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•  Design Considerations 
–  8:30 - Introduction to Petascale Systems – 30 minutes – Richard Gerber 
–  9:00 - HPC Communication - 45 minutes - Glenn Brook 
–  9:45 - Break  
–  10:00 - HPC IO & Lustre File Systems  - Richard Gerber, 50 minutes 
–  10:50 - HPC Computation - 40 minutes - Jeff Larkin 

•  Multi-Core Performance Analysis  
–  11:30 - Introduction and General Methodology - 30 minutes Don 
Frederick and Glenn Brook 
–  12:00 - Lunch 
–  1:00 - Profiling with Open SpeedShop - 45 minutes Don Frederick 

•  Extreme Scaling on Petascale-class Systems  
–  1:45 - Cray XT Architecture, System Software, and Scientific Libraries - 
15 minutes- Jeff Larkin 
–  2:00 - Cray XT Porting, Scaling, and Optimization - 1 hour - Jeff Larkin 
–  3:00 - Break 
–  3:15 - IBM Blue Gene P Architecture, System Software, and Scientific 
Libraries – 15 minutes - Don Frederick 
–  3:30 - IBM Blue Gene P Porting, Scaling and Optimization Case Studies 
– 1 hour -Don Frederick 

Outline 
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•  Background 
•  CPUs 
•  Nodes 
•  Interconnect 
•  Data Storage 
•  Operating Systems 

Outline 

For updates to all slides in this day-long tutorial, see  

http://www.nersc.gov/users/training/nersc-training-events/sc11/ 
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•  To use HPC systems well, you need 
to understand the basics and 
conceptual design 

–  Otherwise, too many things are mysterious 
•  You want to efficiently configure the 
way your job runs  
•  The technology is just cool! 

Why Do You Care About 
Architecture? 



1. CPUs (+ coprocessors) 
2. Memory (volatile) 
3. Nodes 
4.  Inter-node network 
5. Non-volatile storage (disks, tape) 

Major Parts of an HPC System 
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A distributed-memory HPC 
system 
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•  3 of top 5 systems on the Top 500  are GPU-
accelerated 
•  “Graphics Processing Units” are composed of 
100s of simple “cores” that increase data-level on-
chip parallelism 
•  Yet more low-level complexity to consider 

–  Another interface with the socket (or on socket?) 
–  Limited, private memory (for now?) 

•  Programmability is currently poor 
•  Legacy codes may have to be rewritten to 
minimize data movement 
•  Not all algorithms map well to GPUs 
•  What is their future in HPC????? 

 GPUs 



CPUs 
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•  There’s a lot more on the CPU than 
shown previously, e.g. 

–  L3 cache (~10 MB) 
–  SQRT/Divide/Trig FP unit 
–  “TLB” to cache memory addresses 
–  Instruction decode 
–  … 

Additional Functional Units 
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•  Modern HPC CPUs can achieve ~5 
Gflop/sec per compute core 

–  2 8-byte data words per operation 
–  80 GB/sec of data needed to keep CPU 
busy 

•  Memory interfaces provide a few GB/
sec per core from main memory 
•  Memory latency – the startup time to 
begin fetching data from memory – is 
even worse 

Memory Bottleneck 
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•  There are no more single-core CPUs 
(processors) as just described 
•  All CPUs (processors) now consist of 
multiple compute “cores” on a single “chip” or 
“die” with possibly multiple chips per 
“socket” (the unit that plugs into the 
motherboard) 
•  May not be “symmetric” wrt cores and 
functional units 
•  Increased complexity 
•  The trend is for ever-more cores per die, but 
this is for good reasons 

Multicore Processors 



Moore’s Law 
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2X transistors/Chip Every 
1.5 years 
Called “Moore’s Law” 

Moore’s Law 

Microprocessors have 
become smaller, denser, 
and more powerful. 

Gordon Moore (co-founder of 
Intel) predicted in 1965 that the 
transistor density of 
semiconductor chips would 
double roughly every 18 
months.  

Slide source: Jack Dongarra 
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Power Density Limits Serial 
Performance 
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•  High performance serial processors waste power 
-  Speculation, dynamic dependence checking, etc. burn power 
-  Implicit parallelism discovery 

•  More transistors, but not faster serial processors 

•  Concurrent systems are 
more power efficient  
–  Dynamic power is 

proportional to V2fC 
–  Increasing frequency (f) 

also increases supply 
voltage (V) !  cubic 
effect 

–  Increasing cores 
increases capacitance 
(C) but only linearly 

–  Save power by lowering 
clock speed 
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Revolution in Processors 

•  Chip density is continuing increase ~2x every 2 years 
•  Clock speed is not 
•  Number of processor cores may double instead 
•  Power is under control, no longer growing 
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Moore’s Law reinterpreted 

•  Number of cores per chip will double 
every two years (actually, may not be 
happen) 

•  Clock speed will not increase 
(possibly decrease) 

•  Need to deal with systems with 
millions of concurrent threads 

•  Need to deal with inter-chip 
parallelism as well as intra-chip 
parallelism 



HPC Nodes 
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•  A “node” is a (physical) collection of 
CPUs, memory, and interfaces to other 
nodes and devices. 

