Introduction to
Directive Based
Programming on GPU

nersc | @ Helen He

at the

FOREFRONT Feb 28, 2020

~

OBt e H /\
; ‘ U.S. DEPARTMENT OF Office of rjr_r}l |'"|
l"'*x /\Z"

/ EN ERGY Science

Acknowledgement

aaaaaa
FFFFFFFFF

Used materials and examples from:

Jeff Larkin, Eric Wright: Slides and code examples from NVidia OpenACC
training materials.

Tim Mattson, Simon Mclntosh-Smith: SC19 Programming your GPUs with
OpenMP tutorial

Michael Klemm and Bronis de Supinski: What’s new in OpenMP 5.0
Oscar Hernandez, et al.: ECP 2020 OpenMP 5.0/5.1 tutorial

Chris Daley: slides contents, OpenMP and OpenACC performance results
Nvidia OpenACC Boot Camp slides.

Many others: for OpenMP updates and performance results presented at the
DOE ECP 2020 OpenMP BoF, etc.

Thank you all!

. DEPARTMENT OF Offlce Of

g“""“ﬁ,‘a u.s N
&) ENERGY scionoe

CPU vs. GPUs

= CPUs generally have a small number of very fast
physical cores.

= GPUs have thousands of simple cores able to
achieve high performance in aggregate.

= Mostly CPU and GPU do not share memory.
Data move between CPU and GPU is expensive.
Keep data on GPU as long as possible.

= We need to keep GPU busy, and only offload
computational intensive kernels to GPU.

Image from NVidia

Office of

* R U.S. DEPARTMENT OF
@ 4 EN ERGY Science -3-

Sample OpenMP and OpenACC Codes

N - 2

YEARS
FOREFRONT

#define N 128

double X[N*N];

int i, j, k;

for (k=0; k<N*N; ++k) x[k] =

#pragma omp target
#pragma omp teams distribute
for (i=0; i<N; ++i) {
#pragma omp parallel for si
for (Jj=0; Jj<N; ++3j) {
X[J+N*1] *= 2.0;

U.S. DEPARTMENT OF

ENERGY

Office of
Science

@

k;

#define N 128

double X[N*N];

int i, j, k;

for (k=0; k<N*N; ++k) x[k]

#pragma acc parallel
#pragma acc gang worker
for (i=0; i<N; ++i) {
#pragma acc vector
for (j=0; J<N; ++j) {
X[J+N*1] *= 2.0;

kK;

directives

Advantages of Directive Based Parallelism riesc/

aaaaaa
FFFFFFFFF

Incremental parallel programming
— Find hotspot, parallelize, check correctness, repeat

Single source code for sequential and parallel programs
— Use compiler flag to enable or disable
— No major overwrite of the serial code

Works for both CPU and GPU

Low learning curve, familiar C/C++/Fortran program environment
— Do not need to worry about lower level hardware details

Simple programming model than lower level programming models
Portable implementation:

— different architectures, different compilers handle the hardware differences

. DEPARTMENT OF Offlce Of

‘hé“h\’k‘:“"a uU.s
&) ENERGY sconco

Device Execution Model

at the
FFFFFFFFF

- Device: An implementation-defined logical execution unit.

. Can have a single host and one or more target devices (accelerators).

- Host and Device have separate data environment (except with
managed memory or unified shared memory).

. The execution model is host-centric

Host creates/destroys data environment on the device(s)

Host maps data to the device data environment.

Host then offloads accelerator regions to the device for execution
Host updates the data between the host and the device.

Host destroys data environment on device.

w""""&.‘ﬁ U.S. DEPARTMENT OF Office Of

i, * EN ERGY Science s

Host/Device Platform Model and OpenMP L0 L
oon...
—onn. H P /
Processing e H
Host
Element DA
\ ||-||-||-|... |:| |:| 1
e
g
— T~—_ Target
Compute Unit Device construct to
Parallel for simd v getonto a
to run each block device
of loop iterations Teams construct to create a
on the processing |eague of teams with one team of No synchronization among teams
elements threads on each compute unit.

Courtesy of Tim Mattson and Simon Mclntosh-Smith

T —— Distribute construct to assign
ENERGY | science blocks of loop iterations to teams.

P>
17 §

Host/Device Platform Model and OpenMP NeRsC | [@ Y

FFFFFFFFF

Typical usage ... let the compiler do what’s best for the device:

ooo...
e |:| |:|
[mDoo-- O 7

#pragma omp target

| .
. e H / | to get on the device
Processing T H
Host
Element [
\ 00 - H H .
N
dliilis
/ T~ Target
Compute Unit Device construct to
Parallel for simd getonto a
to run each block device
of loop iterations Teams construct to create a
on theelee; #pragma omp teams dlstrlbute paraIIeI for simd
to assign work to the device processing elements
Distribute construct to assign Courtesy of Tim Mattson and Simon MclIntosh-Smith
B W SIRMRAT LY S Office of

& ENERGY or22 blocks of loop iterations to teams.

Multi-level Device Parallelism N (e

int main(int argc, const char* argv[]) {
float *x = (float*) malloc(n * sizeof(float)):;
float *y = (float*) malloc(n * sizeof(float)):;

// Define scalars n, a, b & initialize x, y

#fpragma omp target data map(to:x[0:n])

{
#fpragma omp target map (tofrom:y)
#pragma omp teams num teams (num blocks) num threads (bsize)

vaa aogas Wanpas oy
l 1 aIIdothesame l l
V| | e N N e []

#fpragma omp distribute
for (int 1 = 0; 1 < n; 1 += num blocks) {

| L L L L L
l l IIworklshare ﬁWIO beirrler)" l l

#fpragma omp parallel for simd

for (int j = 1i; j < i + num blocks; j++) {
IIIIIIIIIIIIIIIIIIIIII“IIIII“I
lml luL workshare (w/ barrler) J“l uul
IIWIIWI |Masad |
vIj]l = a*x[J] + y[]J] Courtesy of Michael Klemm

B U.S. DEPARTMEN

@ ENER(' '

Host/Device Platform Model and OpenACC L@ Lo
ooo...
AT H P /
Processing e H
Host
Element Ao
N\ i I
// T~ Parallel
Compute Unit Device construct to
Worker Vector to v ge(;tecz/?éce) a
run each block of
loop iterations on Gang directive to create a league
the processing of gangs with one gang of threads Ng synchronization among gangs
elements on each compute unit, and assign

blocks of loop iterations to gangs.

u.s. D ARTMENT OF Ofﬁce Of

EP. 3 K
EN ERGY Science

P>
17 §

Courtesy of Tim Mattson and Simon Mclntosh-Smith

Host/Device Platform Model and OpenACC riesc/ e

Typical usage ... let the compiler do what's best for the device: use “acc loop”

