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The Deep Learning revolution
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AI is transforming science
Across all domains
● Especially those with Big Data

Across many application areas
● Analyzing data better, faster
● Accelerating expensive simulations
● Control + design of complex systems

Embraced by the DOE and other 
funding agencies
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Scientific AI users
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The need for HPC

Growing computational cost 
of training AI models
● bigger datasets + models, 

more complexity
Researchers need large scale 
resources
● Rapid iteration, reduce time 

to discovery

blog.openai.com/ai-and-compute/

https://medium.com/riselab/ai-and-memory-wall-2cb4265cb0b8 

Deep Learning

Large Language 
Models

https://blog.openai.com/ai-and-compute/
https://medium.com/riselab/ai-and-memory-wall-2cb4265cb0b8
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The AI for Science lifecycle
● Experimentation

○ Jupyter, interactive sessions
○ Data engineering
○ Testing architecture types

● Full scale training, 
hyperparameter tuning, 
validation

○ Batch jobs
○ Parallelism

● Deployment
○ Offline/online data processing
○ Streaming, as-a-service
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NERSC AI Strategy

● Deploy optimized hardware and software systems
● Apply AI for science using cutting-edge methods 
● Empower through seminars, workshops, training and schools

Systems w/     
Accelerators

EmpowermentDeployment Methods and Applications 

Software Frameworks and Libraries

Automation Interactivity
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Perlmutter

35 PB
All-Flash
Scratch

>5 TB/s

1,792 GPU-accelerated nodes
     4 NVIDIA A100 GPUs + 1 AMD “Milan” CPU
     448 TB (CPU) + 320 TB (GPU) memory
3,072 CPU-only nodes
     2 AMD “Milan” CPUs
     1,536 TB CPU memory

HPE Slingshot 11 
ethernet-compatible 
interconnect
4 NICs/GPU node, 
1 NIC/CPU node

HPSS Tape Archive >1 EB

Community File System 240 PB

/home 450 TB

Off Platform Storage

#12, 113PF Peak



Deep Learning on Perlmutter:
Software stack and best practices
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Perlmutter deep learning software stack overview
General strategy:

● Provide functional, performant installations of the most 
popular frameworks and libraries

● Enable flexibility for users to customize and deploy their 
own solutions

Frameworks:

Distributed training libraries:
● PyTorch distributed
● NCCL, MPI
● Horovod

Productive tools and services:
● Jupyter, Shifter

https://docs.nersc.gov/machinelearning/

https://docs.nersc.gov/machinelearning/
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How to use the Perlmutter DL software stack

We have modules you can load which contain python and DL libraries:
module load pytorch/2.1.0-cu12

module load tensorflow/2.15.0

Check which software versions are available with:
module spider pytorch

You can install your own packages on top to customize:
pip install --user MY-PACKAGE 

Or, clone a conda environment from our modules:
conda create -n my-env --clone /path/to/module/installation

Or, create custom conda environments from scratch:
conda create -n my-env MY-PACKAGES

More on how to customize your setup can be found in the docs (PyTorch, TensorFlow).

https://docs.nersc.gov/machinelearning/pytorch/
https://docs.nersc.gov/machinelearning/tensorflow/
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Containerized DL: using Shifter on Perlmutter

NERSC currently supports containers with Perlmutter via Shifter

• Easy, performant: our top500 entry used a container!

To see images currently available: 
shifterimg images | grep pytorch

To pull desired docker images onto Perlmutter:
shifterimg pull <dockerhub_image_tag>

To use interactively:

shifter --module gpu --image=nersc/pytorch:ngc-23.07-v1

Use Slurm image shifter options for best performance in batch jobs:

#SBATCH --image=nersc/pytorch:ngc-23.07-v1
#SBATCH –-module=gpu,nccl-2.18
srun shifter python my_python_script.py

https://docs.nersc.gov/development/containers/shifter/how-to-use/
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Jupyter for deep learning

JupyterHub service provides a rich,
interactive notebook ecosystem on Cori
● Very popular service with thousands of users
● A favorite way for users to develop ML code

Users can run their deep learning workloads
● on dedicated Perlmutter GPU nodes
● using our pre-installed DL software kernels
● using their own custom kernels

https://docs.nersc.gov/services/jupyter/how-to-guides/#how-to-use-a-conda-environment-as-a-python-kernel


