APIs/formats for data loading
○ Use multi-threaded data loaders and stage data if possible

● Profile your code, e.g. with Nvidia Nsight Systems or TensorBoard Profiler

https://docs.nersc.gov/analytics/machinelearning/overview/

31

NERSC Center Architecture

Quality of Service
Storage System (QSS)

Platform
Storage System (PSS)

> 800 GB/s

> 10 GB/s

 container services
2 x 400 Gb/s
2 x 100 Gb/s

200 GB/s
HPSS Tape Archive >1 EB

35 PB
All-Flash
Scratch

>5 TB/s

1.6 TB/s

Community File System 240 PB

/home 450 TB

Experimental Facility ASCR Facility Home Institution Cloud Edge

Workflow Environment
Management Environment

NERSC-10

Off Platform Storage

DTNs, Gateways

3.25
TB/s

(26 Tbps)

1,792 GPU-accelerated nodes
 4 NVIDIA A100 GPUs+1 AMD “Milan” CPU
 448 TB (CPU) + 320 TB (GPU) memory
3,072 CPU-only nodes
 2 AMD “Milan” CPUs
 1,536 TB CPU memory

Ethernet
Science Friendly Security
Production Monitoring

Power Efficiency

LAN

HPE Slingshot 11
ethernet-compatible
interconnect
4 NICs/GPU node,
1 NIC/CPU node

#7, 93.8PF Peak

(2026)

32

Synchronous data parallel scaling
Weak scaling (fixed local batch size)
● Global batch size grows with number

of workers
● Computation grows with

communication; good scalability
● Large batch sizes can negatively

affect convergence
Strong scaling (fixed global batch size)
● Local batch size decreases with

number of workers
● Convergence behavior unaffected
● Communication can become a

bottleneck

Local batch-size = B

Global batch-size = N * B

B

B

B

.

.

.

P1

P2

PN

A
ll-

re
du

ce

gradients
P1

P2

PN

synced

gradients

33

Hyper-parameter optimization (HPO) solutions

Model selection/tuning are critical for getting the most out of deep learning
● Many methods and libraries exist for tuning your model hyper-parameters
● Usually very computationally expensive because you need to train many models

=> Good for large HPC resources

Helpers / examples
● W&B template (new)
● Ray cluster helper (new)

Users can use whatever tools work best for them
● Ask us for help if needed!

https://docs.nersc.gov/
machinelearning/hpo/

https://github.com/NERSC/nersc-dl-wandb
https://github.com/asnaylor/nersc_cluster_deploy
https://docs.nersc.gov/machinelearning/hpo/
https://docs.nersc.gov/machinelearning/hpo/

34

TensorBoard at NERSC

TensorBoard is the most popular tool for visualizing
and monitoring DL experiments, widely adopted by
TensorFlow and PyTorch communities.
We recommend running TensorBoard in Jupyter
using nersc-tensorboard helper module.

import nersc_tensorboard_helper

%load_ext tensorboard

%tensorboard --logdir YOURLOGDIR --port 0

then get an address to your TensorBoard GUI:
nersc_tensorboard_helper.tb_address()

https://docs.nersc.gov/machinelearning/tensorboard/
https://github.com/NERSC/nersc-tensorboard-helper