OO0 H
Onn.. HM 7 | #pragma acc parallel
=00 H / to get on the device
Processing T H
Host
Element Moo
\H'H””...”"H i
// T~ Parallel

Compute Unit Device contstrutct to
Worker Vector to gedec\)/ri]cce) a
run each block of
loop iterations on Gang directive to create a league

the processir
elements

I\AIJI'\

#pragma acc loop

to assign work to the device processing elements

U.S. DEPARTMENT OF Office of

ENPETRGY Science

T
i N\
N T

Courtesy of Tim Mattson and Simon Mclntosh-Smith

Sample OpenACC Codes SR

#pragma acc parallel

{
for (i =0; i<n; i++) {
cli] = a[i] + bfi];

}

Without #pragma acc loop, the
loop is not distributed, and all
threads will execute the entire
loop redundantly

Ry, U-S. DEPARTMENT OF Office of

(ENERGY Science

#pragma acc parallel #pragma acc parallel
{ {
#pragma acc loop #pragma acc loop gang worker vector
for (i =0; i<n; i++) { for (i =0; i<n; i++) {
c[i] = a[i] + bi]; cli] = a[i] + bi];
} }
} }

These two are equivalent. With #pragma acc loop, it will choose the
best gang/worker/vector values and parallelize the loop

12 -

The loop Directive/Construct resc/

aaaaaa
FFFFFFFFF

OpenACC: “#pragma acc loop” lets the compiler to decide what’s best
gang, worker, vector values to use to parallelize.

OpenMP 5.0: the loop construct asserts to the compiler that the
iterations of a loop are free of dependencies and may be run
concurrently in any order.

It lets the OpenMP implementation to choose the right parallelization
scheme.

Each iteration execute exactly once.

{
#pragma omp loop
for (int 1 = 0; 1 < n; ++1i){
y[li] = a*x[1i] + yl[1];
}

el ar Office of }

;f“"‘“ﬁi U.S. DEPARTMEN
&) ENERGY | scionce

OpenACC and OpenMP Syntax rbEsc/

aaaaa

CIC++: Fortran:

OpenACC: #pragma acc directive clauses OpenACC: !$acc directive clauses
<code> <code>

I$acc end directive
OpenMP: #pragma omp directive clauses
<code> OpenMP: !$omp directive clauses
<code>
I$omp end directive

= A pragma in C/C++ or !$ in Fortran gives instructions to the compiler on how to compile the

code. !$acc end or !$Somp end sometimes is optional (depends on what the directive is).

= “acc” or “omp” informs the compiler that this is an OpenACC or OpenMP directive.

= Directives are ignored by a compiler that does not understand a particular pragma (such as

when the compiler flag is not turned on to enable OpenACC or OpenMP support).

== "..Clauses. are specifiers or additions to directives.
1,(3 NERGY Science

OPENACC parallel Directive

ttttt
FFFFFFFFF

Expressing parallelism

#pragma acc parallel

{

When encountering the
parallel directive, the
compiler will generate

1 or more parallel
aangs. which execute
redundantly.

AL Office of

3‘;“_;5‘.7.;\715'(_1\:‘ U.S. DEPARTMEN
\(2‘ ENERG Science

gang gang
gang gang
gang gang

Slide courtesy of Jeff Larkin, Eric Wright, NVidia

OPENACC parallel Directive

Expressing parallelism

#pragma acc parallel

{

loop

or(int i <N; i++)

/| Do Something

This loop will be
executed redundantly

©h.each gang

Science

Q Q
o o
L) L)
gang gang
& &
L) L)
gang gang
Q Q
<) <)
L) L)
gang gang

Slide courtesy of Jeff Larkin, Eric Wright, NVidia

ttttt
FFFFFFFFF

OPENACC PARALLEL DIRECTIVE

Expressing parallelism

#pragma acc parallel
{
#pragma acc loop
for(int i = 25 i < N; i++)
{
// Do Something
The loop directive
informs the compiler
} which loops to
parallelize.
OpenACC

T , Slide courtesy of Jeff Larkin, Eric Wright, NVidia
Office of

3‘;“_::‘_,:\,15‘4_1\? U.S. DEPARTMEN
\(Z‘ ENERG Science -17-

GANG WORKER VECTOR NERS /][Iy YIRS

FFFFFFFFF

= Gang / Worker / Vector defines the
various levels of parallelism we can : h
achieve with OpenACC ===.“== Workers
= Thi llelism | t ful wh
paerIIIDee?irze}nz Ir?]mulil:ﬁdrinrggnlsjﬁ)engl rc\;ope)nnests gGEg.. P

= OpenACC allows us to define a generic
Gang / Worker / Vector model that will be
applicable to a variety of hardware, but
we fill focus a little bit on a GPU specific
iImplementation

#pragma acc parallel loop gang worker

for(i =0; 1 <Nj;i++)
#pragma acc loop vector
for(j =0;) <M;j++)

<loop code >

. DEPARTMENT OF Office of Slide courtesy of Jeff Larkin, Eric Wl’ight, NVidia

!;7;5“‘:\'1"~(_1\:‘ U.S. DE TMEN
\(2‘ ENERGY science

Use combined Directives

ttttt
FOREFRONT

- Each compiler supports different levels of parallelism

— LLVM/clang 10, AMD, CCE9, IBM, PGI: teams, parallel
— (Planned) LLVM/Clang 11, Intel: teams, parallel, simd
— CCES8: teams, parallel or teams, simd

. Caveats:

— Real applications will have algorithms that are structured such that they can’t
immediately use the combined construct.

— It may also make collapse hard to do
— Performance can be achieved without combined directives, but likely won’t be portable

#pragma omp target teams distribute parallel for simd
for (inti=0;i<n; i++)
F(i) = G(i);
}

U.S. DEPARTMENT OF Office of

ENERGY Science -19-

LN G
57 o
¢ @ 5
i N\

NS O

Hardware and Software Mapping ELE e

GPU OpenACC OpenMP CUDA OpenCL
Hardware

Thread Group Gang Team Thread Block Work Group

EU Thread Worker Thread Worker Wave Front
Thread

SIMD Lane Vector SIMD Warp Thread

 For OpenACC, recommend to use “acc loop” to let the compiler choose
number of gangs, workers, and vectors.