Distributed Deep Learning

Reference material: SC23 Deep Learning at Scale Tutorial

https://github.com/NERSC/sc23-dl-tutorial
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Distribute the training across multiple processors
● Multi-GPU, multi-node training: data and/or model parallel
● Use best practices for large scale training and convergence
● Use best optimized libraries for communication, tune settings

General strategy for optimizing deep learning at NERSC
Start with an appropriate model which trains on a single CPU or GPU

Optimize the single-node / single-GPU performance
● Using performance analysis tools
● Tuning and optimizing the data pipeline
● Make effective use of the hardware (e.g. mixed precision)

Advanced parallelism
● Model/hybrid parallelism design considerations
● Implementation & analysis
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Parallel training strategies

Data Parallelism
● Distribute input 

samples
● Model replicated 

across devices
● Most common

Model Parallelism
● Distribute network structure, 

within or across layers
● Needed for massive models that 

don’t fit in device memory
● Becoming more common
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Parallel training strategies

Data Parallelism
● Distribute input 

samples
● Model replicated 

across devices
● Most common

✅ Conceptually simple
✅ Easy implementation

● PyTorch, TensorFlow have built-in functionality
⚠ Some additional considerations

● Data loading at scale
● Modified hyperparameters
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Data parallelism
Batches are sharded across GPUs
● Local batch-size = B
● Global batch-size = N * B

Gradients averaged across GPUs via 
all-reduce calls
● Incurs communication cost
● Can be partially overlapped 

(hidden) by computation
Speed up model training by scaling
● More GPUs => larger batch size
● Increase learning rates for larger, 

faster steps to convergence
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Distributed Training Tools
Framework built-in
● PyTorch DistributedDataParallel (DDP)
● TensorFlow Distribution Strategies

Other popular libraries
● Lightning: DDP + convenient features
● DeepSpeed: ZeRO optimizations, 3D parallelism
● HuggingFace accelerate: DDP + features
● Ray: DDP + HPO
● Horovod: MPI+NCCL, easy to use, examples
● LBANN: multi-level parallelism, ensemble learning, etc., docs

Communication backends
● NCCL is the backend of choice for GPU nodes on Perlmutter
● The NCCL OFI plugin (from AWS) enables RDMA performance on the libfabric-based 

Perlmutter Slingshot network (see our docs)

https://github.com/horovod/horovod/tree/master/examples
https://lbann.readthedocs.io/en/latest/index.html
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Workflow tools
Some high level tools will be vital to your success as you scale up
● Hyper-parameter optimization (HPO) is critical for getting the most out of your 

models and data, but can be complex and computationally expensive
● Experiment tracking and visualization tools make your work reproducible, 

shareable, and more interpretable

Helpers / examples / docs
● NERSC HPO docs
● W&B template (new)
● Ray cluster helper (new)
● Tensorboard jupyter launcher

https://docs.nersc.gov/machinelearning/hpo/
https://github.com/NERSC/nersc-dl-wandb
https://github.com/asnaylor/nersc_cluster_deploy
https://docs.nersc.gov/machinelearning/tensorboard/


Outreach & additional resources
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Training events
The Deep Learning for Science School at Berkeley Lab (https://dl4sci-school.lbl.gov/) 
● Comprehensive program with lectures, demos, hands-on sessions, posters
● 2019 material (videos, slides, code) online: https://sites.google.com/lbl.gov/dl4sci2019
● 2020 webinar series material: https://dl4sci-school.lbl.gov/agenda

The Deep Learning at Scale Tutorial
● Jointly organized with NVIDIA (+ previously Cray, ORNL)
● Presented at SC18-23, ECP Annual 2019, ISC19
● Detailed lectures + hands-on material covering distributed training, scaling, profiling, and 

optimization on Perlmutter
● See the full SC23 material here

NERSC training events
● NERSC-NVIDIA LLM Bootcamp 2024 (Apply now!)
● NVIDIA AI for Science Bootcamp 2023
● Data Day 2024, New User Training Sep 2023

