Deep Learning at NERSC

Grads@NERSC: How to Do Deep Learning with Jupyter Notebooks and Beyond
April 11, 2024

Steven Farrell
Shashank Subramanian
Data, AI, and Analytics Services
The Deep Learning revolution

ARTIFICIAL INTELLIGENCE
A technique which enables machines to mimic human behaviour

MACHINE LEARNING
Subset of AI technique which use statistical methods to enable machines to improve with experience

DEEP LEARNING
Subset of ML which make the computation of multi-layer neural network feasible

ILSVRC GPU Usage and Winning error rate

- Number of entries using GPUs
- Winning error %

Deep Learning
Machine Learning

Performance
Amount of data
AI is transforming science

Across all domains
- Especially those with Big Data

Across many application areas
- Analyzing data better, faster
- Accelerating expensive simulations
- Control + design of complex systems

Embraced by the DOE and other funding agencies
Scientific AI users

Science domains

- Physics - General
- Astrophysics
- Computer Science
- Chemistry
- High Energy Physics
- Cosmology
- Earth and Environmental Science
- Applied Mathematics
- Engineering
- Biosciences
- Nuclear Physics
- Geosciences
- Medical
- Fusion Energy Science
- Materials Science

ML workflows

- ML for offline data analysis
- Coupled ML+simulation
- ML replacing simulation
- ML for real-time experimental data
- ML for control of scientific instrument

ML@NERSC 2022 Survey

0 20 40 60 80 100 120

ML tasks

- Regression
- Classification
- Unsupervised / self-supervised
- Generative modeling
- Segmentation / object detection
- Reinforcement learning

ML@NERSC 2022 Survey

0 20 40 60 80 100 120

What is the level of maturity of ML in your research? (mark all that apply to your projects)

174 responses

- Brainstorming / researching possible ML approaches: 89 (51.1%)
- Developing / experimenting with new ML solutions: 124 (71.3%)
- Refining / improving a partially successful ML application: 94 (54%)
- Fully developed ML workflow used in scientific production: 51 (29.3%)

BERKELEY LAB
Bringing Science Solutions to the World

U.S. DEPARTMENT OF ENERGY
Office of Science
The need for HPC

Growing computational cost of training AI models

- bigger datasets + models, more complexity

Researchers need large scale resources

- Rapid iteration, reduce time to discovery

Deep Learning

Large Language Models

https://blog.openai.com/ai-and-compute/

https://medium.com/riselab/ai-and-memory-wall-2cb4265cb0b8
The AI for Science lifecycle

- **Experimentation**
 - Jupyter, interactive sessions
 - Data engineering
 - Testing architecture types

- **Full scale training, hyperparameter tuning, validation**
 - Batch jobs
 - Parallelism

- **Deployment**
 - Offline/online data processing
 - Streaming, as-a-service
NERSC AI Strategy

- **Deploy** optimized hardware and software systems
- **Apply** AI for science using cutting-edge methods
- **Empower** through seminars, workshops, training and schools
Perlmutter

1,792 GPU-accelerated nodes
4 NVIDIA A100 GPUs + 1 AMD “Milan” CPU
448 TB (CPU) + 320 TB (GPU) memory

3,072 CPU-only nodes
2 AMD “Milan” CPUs
1,536 TB CPU memory

Off Platform Storage
- HPSS Tape Archive >1 EB
- Community File System 240 PB
- /home 450 TB

HPE Slingshot 11 ethernet-compatible interconnect
- 4 NICs/GPU node, 1 NIC/CPU node

>5 TB/s

35 PB All-Flash Scratch
Deep Learning on Perlmutter: Software stack and best practices
Perlmutter deep learning software stack overview

General strategy:

- Provide functional, performant installations of the most popular frameworks and libraries
- Enable flexibility for users to customize and deploy their own solutions

Frameworks:

- PyTorch
- Keras
- TensorFlow

Distributed training libraries:

- PyTorch distributed
- NCCL, MPI
- Horovod

Productive tools and services:

- Jupyter, Shifter

https://docs.nersc.gov/machinelearning/
How to use the Perlmutter DL software stack

We have modules you can load which contain python and DL libraries:

module load pytorch/2.1.0-cu12
module load tensorflow/2.15.0

Check which software versions are available with:

module spider pytorch

You can install your own packages on top to customize:

pip install --user MY-PACKAGE

Or, clone a conda environment from our modules:

conda create -n my-env --clone /path/to/module/installation

Or, create custom conda environments from scratch:

conda create -n my-env MY-PACKAGES

More on how to customize your setup can be found in the docs (PyTorch, TensorFlow).
NERSC currently supports containers with Perlmutter via Shifter

• Easy, performant: our top500 entry used a container!