 If you choose manually, recommend to use gang for most outer loop, and
vector for most inner loop. Also to use the vector length a multiple of 32,

which is the warp size.
* For OpenMP, recommend to use the combined contructs syntax and let

’ usthe@@ iler.choose number of teams threads, etc.
@ chigauypieh

EXAMPLE: Solve Laplace Equation

YEARS

ttttt
FFFFFFFFF

= Example: Solve Laplace equation in 2D: V2f(x,y) =0

= Use Jacobi solver to iteratively update the value (e.qg.
Temperature) at each point from the average of
neighboring points, until it converges

= Common, useful algorithm

A (=1L +A,(+ 1))+ A, (0, j—1)+ A, (0, j+1)

A,j+1) AenaG)) =
T

A(i'1aj). b g b A(]+1)J)
.A(i,j)

AQ,J)
(@R, U.S- DEPARTMEN)J O e of
a) EN ERG(Y Science

4

Laplace Equation: C Code b [[Jyenrs

FOREFRONT

while (err > tol && iter < iter max) {
err=0.0;

Iterate until converged
Iterate across matrix

for(int j = 1; j < n-1; j++) { elements

for(int 1 = 1; i < m-1; i++) {

Calculate new value from
neighbors

Anew[j][i] = 0.25 * (A[j][i+1] + A[j][i-1] +
A[j-11[i] + A[3+1][i]);

err = max(err, abs(Anew[j][i] - A[j]1I[i]));
}
}

Compute max error for
convergence

for(int j = 1; j < n-1; J++) {
for(int 1 = 1; i < m-1; i++) {
A[j][i] = Anew[]][1];
}
}

<

Swap input/output arrays

iter++; Slide and example code courtesy of Jeff Larkin, Eric Wright, NVidia

DRPARTMENT OF Office of
EﬁERGY Science

WD, U-S.
A\ . /3

N | -
:‘ AE A YEARS
at the

reduction Clause
« Common situation: combine values into double ave=0.0, AIMAX]; inti;
a single accumulation variable (ave) ... #pragma omp parallel for reduction (+:ave)
there is a true dependence between for (i=0;i< MAX; i++) {
loop iterations that can’t be trivially ave + = A[il;
removed :
* We can use “reduction” clause in both i
OpenMP and OpenACC ave = ave/MAX;

« Syntax: Reduction (operator : list).
 Reduces list of variables into one, using operator.
 Reduced variables must be shared variables.
 Allowed Operators:
« Arithmic: + - */ # add, substract, multiply, divide
* Fortran intrinsic: max min
- Bitwise: & | * # and, or, xor
 Logical: && || # and, or

U.S. DEPARTMENT OF Office of

EN ERGY Science

¥NTQ
P,

A, ¢
LIRS

Y| YEARS

collapse clause 5% e
FORTRAN example: FORTRAN example:
I$acc loop collapse (2) I$Somp do collapse(2)
doi=1, 1000 doi=1, 1000
doj=1, 100 doj=1, 100
a(i,j) = b(i,j) + c(i,j) a(i,j) = b(i,j) + c(i,j)
enddo enddo
enddo enddo
I$acc end loop I$Somp end do

« collapse (n) collapses the n nested loops into 1
large loop, then schedule work for each thread
accordingly.

U.S. DEPARTMENT OF Office of

EN ERGY Science

LN G
37 a g
&)
RNEFL
S Dis O

OpenACC Parallel

YEARS

at the
FOREFRONT

while (err > tol && iter < iter max) {
err=0.0;

#pragma acc parallel loop reduction(max:err)collapse (2)
for(int j = 1; j < n-1; j++) {
for(int 1 = 1; i < m-1; i++) {

Anew[j][i] = 0.25 * (A[Jj][i+1l] + A[j][i-1] +
A[3J-11[i] + A[3+1][i]);

err = max(err, abs(Anew[j][i] - A[3j]1[i]))

}

#pragma acc parallel loop collapse (2)
for(int j =1; j < n-1; j++) {
for(int i = 1; i < m-1; i++) {
A[j]1[i] = Anew[j][i];
}

}
iter++;

} Example code courtesy of Jeff Larkin, Eric Wright, NVidia

“‘u\, U.S. DEPARTMENT OF Ofﬁce Of

2 EN ERGY Science

FFFFFFFFF

CUDA Managed Memory (Unified Shared MemdFps=a){ e

= Single address space over CPU and GPU memories

= Compiler manages data migration between CPU and
GPU memories - no need to explicitly copy data

With Managed Memory

= Usually slower than explicitly memory management

= OpenACC: Currently only available from PGl on
NVIDIA GPUs. Enabled via a compiler flag

= OpenMP 4.5: allocate use cudaMallocManaged
OpenMP 5.0: language feature

#pragma omp requires unified_shared_memory
for (k=0; k < NTIMES; k++) {

Managed Memory #pragma omp target teams distribute parallel for simd
for (j=0; j < N; j++) {

Image from NVidia a[j] = b[j] + scalar * cJj];
}

U.S. DEPARTMENT OF Off'Ce Of }

5
EN ERGY Science

POMENT Op
(7 A\
>)
2\ GAY 8

S

OpenACC PGlI, Use Managed Memory Example C

% pgcc -fast -ta=tesla:cc70 -Minfo=accel laplace2d.c jacobi.c
PGC-S-0155-Compiler failed to translate accelerator region (see -Minfo messages): Could not find allocated-variable index for symbol - A
(laplace2d.c: 37)

calcNext:
37, Generating Tesla code
38, #pragma acc loop gang /* blockldx.x */ Without managed memory, compilation fails
Generating reduction(max:error) due to the size of GPU copy is unknown
41, #pragma acc loop vector(128) /* threadldx.x */ / (the parallel code has no explicit data copy)

38, Accelerator restriction: size of the GPU copy of Anew,A is unknown
41, Loop is parallelizable
PGC-F-0704-Compilation aborted due to previous errors. (laplace2d.c)
PGC/x86-64 Linux 19.10-0: compilation aborted

% pgcc -fast -ta=tesla:cc70,managed -Minfo=accel laplace2d.c jacobi.c

calcNext:
37, Generating Tesla code Total 1.102 sec
38, #pragma acc loop gang /* blockldx.x */
Generating reduction(max:error) CIFTERTs _
41, #pragm a .acc IIOIOp vec?tor(128). [* threadldx.x */ -£I'>-I7rT]8e8(°2)) G;-g.TSms C1a(;|080 62';\./4?8us 5'4\1/|2".]20us 6|(\)/I.a7)i(’>2ms call\cl:?\lrgitj?_gpu
37, Generating implicit copyin(A[:]) [if not already present] 41.11% 442.20ms 1000 442.20us 430.40us 454.84us swap_53_gpu

Generating implicit copy(error) [if not already present] 0.74%. 7.9702ms 1000 7.9700us 7.4880us 9.5360us calcNext_37_gpu__red

Generating implicit copyout(Anew[:]) [if not already present] 0.14% 1.5076ms 1000 1.5070us 1.4400us 3.6480us [CUDA memcpy DtoH]
41, Loop is parallelizable 0.13% 1.3761ms 1000 1.3760us 1.3120us 1.9840us [CUDA memset]

Eﬁ%ﬁ . | Office of Almost no memory copy cost, with managed memory

G‘ U Science

Data Clauses s c/

Multi-dimensional Array shaping

YEARS

ttttt
FFFFFFFFF

OpenACC OpenMP

|Copy(arra_/|O:N||O:M|2 | C/C++ |map(tofrom:arra_/|O:N||O:M|2|

copy(array(1:N,1:M)) Fortran map(tofrom:copy(array(1:N,1:M))

C/C++: starting_index : length
Fortran: starting_index : ending_index

Data clauses allow the programmer to tell the compiler which data to move ar
when between the host and device.