NERSC Data Seminar Series:
● https://github.com/NERSC/data-seminars 
● https://www.youtube.com/playlist?list=PL20S5EeApOSvkewFIuz2scAEkbnBIlzYy 

https://dl4sci-school.lbl.gov/
https://sites.google.com/lbl.gov/dl4sci2019
https://dl4sci-school.lbl.gov/agenda
https://github.com/NERSC/sc23-dl-tutorial/tree/main
https://www.openhackathons.org/s/siteevent/a0CUP00000Gms6o2AB/se000337
https://www.nersc.gov/users/training/events/2023/ai-for-scientific-computing-oct-2023/
https://www.nersc.gov/users/training/past-training-events/2024/nersc-data-day-feb-21-22-2024/
https://www.nersc.gov/users/training/past-training-events/2023/new-user-training-sept2023/
https://github.com/NERSC/data-seminars
https://www.youtube.com/playlist?list=PL20S5EeApOSvkewFIuz2scAEkbnBIlzYy


23

Conclusions
Deep learning for science is here and growing
● Powerful capabilities; enthusiastic community
● We’re excited to see what you accomplish with it!

Perlmutter has a productive, performant software stack for deep learning
● Optimized frameworks and solutions for small to large scale DL workloads
● Support for productive workflows (Jupyter, HPO)

Join the NERSC Users Slack

Take the ML@NERSC 2024 Survey!!!

https://www.nersc.gov/users/NUG/nersc-users-slack/
https://forms.gle/RbTfLQ5aPZKijw7UA
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Thank You!
Next: run through
of GitHub material

https://github.com/NERSC/nersc-dl-multigpu


25

Growing scientific AI workload at NERSC
We track ML software usage
● Instrument user python imports
● DL users >10x from 2017 to 2021

Also track ML trends through 2-yearly survey

https://conference.scipy.org/proceedings/scipy2021/rollin_thomas.html
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NESAP and Perlmutter are Enabling Adoption of Large-scale 
and Groundbreaking AI 

Brandon Wood 
former NERSC 

Postdoc now Meta AI 

FourCastNet
Pathak et al. 2022  arXiv:2202.11214
Collab with Nvidia, Caltech, … (+ now LBL EESA)

● Forecasts global weather at 
high-resolution. 

● Prediction skill of numerical 
model; 10000s times faster

CatalysisDL
Chanussot et al. 2021  
Collab with CMU, MetaAI, … 
arXiv:2010.09990

● NeurIPS 2021-23 
Competitions

● Pre-trained models 
now used with DFT - 
e.g. FineTuna; 
AdsorbML 

Jaideep Pathak
former NERSC 

Postdoc now NVIDIA

Shashank 
Subramanian
Former NERSC 
Postdoc now Staff

Jared Willard  
NERSC Postdoc

Wenbin Xu
NERSC postdoc

Vinicius Mikuni 
NERSC Postdoc

● AI “Unfolding” extracts new 
physics insights from data
○ Requires Perlmutter for 

1000s of UQ runs

HEP-ML
Collab with LBL Physics division (and H1 Collaboration)

https://arxiv.org/abs/2202.11214
https://arxiv.org/abs/2010.09990
https://neurips.cc/Conferences/2021/CompetitionTrack
https://neurips.cc/Conferences/2021/CompetitionTrack
https://github.com/ulissigroup/finetuna
https://arxiv.org/abs/2211.1648
https://newscenter.lbl.gov/2022/10/25/solving-the-proton-puzzle/
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Need for AI at scale

Large problems

Large scale 
training
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Deep Learning parallelization strategies

Data Parallelism
Distribute input samples.

Model (tensor) Parallelism
Distribute network structure 
(layers).

Layer Pipelining
Partition by layer.

Fig. credit: arXiv:1802.09941

Hybrid parallelism example: Megatron-Turing NLG 530B

https://arxiv.org/abs/1802.09941
https://www.microsoft.com/en-us/research/blog/using-deepspeed-and-megatron-to-train-megatron-turing-nlg-530b-the-worlds-largest-and-most-powerful-generative-language-model/
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Best Practices for DL + Shifter on Perlmutter

NVIDIA provides containers optimized for deep learning on GPUs with

• Pytorch or TensorFlow+Horovod
• Optimized drivers, CUDA, NCCL, cuDNN, etc
• Many different versions available

We also provide images based on NVIDIA's, which have a few useful extras

You can also build your own custom containers (easy to build on top of NVIDIA’s)

Notes
● Customization: from inside the container, do pip install --user MY-PACKAGE 