To see images currently available:

```
shifterimg images | grep pytorch
```

To pull desired docker images onto Perlmutter:

```
shifterimg pull <dockerhub_image_tag>
```

To use interactively:

```
shifter --module gpu --image=nersc/pytorch:ngc-23.07-v1
```

Use Slurm image shifter options for best performance in batch jobs:

```
#SBATCH --image=nersc/pytorch:ngc-23.07-v1
#SBATCH --module=gpu,nccl-2.18
srun shifter python my_python_script.py
```
Jupyter for deep learning

JupyterHub service provides a rich, interactive notebook ecosystem on Cori

- Very popular service with thousands of users
- A favorite way for users to develop ML code

Users can run their deep learning workloads

- on dedicated Perlmutter GPU nodes
- using our pre-installed DL software kernels
- using their own custom kernels
Distributed Deep Learning

Reference material: SC23 Deep Learning at Scale Tutorial
General strategy for optimizing deep learning at NERSC

Start with an appropriate model which trains on a single CPU or GPU

Optimize the single-node / single-GPU performance
- Using performance analysis tools
- Tuning and optimizing the data pipeline
- Make effective use of the hardware (e.g. mixed precision)

Distribute the training across multiple processors
- Multi-GPU, multi-node training: data and/or model parallel
- Use best practices for large scale training and convergence
- Use best optimized libraries for communication, tune settings

Advanced parallelism
- Model/hybrid parallelism design considerations
- Implementation & analysis
Parallel training strategies

Data Parallelism
- Distribute input samples
- Model replicated across devices
- Most common

Model Parallelism
- Distribute network structure, within or across layers
- Needed for massive models that don’t fit in device memory
- Becoming more common
Parallel training strategies

Data Parallelism

- Distribute input samples
- Model replicated across devices
- Most common

✅ Conceptually simple
✅ Easy implementation
 - PyTorch, TensorFlow have built-in functionality

⚠ Some additional considerations
 - Data loading at scale
 - Modified hyperparameters
Data parallelism

Batches are sharded across GPUs
- Local batch-size = B
- Global batch-size = N * B

Gradients averaged across GPUs via all-reduce calls
- Incurs communication cost
- Can be partially overlapped (hidden) by computation

Speed up model training by scaling
- More GPUs => larger batch size
- Increase learning rates for larger, faster steps to convergence
Distributed Training Tools

Framework built-in
- PyTorch DistributedDataParallel (DDP)
- TensorFlow Distribution Strategies

Other popular libraries
- **Lightning**: DDP + convenient features
- **DeepSpeed**: ZeRO optimizations, 3D parallelism
- **HuggingFace accelerate**: DDP + features
- **Ray**: DDP + HPO
- **Horovod**: MPI+NCCL, easy to use, [examples](#)
- **LBANN**: multi-level parallelism, ensemble learning, etc., [docs](#)

Communication backends
- NCCL is the backend of choice for GPU nodes on Perlmutter
- The NCCL OFI plugin (from AWS) enables RDMA performance on the libfabric-based Perlmutter Slingshot network (see our docs)
Workflow tools

Some high level tools will be vital to your success as you scale up

- Hyper-parameter optimization (HPO) is critical for getting the most out of your models and data, but can be complex and computationally expensive
- Experiment tracking and visualization tools make your work reproducible, shareable, and more interpretable

Helpers / examples / docs

- NERSC HPO docs
- W&B template (new)
- Ray cluster helper (new)
- Tensorboard jupyter launcher