Data clauses may be added to kernels or parallel regions, but also data, enter
data, and exit data.

ar Office of

Ao U.S. DEPARTMENT

&

B)

l"\\ 7 E N E RG i

»,;;75;« I Science

OpenACC and OpenMP data Clauses

YEARS

ttttt
FFFFFFFFF

copy (var) map (tofrom: var)
copyin (var) map (to: var)
copyout (var) map (from: var)

create (var) map (alloc: var)

delete (var) map (delete: var)

present (var) present (var)

TTTTTTTT Ofﬁce Of

RGY Science

Allocate on GPU, copy from host to GPU when enter
and copy from GPU to host when exit

Allocate on GPU, copy from host to GPU when enter
Allocate on GPU, copy from GPU to host when exit
Allocate on GPU but does not copy

Delete from GPU

Data is present on GPU

—

OpenACC Parallel, Basic Data

YEARS
FOF?tE;rFIQ%NT

#pragma acc parallel loop copy(A[:m*n],Anew[:m*n]) reduction(max:err) collapse(2)
for(int j = 1; j < n-1; j++) {
for(int 1 = 1; 1 < m-1; i++) {

Anew[j][i] = 0.25 * (A[3j]1[i+1l] + A[j][i-1] +
A[j-1]1[i] + A[j+1]I[i]);
err = max(err, abs(Anew([]j][i] - A[]j][1i])):
}
}

#pragma acc parallel loop collapse(2)
for(int j =1; j < n-1; j++) {
for(int i = 1; i < m-1; i++)
{
A[j][i1] = Anew[]j][i]~
}
}

Example code courtesy of Jeff Larkin, Eric Wright, NVidia

D ENERGY oo
Cy | G* " Science

OpenACC Parallel, Basic Data — W

% pgcc -acc -fast -ta=tesla:cc70 -Minfo=accel,opt laplace2d.c jacobi.c
calcNext:

37, Generating copy(A[:n*m]) [if not already present]
Generating Tesla code
38, #pragma acc loop gang, vector(128) collapse(2) /* blockldx.x threadldx.x */

40, /* blockldx.x threadldx.x collapsed */

Generating reduction(max:error) Data copy at each loop.

37, Generating implicit copy(error) [if not already present]/ 98% time spent in data move

Generating copy(Anew[:n*m]) [if not already present]
swap:

52, Generating copy(Anew[:n*m],A[:n*m]) [if not already present]
Generating Tesla code
53, #pragma acc loop gang, vector(128) collapse(2) /* blockldx.x threadldx.x */
55, /* blockldx.x threadldx.x collapsed */

jacobi.c:

Total: 206.875 sec

Time(%) Time Calls Avg Min. Max Name

52.23% 46.1974s 33000 1.3999ms 1.2480us 5.9465ms [CUDA memcpy HtoD]
46.60% 41.2126s 37000 1.1139ms 1.8240us 1.5382ms [CUDA memcpy DtoH]
0.65% 572.06ms 1000 572.06us 556.35us 590.68us calcNext_36 gpu
0.51% 452.57ms 1000 452.57us 444.99us 464.09us swap_52 gpu

0.01% 7.8517ms 1000 7.8510us 7.4550us 9.2160us calcNext_44 gpu__ red

%ﬁ'ﬁ Geep o Office of
=1 A | G‘ U Science

Structured Data Directive

OpenACC

#pragma acc data map(to:A, B) map(from:
C)
{

#pragma acc parallel
{do lots of stuff with A, B and C}

{do something on the host}

#pragma acc parallel
{do lots of stuff with A, B, and C}

32

OpenMP

#pragma omp target data map(to:A, B)
map(from: C)

{

#pragma omp target
{do lots of stuff with A, B and C}

{do something on the host}

#pragma omp target
{do lots of stuff with A, B, and C}

OpenACC Parallel, Structured Data SN e

#pragma acc data copyin(A[:n*m]) create (Anew[:n*m])
while (err > tol && iter < iter max) ({
err=0.0;

#pragma acc parallel loop copy(A[:n*m] ,Anew[:n*m]) reduction(max:err) collapse(2)
for(int j = 1; j < n-1; j++) {
for(int 1 = 1; i < m-1; i++) {

Anew[j][i] = 0.25 * (A[3j]1[i+1l] + A[j][i-1] +
A[j-1]1[i] + A[j+1][i]);
err = max(err, abs(Anew([]j][i] - A[]j][1i])):
}
}

#pragma acc parallel loop collapse(2)
for(int j =1; j < n-1; j++) {
#pragma acc loop
for(int i =1; i < m-1; i++) {
A[3]1[i] = Anew[j][i];
}
}
iter++; Example code courtesy of Jeff Larkin, Eric Wright, NVidia

, ; G Ut Science

OpenACC Parallel, Structured Data RS c/| (g v

FOREFRONT

% pgcc -acc -fast -ta=tesla:cc70 -Minfo=accel,opt laplace2d.c jacobi.c
laplace2d.c:
calcNext:
37, Generating copy(A[:n*m]) [if not already present]
Generating Tesla code
38, #pragma acc loop gang, vector(128) collapse(2) /* blockldx.x threadldx.x */
40, /* blockldx.x threadldx.x collapsed */
Generating reduction(max:error) o/ +i .
37, Generating implicit copy(error) [if not already present] Now < 2% time spent in
Generating copy(Anew[:n*m]) [if not already present] data move
swap:
52, Generating copy(Anew[:n*m],A[:n*m]) [if not already present]
Generating Tesla code
53, #pragma acc loop gang, vector(128) collapse(2) /* blockldx.x threadldx.x */
55, /* blockldx.x threadldx.x collapsed */
jacobi.c:
main:
59, Generating create(Anew[:m*n]) [if not already present] Total 1.071 sec
Generating copyin(A[:m*n]) [if not already present]

Time(%) Time Calls Avg Min Max Name

44.06% 369.08ms 1000 369.08us 367.32us 372.12us calcNext_37_gpu
43.01% 360.23ms 1000 360.23us 358.40us 362.04us swap_52_gpu

11.29% 94.543ms 1000 94.542us 89.503us 102.72us calcNext_37 gpu__red
1.30% 10.877ms 8 1.3596ms 1.3534ms 1.3708ms [CUDA memcpy HtoD]
0.18% 1.5005ms 1000 1.5000us 1.4080us 2.8160us [CUDA memcpy DtoH]
0.16% 1.3699ms 1000 1.3690us 1.3110us 1.9840us [CUDA memset]