(make sure to set $PYTHONUSERBASE to a custom path for the desired container)

● NVIDIA NGC containers use OpenMPI, which requires specific options if you require MPI.
Instructions: https://docs.nersc.gov/development/shifter/how-to-use/#shifter-mpich-module

https://docs.nvidia.com/deeplearning/frameworks/
https://github.com/NERSC/nersc-ml-images
https://docs.nersc.gov/machinelearning/tensorflow/#containers
https://docs.nersc.gov/development/shifter/how-to-use/#shifter-mpich-module
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General guidelines for deep learning at NERSC
NERSC documentation: https://docs.nersc.gov/analytics/machinelearning/overview/

Use our provided modules/containers if appropriate
● They have the recommended builds and libraries tested for functionality and performance
● We can track usage which informs our software support strategy

For developing and testing your ML workflows
● Use interactive QOS or Jupyter for on-demand compute resources
● Visualize your models and results with TensorBoard or Weights & Biases

For performance tuning
● Check cpu/gpu utilization to indicate bottlenecks (e.g. with top, nvidia-smi)
● Data pipeline is the most common source of bottlenecks

○ Use framework-recommended APIs/formats for data loading
○ Use multi-threaded data loaders and stage data if possible

● Profile your code, e.g. with Nvidia Nsight Systems or TensorBoard Profiler

https://docs.nersc.gov/analytics/machinelearning/overview/
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NERSC Center Architecture

Quality of Service 
Storage System (QSS)

Platform 
Storage System (PSS)

> 800 GB/s

> 10 GB/s

                      container services   
2 x 400 Gb/s
2 x 100 Gb/s

200 GB/s
HPSS Tape Archive >1 EB

35 PB
All-Flash
Scratch

>5 TB/s

1.6 TB/s

Community File System 240 PB

/home 450 TB

Experimental Facility ASCR Facility Home Institution Cloud Edge

Workflow Environment 
Management Environment

NERSC-10

Off Platform Storage

DTNs, Gateways

3.25 
TB/s

  

(26 Tbps)

1,792 GPU-accelerated nodes
     4 NVIDIA A100 GPUs+1 AMD “Milan” CPU
     448 TB (CPU) + 320 TB (GPU) memory
3,072 CPU-only nodes
     2 AMD “Milan” CPUs
     1,536 TB CPU memory

Ethernet 
Science Friendly Security
Production Monitoring

Power Efficiency

LAN

HPE Slingshot 11 
ethernet-compatible 
interconnect
4 NICs/GPU node, 
1 NIC/CPU node

#7, 93.8PF Peak

(2026)
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Synchronous data parallel scaling
Weak scaling (fixed local batch size)
● Global batch size grows with number 

of workers
● Computation grows with 

communication; good scalability
● Large batch sizes can negatively 

affect convergence
Strong scaling (fixed global batch size)
● Local batch size decreases with 

number of workers
● Convergence behavior unaffected
● Communication can become a 

bottleneck

Local batch-size = B

Global batch-size = N * B
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Hyper-parameter optimization (HPO) solutions

Model selection/tuning are critical for getting the most out of deep learning
● Many methods and libraries exist for tuning your model hyper-parameters
● Usually very computationally expensive because you need to train many models 

=> Good for large HPC resources

Helpers / examples
● W&B template (new)
● Ray cluster helper (new)

Users can use whatever tools work best for them
● Ask us for help if needed!

https://docs.nersc.gov/
machinelearning/hpo/ 

https://github.com/NERSC/nersc-dl-wandb
https://github.com/asnaylor/nersc_cluster_deploy
https://docs.nersc.gov/machinelearning/hpo/
https://docs.nersc.gov/machinelearning/hpo/
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TensorBoard at NERSC

TensorBoard is the most popular tool for visualizing 
and monitoring DL experiments, widely adopted by 
TensorFlow and PyTorch communities.
We recommend running TensorBoard in Jupyter 
using nersc-tensorboard helper module.

import nersc_tensorboard_helper

%load_ext tensorboard

%tensorboard --logdir YOURLOGDIR --port 0

then get an address to your TensorBoard GUI:
nersc_tensorboard_helper.tb_address()

https://docs.nersc.gov/machinelearning/tensorboard/
https://github.com/NERSC/nersc-tensorboard-helper