Weights & Biases
Outreach & additional resources
Training events

- Comprehensive program with lectures, demos, hands-on sessions, posters
- 2019 material (videos, slides, code) online: https://sites.google.com/lbl.gov/dl4sci2019
- 2020 webinar series material: https://dl4sci-school.lbl.gov/agenda

The Deep Learning at Scale Tutorial
- Jointly organized with NVIDIA (+ previously Cray, ORNL)
- Presented at SC18-23, ECP Annual 2019, ISC19
- Detailed lectures + hands-on material covering distributed training, scaling, profiling, and optimization on Perlmutter
- See the full SC23 material here

NERSC training events
- [NERSC-NVIDIA LLM Bootcamp 2024](https://www.nersc.gov/nersc-nvidia-llm-bootcamp-2024) (Apply now!)
- [NVIDIA AI for Science Bootcamp 2023](https://www.nersc.gov/nvidia-ai-for-science-bootcamp-2023)
- [Data Day 2024, New User Training Sep 2023](https://www.nersc.gov/data-day-2024-new-user-training-sep-2023)

NERSC Data Seminar Series:
- https://github.com/NERSC/data-seminars
Conclusions

Deep learning for science is here and growing
- Powerful capabilities; enthusiastic community
- We’re excited to see what you accomplish with it!

Perlmutter has a productive, performant software stack for deep learning
- Optimized frameworks and solutions for small to large scale DL workloads
- Support for productive workflows (Jupyter, HPO)

Join the NERSC Users Slack

Take the ML@NERSC 2024 Survey!!!
Thank You!
Next: run through of GitHub material
Growing scientific AI workload at NERSC

We track ML software usage

- Instrument user **python imports**
- DL users >10x from 2017 to 2021

Also track ML trends through 2-yearly survey
NESAP and Perlmutter are Enabling Adoption of Large-scale and Groundbreaking AI

FourCastNet
Pathak et al. 2022 [arXiv:2202.11214]
Collab with Nvidia, Caltech, … (+ now LBL EESA)
- Forecasts global weather at high-resolution.
- Prediction skill of numerical model; 10000s times faster

Jaideep Pathak
former NERSC Postdoc now NVIDIA

Shashank Subramanian
former NERSC Postdoc now Staff

Jared Willard
NERSC Postdoc

CatalysisDL
Collab with CMU, MetaAI, …
- NeurIPS 2021-23 Competitions
- Pre-trained models now used with DFT - e.g. FineTuna; AdsorbML

Brandon Wood
former NERSC Postdoc now Meta AI

Wenbin Xu
NERSC Postdoc

HEP-ML
Collab with LBL Physics division (and H1 Collaboration)
- AI “Unfolding” extracts new physics insights from data
 - Requires Perlmutter for 1000s of UQ runs

Vinicius Mikuni
NERSC Postdoc
Need for AI at scale

Large problems

Large scale training

Types of distributed training
- Data parallelism: 70%
- Model parallelism: 60%
- Hybrid parallelism: 50%
- Pipeline parallelism: 40%
- Not needed: 30%

Size of training dataset
- 1 GB or less: 10%
- Up to 10 GB: 20%
- 10s of GB: 30%
- 100s of GB: 40%
- 1-10 TB: 50%
- 10s of TB: 60%
- >100 TB: 70%

ML@NERSC 2022 Survey
Deep Learning parallelization strategies

- **Data Parallelism**: Distribute input samples.
- **Model (tensor) Parallelism**: Distribute network structure (layers).
- **Layer Pipelining**: Partition by layer.

Hybrid parallelism example: [Megatron-Turing NLG 530B](https://arxiv.org/abs/1802.09941)

Fig. credit: arXiv:1802.09941
Best Practices for DL + Shifter on Perlmutter

NVIDIA provides **containers optimized for deep learning on GPUs** with

- Pytorch or TensorFlow+Horovod
- Optimized drivers, CUDA, NCCL, cuDNN, etc
- Many different versions available

We also provide **images** based on NVIDIA's, which have a few useful extras

You can also build your own custom containers (easy to build on top of NVIDIA's)

Notes

- **Customization**: from inside the container, do `pip install --user MY-PACKAGE`
 (make sure to set `$PYTHONUSERBASE` to a custom path for the desired container)