EFEAR' NTEEE | Office of
£ =~) | G‘!ﬁm Science

FOREFRONT

OpenMP Target, Fortran, Structured Data TEEZE(e

!Somp target data map(to:A) map(alloc:Anew)
do while (error .gt. tol .and. iter .lt. iter max)
!Somp target teams distribute parallel do simd collapse(2) map(to:A) map (from:Anew)
map (tofrom:error) reduction (max:error)
do j=1,m-2
do i=1,n-2
Anew(i,j) = 0.25 fp kind * (A(i+l,j) + A(i-1,j) + &
A(i ,j-1) + A1 ,j+1))
error = max(error, abs(Anew(i,j)-A(i,])))
end do
end do
!Somp end target teams distribute parallel do simd

!Somp target teams distribute parallel do simd collapse(2) map(to:Anew) map (from:A)
do j=1,m-2
do i=1,n-2
A(i,j) = BAnew(i,J)
end do Total 0.782 sec. Use CCE9
end do
!Somp end target teams distribute parallel do Time(%) Time Calls Avg Min Max Name

60.41% 595.91ms 1000 595.91us 586.91us 607.67us jacobi_$ck L47_1

iter = iter + 1 36.49% 359.97ms 1000 359.97us 359.07us 361.24us jacobi $ck L48 4
end do 2.94% 29.016ms 1002 28.958us 1.3120us 27.652ms [CUDA memcpy HtoD]
'$omp end target data 0.15% 1.4800ms 1000 1.4800us 1.4390us 1.8880us [CUDA memcpy DtoH]

D ENERGY" Sicnee
]) : G‘ Ut Science

Unstructured Data Directive

N | : =
m‘ : y| YEARS

at the
FOREFRONT

OpenACC

void init_array(int *A, int N) {
for (inti=0; i < N; ++i)
Ali] =1
#pragma acc enter data copyin (A[0:N])
}

int main(void) {
int N = 1024;
int *A = malloc(sizeof(int) * N);

init_array(A, N);

#pragma acc loop
for (inti=0; i < N; ++i)
Ali] = A[i] * A[i];

#pragma acc exit data copyout (A[0:N])
@ . _. .

OpenMP

void init_array(int *A, int N) {

for (inti=0; i < N; ++i)
Ali]l =1i;
#pragma omp target enter data map(to: A[0:N])

}

int main(void) {

int N =1024;
int *A = malloc(sizeof(int) * N);

init_array(A, N);

#pragma omp target teams distribute parallel for simd
for (inti=0; i < N; ++i)
Ali] = A[i] * Ali];

#pragma omp target exit data map(from: A[0:N])
}

Structured vs. Unstructured Data Directive BT (e

Structured

— Has explicit start and end points

— Within a single function

— Memory exist within the data region

Unstructured

— Can have multiple start and end points

— Can branch across multiple functions

— Memory exists until explicitly deallocated

Office of

Science -37-

‘—_" =

YEARS
FOF?tE;rlI?%NT

OpenACC Parallel, Unstructured Data

void initialize(..)

{..

#pragma acc enter data copyin(A[:m*n],Anew[:m*n])
}
while (err > tol && iter < iter max) ({

err=0.0;

#pragma acc parallel loop copy(A[:n*m] ,Anew[:n*m]) reduction(max:err) collapse(2)
for(int j =1; j < n-1; j++) {
for(int 1 = 1; 1 < m-1; i++) {
Anew[j][i] = 0.25 * (A[j][i+1l] + A[j]1[i-1] +
A[3-1][1i] + A[j+1]1[1i])~
err = max(err, abs(Anew[j][i] - A[]j][i]))~
}
}

iter++;
}
void deallocate(..)
{#ipragma acc exit data delete (A,Anew)

..} Example code courtesy of Jeff Larkin, Eric Wright, NVidia
P ENERGY Stonee
' ‘ G Ut Science

OpenACC Parallel, Unstructured Data NERs /| [IR

FOREFRONT

% pgcc -acc -fast -ta=tesla:cc70 -Minfo=accel,opt laplace2d.c jacobi.c

laplace2d.c:
initialize:
33, Generating enter data copyin(Anew[:m*n],A[:m*n])
calcNext:
39, Generating copy(A[:n*m]) [if not already present]
Generating Tesla code
40, #pragma acc loop gang, vector(128) collapse(2) /* blockldx.x threadldx.x */
42, [* blockldx.x threadldx.x collapsed */
Generating reduction(max:error)
39, Generating implicit copy(error) [if not already present]
Generating copy(Anew[:n*m]) [if not already present]
swap:
54, Generating copy(Anew[:n*m],A[:n*m]) [if not already present]
Generating Tesla code
55, #pragma acc loop gang, vector(128) collapse(2) /* blockldx.x threadldx.x */
57, /* blockldx.x threadldx.x collapsed */

deallocate: , Total 0.863 sec
66, Generating exit data delete(Anew[:1],A[:1])
jacobi.c: . , .
Time(%) Time Calls Avg Min Max. Name

43.52% 369.11ms 1000 369.11us 367.64us 372.70us calcNext 39 gpu

42.47% 360.21ms 1000 360.21us 358.78us 362.14us swap_54 gpu

11.12% 94.307ms 1000 94.307us 89.791us 103.17us calcNext_39 gpu__ red

2.56% 21.678ms 16 1.3549ms 1.3535ms 1.3627ms [CUDA memcpy HtoD]

0.18% 1.4986ms 1000 1.4980us 1.4080us 2.8480us [CUDA memcpy DtoH]
U.S. DEPARTMENT OF Office of 0.16% 1.3682ms 1000 1.3680us 1.3110us 1.9840us [CUDA memset]

EN ERGY Science

PR BRI GF
2\ LY /5
S e

& s

FOREFRONT

OpenMP Target, Fortran, Unstructured Data&-<SZ)(e

!Somp enter data map(to:A) map(alloc:Anew)
do while (error .gt. tol .and. iter .lt. iter max)

!Somp target teams distribute parallel do simd collapse(2) map(to:A) map (from:Anew)
map (tofrom:error) reduction (max:error)
do j=1,m-2
do i=1,n-2
Anew(i,j) = 0.25 fp kind * (A(i+l,j) + A(i-1,j
A(i ,j-1) + A(i ,j+1
error = max(error, abs(Anew(i,]j)-A(i,])))
end do
end do
!Somp end target teams distribute parallel do simd

!Somp target teams distribute parallel do simd collapse(2) map(to:Anew) map (from:3)

do j=1,m-2
do i=1,n-2
A(i,j) = Anew(i,J) Total 0.777 sec. Use CCE9
end do
end do Time(%) Time Cals Avg Min Max Name