–  Single memory address space 
–  Shared memory pool 
–  Memory access “on-node” is significantly 
faster than “off-node” memory access 
–  Often called an “SMP node” for “Shared 
Memory Processing”   

•  Not necessarily “symmetric” memory access as 
in “Symmetric Multi-Processing” 

HPC Node 



SMP Node – Each core has equal access to memory and 
cache 
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Example SMP Node 
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NUMA Node – Non-Uniform Memory Access 
Single address space 
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Example NUMA Node 
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NUMA Node – Non-Uniform Memory Access 
Single address space 
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Example NUMA Node 
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•  Most HPC systems are “distributed 
memory” 

–  Many nodes, each with its own local memory 
and distinct memory space 
–  Nodes communicate over a specialized high-
speed, low-latency network 
–  SPMD (Single Program Multiple Data) is the 
most common model 

•  Multiple copies of a single program (tasks) execute 
on different processors, but compute with different data 
•  Explicit programming methods (MPI) are used to 
move data among different tasks  

Distributed Memory Systems 



•  Latency 
–  The startup-time needed to initiate a data transfer 
between nodes (time to send a zero-byte message) 
–  Latencies between different nodes may be 
different 
–  Typically ~ a few µsec 

•  Bandwidth 
–  Data transfer rate between nodes 
–  May be quoted as uni- or bi-directional 
–  Typically ~ a few GB/sec in/out of a node 

•  Bisection Bandwidth 
–  If a network is divided into two equal parts, the 
bandwidth between them is the bisection bandwidth 

Interconnect Characteristics 



Examples 

Network Bandwidth (GB/s) Latency (µs) 
Arista 10GbE(stated)  1.2 4.0 
BLADE 10GbE(measured)  1.0 4.0 

Cray SeaStar2+ (measured) 6.0 4.5 

Cray Gemini (measured) 6.1 1.0 

IBM (Infiniband) (measured) 1.2 4.5 

SGI NumaLink 5(measured)  5.9 0.4 

Infiniband (measured)  1.3 4.0 
Infinipath (measured)  0.9 1.5 
Myrinet 10-G (measured)  1.2 2.1 
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•  Switched 
–  Network switches connect and route 
network traffic over the interconnect 

•  Mesh 
–  Each node sends and receives its own 
data, and also relays data from other nodes 
–  Messages hop from one node to another 
until they reach their destination (must deal 
with routing around down nodes) 

Main Networks Types 



Fat Tree Switched Network 

Network 
bandwidth 
increases 
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Implementation Can Be Complex 

128-way fat tree 



Mesh Networks 

Mesh network 
topologies can 
be complex 

Grids 
Cubes 
Hypercubes  
Tori 



Disk and Tape Storage 
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•  File storage is the slowest level in the data 
memory hierarchy 

–  Not uncommon for checkpoints / memory dumps 
to be taking a large fraction of total run time (>50%?) 
–  NERSC users say they want no more than 10% of 
time to be IO 

•  FLASH 
–  Non-volatile solid-state memory 
–  Fast 
–  Expensive 
–  Some experimental systems with FLASH for fast 
IO 

Largest and Slowest Memory 



•  Large, Permanent Storage 
–  Many PBs 
–  Often tape storage fronted by a disk cache 
–  HSM 

•  Some systems may have Hierarchical Storage 
Management in place 
•  Data automatically migrated to slower, larger 
storage via some policy 

–  Often accessed via ftp, grid tools, and/or 
custom clients (e.g. hsi for HPSS) 

Archival Storage 



•  Most HPC OSs are Linux-Based 
–  IBM AIX on POWER (also offers Linux) 

•  “Generic” Cluster Systems 
–  Full Linux OS on each node 

•  Specialized HPC Systems (e.g., Cray XT 
series, IBM Blue Gene) 

–  Full Linux OS on login, “services” nodes 
–  Lightweight kernel on compute nodes 

•  Helps performance 
•  May hinder functionality (DLLs, dynamic process 
creation, some system calls may not be supported.) 

HPC Operating Systems 
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•  Details of machine are important for performance 
–  Processor and memory system (not just parallelism) 
–  What to expect?  Use understanding of hardware limits 

•  There is parallelism hidden within processors 
–  Pipelining, SIMD, etc 

•  Locality is at least as important as computation 
–  Temporal: re-use of data recently used 
–  Spatial: using data nearby that recently used 

•  Machines have memory hierarchies 
–  100s of cycles to read from DRAM (main memory) 
–  Caches are fast (small) memory that optimize average case 

•  Can rearrange code/data to improve locality 

Summary: Why Do You Care 
About Architecture? 