- NVIDIA NGC containers use OpenMPI, which requires specific options if you require MPI.
 Instructions: https://docs.nersc.gov/development/shifter/how-to-use/#shifter-mpich-module
General guidelines for deep learning at NERSC

NERSC documentation: https://docs.nersc.gov/analytics/machinelearning/overview/

Use our provided modules/containers if appropriate
- They have the recommended builds and libraries tested for functionality and performance
- We can track usage which informs our software support strategy

For developing and testing your ML workflows
- Use interactive QOS or Jupyter for on-demand compute resources
- Visualize your models and results with TensorBoard or Weights & Biases

For performance tuning
- Check cpu/gpu utilization to indicate bottlenecks (e.g. with top, nvidia-smi)
- Data pipeline is the most common source of bottlenecks
 - Use framework-recommended APIs/formats for data loading
 - Use multi-threaded data loaders and stage data if possible
- Profile your code, e.g. with Nvidia Nsight Systems or TensorBoard Profiler
NERSC Center Architecture

- **HPE Slingshot 11** ethernet-compatible interconnect
 - 4 NICS/GPU node, 1 NIC/CPU node
- **1,792 GPU-accelerated nodes**
 - 4 NVIDIA A100 GPUs + 1 AMD “Milan” CPU
 - 448 TB (CPU) + 320 TB (GPU) memory
- **3,072 CPU-only nodes**
 - 2 AMD “Milan” CPUs
 - 1,536 TB CPU memory
- **> 800 GB/s**
- **> 10 GB/s**

Off Platform Storage
- **HPE Slingshot 11 Tape Archive >1 EB**
- **Community File System 240 PB**
- **/home 450 TB**
- **DTNs, Gateways**

- **Experimental Facility**
- **ASCR Facility**
- **Home Institution**
- **Cloud**
- **Edge**

NERSC-10
- **#7, 93.8 PF Peak**
- **1.6 TB/s**
- **3.25 TB/s (26 Tbps)**

Networking
- **ESnet**
- **2 x 400 Gb/s**
- **2 x 100 Gb/s**

Quality of Service (QSS)
- **Storage System**

Platform Storage System (PSS)
- **200 GB/s**
- **2 x 400 Gb/s**
- **2 x 100 Gb/s**

Experimental Facility
- **ACCR Facility**
- **Home Institution**

Science Friendly Security
- **Production Monitoring**
- **Power Efficiency**
- **LAN**

Experimental Facility
- **ASCR Facility**
- **Home Institution**

Science Friendly Security
- **Production Monitoring**
- **Power Efficiency**
- **LAN**

Experimental Facility
- **ASCR Facility**
- **Home Institution**

Science Friendly Security
- **Production Monitoring**
- **Power Efficiency**
- **LAN**
Synchronous data parallel scaling

Weak scaling (fixed local batch size)
- Global batch size grows with number of workers
- Computation grows with communication; good scalability
- Large batch sizes can negatively affect convergence

Strong scaling (fixed global batch size)
- Local batch size decreases with number of workers
- Convergence behavior unaffected
- Communication can become a bottleneck

Local batch-size = B
Global batch-size = N * B
Hyper-parameter optimization (HPO) solutions

Model selection/tuning are critical for getting the most out of deep learning

- Many methods and libraries exist for tuning your model hyper-parameters
- Usually very computationally expensive because you need to train many models

=> Good for large HPC resources

 Helpers / examples
- **W&B template (new)**
- **Ray cluster helper (new)**

Users can use whatever tools work best for them
- Ask us for help if needed!

https://docs.nersc.gov/machinelearning/hpo/
TensorBoard at NERSC

TensorBoard is the most popular tool for visualizing and monitoring DL experiments, widely adopted by TensorFlow and PyTorch communities. We recommend running TensorBoard in Jupyter using nersc-tensorboard_helper module.

```python
import nersc_tensorboard_helper
%load_ext tensorboard
%tensorboard --logdir YOURLOGDIR --port 0
```

then get an address to your TensorBoard GUI:

```
nersc_tensorboard_helper.tb_address()
```