'Somp end target teams distribute parallel do simd 58.85% 595.69ms 1000 595.69us 586.23us 607.67us jacobi_$ck L46 1
35.53% 359.68ms 1000 359.68us 357.88us 361.08us jacobi_$ck L47 4

!Somp exit data map(from:A) map (delete:Anew) 2.86% 28.984ms 1002 28.925us 1.3120us 27.601ms [CUDA memcpy HtoD]
2.75% 27.839ms 1001 27.811us 1.4400us 26.336ms [CUDA memcpy DtoH]

.S. P i
u.s DEPARﬁNT (223 " Office of

ENE G‘WE Science

Laplace Performance on Cori GPU (and Summltm()

Laplace C / Fortran Performance (with data management)

12 * Code optimized with
. mC mFortran explicit data
management, but no
8 further tuning.
F « OpenMP XL is from
g ¢ Summit
, « OpenMP CCE 9 Fortran,
CCE 8 C/Fortran, and
2 OpenACC PGI C are
o .l 1 Il l. B N among the best.
OpenACE, OpenACc, OpenACC, OpenMP, OpenMP, OpenMP, OpenMP, CCE OpenMP, ° OpenACC GCCS8 Fortran
PGI/19.10 Pnﬁlal/nl:g.::, GC(/8.1.0 XL/16.1.1.1-3 Clang/10.0.0 CCE/8.5.8 9.1.0 GC(/8.1.0 and OpenMP XL C are
closer up.
T ——

EN ERGY Science “4L-

OpenACC kernels vs. parallel NS c/

#pragma acc parallel

#pragma acc kernels #pragma acc loop
for(int j=1; j<n-1; j++) { for(int j=1; j<n-1; Jj++) {
for (int i=1l; i< m-1; i++) { #pragma acc loop
Anew[j] [1i] = ..(A[]J][1i+1]) .. for (int i=1; i< m-1; i++){
} Anew[j][i] = ..(A[j]1[i+1]) ..
} }
}
- The kernels directive instructs the compiler to search for parallel loops in the
code

- The compiler will analyze the loops and parallelize those it finds safe and
profitable to do so. Correctness is guaranteed.

- The kernels directive can be applied to regions containing multiple loop nests.
The compiler will attempt to parallelize all loops within the kernels region. Each
loop can be parallelized/optimized in a different way

S '511& U.S. DEPARTMENT OF Offlce Of

&) ENERGY scionce

FFFFFFFFF

Laplace, OpenACC Kernels. .
Not Managed, Runtime Error .

% pgcc -acc -fast -ta=tesla:cc70 -Minfo=accel,opt laplace2d.c jacobi.c -0 jacobi_kernels

37, Accelerator restriction: size of the GPU copy of Anew,A is unknown
Loop carried dependence of Anew-> prevents parallelization
Loop carried dependence of Anew-> prevents vectorization
Loop carried backward dependence of Anew-> prevents vectorization
Generating implicit copyout(Anew/[:]) [if not already present]
Generating implicit copyin(A[:]) [if not already present]

39, Loop is parallelizable
Generating Tesla code
37, #pragma acc loop seq
39, #pragma acc loop gang, vector(128) /* blockldx.x threadldx.x */

43, Generating implicit reduction(max:error)

Runtime error:
call to cuMemcpyDtoHAsync returned error 700: lllegal address during kernel execution
call to cuMemFreeHost returned error 700: lllegal address during kernel execution

E By, U.S. DEPARTMENT OF Office of

ENERGY Science "43-

Laplace OpenACC Kernels, Managed ESE (e

% pgcc -acc -fast -ta=tesla:cc70,managed -Minfo=accel,opt laplace2d.c jacobi.c -0 jacobi_kernels _managed

36, Generating implicit copyin(A[:]) [if not already present]
Generating implicit copyout(Anew(:]) [if not already present]

37, Loop carried dependence of Anew-> prevents parallelization

Loop carried dependence of Anew-> prevents vectorization

Loop carried backward dependence of Anew-> prevents vectorization

Slower than the unmanaged

)) version of unstructured data
39, Loop is parallelizable with 0.863 sec

Generating Tesla code

37, #pragma acc loop seq
39, #fpragma acc loop gang, vector(128) /* blockldx.x threadldx.x */
43, Generating implicit reduction(max:error)

Total: 1.68 sec

Time(%) Time Calls Avg Min Max Nam

58.34% 975.07ms 1000 975.07us 847.70us 95.594ms calcNext 39 gpu
41.37% 691.33ms 1000 691.33us 682.30us 702.04us swap_ 54 gpu

0.13% 2.1075ms 1000 2.1070us 2.0470us 12.448us calcNext 43 gpu__ red
0.08% 1.4173ms 1000 1.4170us 1.3760us 2.5280us [CUDA memcpy DtoH]
0.08% 1.2969ms 1000 1.2960us 1.2480us 1.9520us [CUDA memcpy HtoD]

'1"’«\, U.S. DEPARTMENT OF Ofﬁce Of

) ENERGY Science S 44~

update Directive

YEARS

at the
FOREFRONT

- You can update data between host and device memory.
- Useful when you want to synchronize data in the middle of a data region

#pragma acc data map(to: A,B) map(from: C)

{

#pragma acc parallel
{do lots of stuff with A, B and C}

#pragma acc update self(A)
host_do_something_with(A)
#pragma scc update device(A)

#pragma acc parallel
{do lots of stuff with A, B, and C}

U.S. DEPARTMENT OF Office of

EN ERGY Science

T
_%, @ 7
N/ &
N

#pragma omp target data map(to: A,B) map(from: C)

{

#pragma omp target
{do lots of stuff with A, B and C}

#pragma omp target update from(A)
host_do_something_with(A)
#pragma omp target update to(A)

#pragma omp target
{do lots of stuff with A, B, and C}

YEARS

OpenACC and OpenMP Progress and Timeline o

- OpenACC started initially to focus on accelerator performance and quicker
specification turnaround

- OpenMP target offload adopts important features from OpenACC

OpenMP
3.0

OpenMP 3.1

OpenACC 1.0

« KERNEL

* PARALLEL

+ DATA

+ LOOP warp,
worker, vector

+ UPDATE

» CACHE

OpenMP 4.0

+ TARGET
+ TARGET DATA
+ DECLARE
TARGET
+ TARGET
UPDATE
+ TEAMS
Roughly %y DISTRIBUTE

."HAW/Y
OpenACC 2.0

* Nested
parallelism

+ ASYNC wait

* ASYNC compute

+ ASYNC data
transfer

« TILE

Roughly OpenMP 4.5

Similar

OpenACC OpenACC
25 26

Portability across hardware platforms
Increased efficiency & performance
Effective parallelization/vectorization of C++

1

OpenACC 2.7
« Self clause
* Shared

OpenMP 5.0
» Memory
Management
* Loop

* Meta
directive

OpenACC 3.0
(minor updates)

memory released in Nov 2019

» Array

Reductions
Table courtesy of Oscar Hernandez

S AVEVNNT |

YEARS

OpenACC Resources and Compilers | Ecw

I “r) I
openacc.org (] ui]] +

OpenACC

More Science, Less Programming

' Commercial Compilers

About Blog Tools News Stories Events Resources Spec Community

What is OpenACC?

#pragma acc data copy(A) create(Anew)
while (error > tol &% iter < iter_max) {

CR)RANY

THE SUPERCOMPUTER COMPANY

PGl

AN

ﬂ‘ ST RFTED

Open Source Compilers

G

The OpenACC Organization is dedicated to helping the
research and developer community advance science by
expanding their accelerated and parallel computing skills.
We have 3 areas of focus: participating in computing
ecosystem development, providing training and education
on programming models, resources and tools, and
developing the OpenACC specification.

[=TI or take the next steps

Check out our 2020 GPU Hackathons!

| === Resources

' Access tutorials, guides,
lectures, code samples,
hands-on exercises and

&) Get the Specs
Download the latest
OpenACC specification,
technical report and work-in-

i more. progress proposals.

Latest News

OpenACC 2019 Year in Review: It's a

1 Wrap March 23, 2020

Upcoming Events

GPU Technology Conference 2020

error = 0.0;
#pragma acc kernels
{
#pragma acc loop independent collapse(2)
for (dint j j<n-1; j+) {
for (int i i< ;i) {
Anew [§]1 [i] = 0.25 % (A [j] [i+1] + A [j] [i
-1] +
A [j-1] [i] + A
[i+1] [i1);
error = max (error, fabs (Anew [j] [il - A [j
1 [i1));
}

}
}
¥

&, Tools
Get OpenACC compilers and
tools designed by multiple
vendors and academic
organizations.

@ Success Stories

Learn how OpenACC users
accelerated their scientific
applications.

Join Us

GooBsoa

U.S. DEPARTMENT OF Office of

EN ERGY Science

Contact National GCC9
Supercomputing Center in Wuxi Includes initial support for
for more information. OpenACC2.6

Annual license. Free
download.

Contact Cray Inc for more
information.

Academic Compilers

l AR

RIKEN Gyt

M Lawrence Livermore
— National Laboratory

IVERSITY o1
EIAWARE

OAK
PRIDGE e

‘\\\‘ Stony Brook University

National Laboratory

Omni compiler project, OpenARC, Oak Ridge National OpenUH, University of ROSEACC, LLNL/University of
RIKEN/University of Tsukuba Laboratory Houston, Stony Brook Delaware
University

Available on Perimutter:

-- PGI, GCC, Cray (deprecated since CCE9)
Available on other DOE systems:

-- PGI, GCC, Cray (deprecated)

-47 -

OpenMP Resources and Compilers

® ® & openmp.org &
'
O pe M P | Opent
_ — W The OpenMP API specification for parallel programming
Enabling HPC since 1997

Specifications Blog Community v News &Events v

Q
Specifications Community v Resources v News & Events v

Anumber of compilers and tools from or open source initiatives implement the OpenMP API. If we are
missing any please Contact Us with your suggestions.

openMP API 5.0: EEE— — :
. Absoft Pro Fortran Versions 11.1 and later of the Absoft Fortran 95 compiler for Linux, Windows and Mac
A Major Leap Forward

Fortran 05X Incude ntegrated OpenP 3.0 support. Version 18.0 supports OpentP 3.1
OpenMP API 5.0 Compile with -openm.

More information

Task Reductions Meta-directives
Memory Allocators Tools APls The next step toward exascale

AMD e AOMP is AMD's LLVM/Clang based compiler that supports OpenMP and offloading to
multiple GPU acceleration targets (multi-target)
More Information

e CCow7Forran CICr - Support for OpenMP 3.1 and il mor-offioading features o OpenP 40/4.5.
Avallable on Lnvx Offoading feaures are under development Fortran - Fullsupport for OpenMP 3.1 and
limited support for OpenMP 4.04.5. Compile and ink your cade with -fopenmp
1
loop Construct Fortran 2008 support More nformation
WNLOAD THE SPECIFICATIO! Sarclora Mereariam Wercurium s source-to-source research compler that s avalable o dowrioad ¢
e Sipercompuing CICor/Forran tps /i com/bse pmimoce. OpenMP 31 1 almest flly supperied for C Cre,
Unified Shared Memory C++14 and C++17 support

Center

Fortran. Apart from that, almost all tasking features introduced in newer versions of
OpenMP are also supported.
More Information

cray cce CCE Compiling CE) 9.1 (November OpenMP 4.5 for C, C++
C/CH+/Fortran and Fortran. Limited support for OpenMP 5.0 s also available (see links below). As of
CCE 9.0, the default C and C++ compiler is based on Clang and OpenMP is turned off by
default for all languages.

| For more information on OpeniP support n curent and past vrsions of CCE, see:
Latest News v f in N 8 o + CCE Release Overview

* OpenMp Support i Cray Fortran complier

© OpenM Supportin Cray Cassic C and Cos compiler

Fang Fang Fortran for LLVM. Substantaly foll OpenMP 4.5 on Linux/x36-64,
@OPEHMP,ARB Fortran Linux/OpenPOWER, limited target offload support on NVIDIA GPUs.

R By default, TARGET regions are mapped to the multicore host CPU as the target with DO

The OpenMP Booth Talks from The University of Tennessee OpenMP ARB Releases and DISTRIBUTE loops parallelized across all OpenMP threads. Known limitations: SIMD
. . . 2nd DECLARE SIMD have o effect on SIMD code generation; TASK DEPEND/PRIORITY,
SC19 are now available joins the OpenMP effort Technical Report 8 OpenhiP ARS { TASKLOOP FRSTPRVATL/LASTPRIVATE, DECLARE REDUCTION and the
[r— THE UNIVERSITY OF Noy 12,2019 - The OpenMP - L LINEAR/SCHEDULS clauses on the DO construct The
TENNEQREER T . Well, what do you know, we
Arrhitmetiirn Do Dnrd (ADDY hac

limited support for target offload to NVIDIA GPUs includes basic support for offload of
1Somp target combined constructs.

Compile with -mp to enable OpenMP for multicore CPUs on all platforms. Complle with -
fopenmp to enable to NVIDIA
GPUS.

More information.

] GNU Gcc Free and open source - Linux, Solarls, AIX, MacOSX, Windows, FreeBSD, NetBSD,
[] OpenBSD, DragonFly BSD, HPUX, RTEMS
C/Cr+/Fortran
[]

= From GCC 4.2.0, OpenMP 2.5 is fully supported for C/C++/Fortran.
= From GCC 4.4.0, OpenMP 3.0 is fully supported for C/C++/Fortran.

-- PG, Cray, Clang, GCC, Flang
Available on other DOE systems:
-- Cray, Clang, GCC, PGl, Flang, IBM, Intel, AMD

The complete list is available at:
https://www.openmp.org/resources/openmp-compilers-tools/

U.S. DEPARTMENT OF Office of

ENERGY Science h

From DOE ECP OpenMP BoF ETEN e

- Critical for application developers to consider portable (and even
better performance portable) solutions which can target different
platforms across vendors.

- OpenMP is an open standard supported by nearly every vendor.
Multiple Compilers will support a common set of OpenMP directives on
GPUs

— LLVM/Clang 10

— AMD (mostly tracks LLVM)

— Cray (CCE 10)

— IBM (XL V16.1.6)

— Intel (Approximately 2021 timeframe),

— Nvidia/PGl (Early 2021 for a production release through the NERSC/PGI NRE)

U.S. DEPARTMENT OF Office of

ENERGY Science -49 -

ST
S A \)
£ 3-,
5. igi &
NCF
ST O g

OpenACC <=> OpenMP Conversion e

acc parallel omp [target] teams

acc loop independent omp loop

acc loop gang omp distribute order(concurrent)

acc loop worker omp parallel for order(concurrent)

acc loop vector omp simd order(concurrent)

acc parallel loop omp [target] teams loop

acc copyin(), copyout(), copy() omp map(to:), map(from:), map(tofrom:)

acc data, acc end data omp target data, omp end target data

acc enter data,acc exit data omp target enter data, omp target exit data

acc update host(), acc update device() | omp target update to(), omp target update from()
Office of

Sclence

GPP mini-app from BerkeleyGW ==
« 3 OpenMP compilers obtain
CUDA-10.0] similar performance to CUDA
OpenACC: PGI-19.7| * GPP has 10x higher
performance when using a
IBM-16.1.1-5} NVIDIA V100 GPU

« GCC GPU-offload not shown

Clang-10.0.0-qit} :
ang gl Time = 28.4 seconds

Cray-9.0.0}

Best host (Cray on Skylake)}

| 1 2 3 4 5 6
< Lower is better Time (seconds)

Courtesy of Chris Daley, Rahul Gayatri

A >, U-S. DEPARTMENT OF Office of

&Y E NERGY science

ACCEL Benchmarks 1.2 (offload) Ly

SPEC ACCEL 1.2 Benchmark Summit Titan
stencil (C) o
LBM (C)
Summit MRS
OpenMP -- XL 16.1.0 MD (Fortran)
OpenACC - PGl 18.3 EP (Fortran)
CLVRLEAF (C,Fortran)
CG (C)

Titan SEISMIC (C)
OpenMP - CCE 8.7.0
OpenACC - PGl 18.4 o (orran)

SP (C)

MinGhost (C,Fortran)
LBDC (Fortran)
Swim (Fortran)

BT (C)

Update from Swen Boehm, Swaroop Pophale, Veronica G. Vergara Larrea, and IR .
Oscar Hernandez. “Evaluating Performance Portability of Accelerator ferity s%&,:;‘,’;g?{," A
Prrn—S Programming Models using SPEC ACCEL 1.2 Benchmarks” P3MA, ISC.2"4

2CcC.NnN

U.S. DEPARTMENT OF Office of

ENERGY Science "92-

HPGMG-FV

PGI OpenMP host (Cori-GPU)

20 threads on 1 Skylake CPU|

CUDA (Cori-GPU)

1 V100 GPU|

PGI OpenACC (Cori-GPU)

1V100 GPU[=
IBM OpenMP offload (Summit)| 70% of CUDA perf.
1viooGgpul T T T T
. I 2 3 4 5 6 7 8 9 10 11
Higher is better, Speedup versus 1 Skylake CPU

53

Initial OpenMP offload
performance with IBM compiler is
encouraging

Easy to translate from CUDA
launch configuration to OpenACC
/ OpenMP loops

Several compiler bugs found with
strict correctness tests

Courtesy of Chris Daley

nva OAK RIDGE

National Laboratory

Monte Carlo Particle Transport Case Study: XSBench

XSBench FOM Performance on V100

(Higher is Better) « OpenMP offloading relatively easy

to implement

3.5
3.0 32 - « Available compilers worked well —
25 > no bugs.
24 . .
z 20 « IBM XL compiler generated fast
1.5 .
B o code (better than naive CUDA
s implementation!)
0.0 However, clang-ykt was 2.5x
CUDA CUDA OpenCL hipSYCL OpenMP OpenMP slower than IBM XL
(Optimized) Offload Offload
(Xeon host, (Power9 host,
clang-ykt) xlc_r)

Courtesy of John Tramm

54 m OAK RIDGE
National Laboratory

N | -
m‘ : A YEARS
at the

Best Practices yeans

Profile the sequential code, choose hot spots, give enough work for GPU
to do. Offload computational intensive work, such as large loops

Use compiler hint, and remove loop carried dependencies to help
parallelizing loops.

Reorder loops or transpose arrays if needed to expose SIMD/SIMT in outer
most loops.

Keeping data resident on the device for the greatest possible time.

Collapsing loops with the collapse clause, so there is a large enough
iteration space to saturate the device.

To utilize warps in OpenACC, always make sure vector length is a multiple
of 32

Try different compilers, such as PGI for OpenACC, XL/CCE/Clang/GCC for
OpenMP.

ae Office of

£aras, U.S. DEPARTMENT

{2); Y 55
2 :’ . - -
N ENERG Science

Summary —J

OpenACC has been used widely in many applications (since Titan).
Mature implementation for Nvidia GPU.

More OpenMP compilers available than OpenACC.

OpenMP 5.0 compilers will have more mature support for accelerators,
expect to see great improvements in quality and more devices to use.

Performance with OpenMP 4.5 is on par or catching up with OpenACC
and native CUDA.

PGI OpenMP upcoming, leverage OpenACC implementation expertise.
Transition from OpenACC to OpenMP is relatively straightforward.

OpenMP 5.0 improvement provides more convenient porting from
OpenACC to OpenMP.

Office of

f“"‘“”‘“ﬁ% U.S. DEPARTMENT OF
‘ Y , - 56 -
%._.,.s ENERG Science

Recommendation ra=c/

OpenACC is good for Nvidia GPUs, on Summit and Perimutter, for
example.

OpenMP is good for all DOE Exascale computers, such as Perimutter,
ORNL Frontier, and ANL Aurora.

NERSC users have used OpenMP for past systems, easier to use
OpenMP for continuity. MPI + OpenMP is a successful programming
model for Cori.

Recommend to use OpenMP on Perimutter, especially with PGl now
on board (timing lines up with when Perlmutter is arriving).

Office of

f“"‘""’ﬁ% U.S. DEPARTMENT OF
el ‘)3 i -57-
%._.,.s EN ERG I Science

at the
FOREFRONT

Thank you.

