
GPCNeT: Designing a Benchmark Suite for Inducing and
Measuring Contention in HPC Networks

Sudheer Chunduri∗
sudheer@anl.gov

Argonne National Lab

Taylor Groves∗
tgroves@lbl.gov

Lawrence Berkeley National Lab

Peter Mendygral∗
pjm@cray.com

Cray Inc.

Brian Austin
baustin@lbl.gov

Lawrence Berkeley National Lab

Jacob Balma
jbalma@cray.com

Cray Inc.

Krishna Kandalla
kkandalla@cray.com

Cray Inc.

Kalyan Kumaran
kumaran@anl.gov

Argonne National Lab

Glenn Lockwood
glock@lbl.gov

Lawrence Berkeley National Lab

Scott Parker
sparker@anl.gov

Argonne National Lab

Steven Warren
swarren@cray.com

Cray Inc.

Nathan Wichmann
wichmann@cray.com

Cray Inc.

Nicholas Wright
njwright@lbl.gov

Lawrence Berkeley National Lab

ABSTRACT
Network congestion is one of the biggest problems facing HPC
systems today, affecting system throughput, performance, user ex-
perience, and reproducibility. Congestion manifests as run-to-run
variability due to contention for shared resources (e.g., filesystems)
or routes between compute endpoints. Despite its significance, cur-
rent network benchmarks fail to proxy the real-world network uti-
lization seen on congested systems. We propose a new open-source
benchmark suite called the Global Performance and Congestion
Network Tests (GPCNeT) to advance the state of the practice in
this area. The guiding principles used in designing GPCNeT are
described and the methodology employed to maximize its utility is
presented. The capabilities of GPCNeT are evaluated by analyzing
results from several world’s largest HPC systems, including an eval-
uation of congestion management on a next-generation network.
The results show that systems of all technologies and scales are
susceptible to congestion and this work motivates the need for
congestion control in next-generation networks.

∗primary authors contributed equally to the paper

This manuscript has been authored by an author at Lawrence Berkeley National
Laboratory under Contract No. DE-AC02-05CH11231 with the U.S. Department of
Energy. The U.S. Government retains, and the publisher, by accepting the article for
publication, acknowledges, that the U.S. Government retains a non-exclusive, paid-up,
irrevocable, world-wide license to publish or reproduce the published form of this
manuscript, or allow others to do so, for U.S. Government purposes.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SC ’19, November 17–22, 2019, Denver, CO, USA
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6229-0/19/11. . . $15.00
https://doi.org/10.1145/3295500.3356215

KEYWORDS
network benchmarking, congestion, performance variability

ACM Reference Format:
Sudheer Chunduri, Taylor Groves, Peter Mendygral, Brian Austin, Jacob
Balma, Krishna Kandalla, Kalyan Kumaran, Glenn Lockwood, Scott Parker,
Steven Warren, Nathan Wichmann, and Nicholas Wright. 2019. GPCNeT:
Designing a Benchmark Suite for Inducing and Measuring Contention
in HPC Networks. In The International Conference for High Performance
Computing, Networking, Storage, and Analysis (SC ’19), November 17–22,
2019, Denver, CO, USA. ACM, New York, NY, USA, 13 pages. https://doi.org/
10.1145/3295500.3356215

1 INTRODUCTION
In High Performance Computing (HPC) systems, performant net-
works are essential to join resources efficiently together to enable
scientific discovery at unprecedented scales. While simple metrics
such as latency, injection bandwidth, and bisection bandwidth are
useful indicators of a network’s peak performance, typically they
do not correspond to realized performance on production machines,
particularly when diverse workloads contend for the same network
resources. They often overemphasize best-case configurations on
quiet systems and fail to expose behavioral differences between
network topologies and architectures. In this work we examine the
impact of contention for network resources and examine how such
contention affects performance.

Network contention often manifests in application performance
variation. Previous studies have shown that the impact of network
jitter is substantial and increases super-linearly with process count
for many systems [3–5, 12, 26, 28].

The purpose of this work is to introduce a benchmark suite
that (a) induces network congestion and (b) measures its impact
on latency and bandwidth. There has been no previous work on
congestion inducing benchmarks because there was little that ex-
isting HPC networks did to address the issue. However, modern
network architectures such as Cray Slingshot [6], Infiniband [16],

https://doi.org/10.1145/3295500.3356215
https://doi.org/10.1145/3295500.3356215
https://doi.org/10.1145/3295500.3356215

SC ’19, November 17–22, 2019, Denver, CO, USA Sudheer Chunduri et al.

and Gen-Z [29] have made handling of congestion a priority with
the acknowledgement that HPC centers want to provide a level of
performance isolation between a breadth of heterogeneous work-
loads. As new networks incorporate features such as traffic classes
and congestion control, HPC facilities require new benchmarks
designed to evaluate their effectiveness. In this paper we seek to
advance the state of the practice in this regard.

This paper makes several contributions towards these goals:

• We present GPCNeT – a generic, topology agnostic bench-
mark suite that captures the complex workloads anticipated
on multitenant HPC networks. It uses multiple configurable
congestion patterns concurrently to emulate multiple sep-
arate jobs and uses concurrent canary jobs that emulate
boundary exchange algorithms to measure the impact of
congestion.

• We show that GPCNeT works on production HPC machines
and describe a systematic method to measure congestion
intensity. Our results show that latency-bound communica-
tion can be very sensitive to congestion, bandwidth is gen-
erally less sensitive to congestion, and that congestion has a
scale-dependent component. We also show that congestion
manifests in different ways on the same machine depending
on how an MPI library implements different interfaces.

• We demonstrate that by instrumenting the network coun-
ters of an HPC machine, it is possible to tune the bench-
mark to better represent a workload by emphasizing or de-
emphasizing certain congestors or canaries.

• GPCNeT also introduces the Congestion Impact metric to
study the impact of congestion across systems that are based
on different topologies and architectures. Using this metric
we perform an analysis of the impact of network congestion
on several of the world’s largest HPC systems, including an
evaluation of congestion management on a next-generation
network showing that systems of all technologies and scales
are susceptible to congestion effects. Networks with newer
technologies (EDR IB, Slingshot), are less susceptible than
older ones (Cray Aries).

In § 3 we present the GPCNeT benchmark which creates system-
atic congestion and measures the impact on latency and bandwidth
for some common application-derived communication patterns.
The benchmark was created to fulfill a set of design requirements
(detailed in that section). We demonstrate the fulfillment of the
design requirements in § 4, showing how GPCNeT provides mean-
ingful results across a spectrum of architectures. We then use GPC-
Net to compare the impact of congestion across architecture and
topology for some of the world’s top HPC systems (§ 5).

2 BACKGROUND AND RELATEDWORK
The performance efficiency of the interconnection network plays
a significant role in determining the scaling and performance of
communication-intensive applications. The contention for shared
resources can have a significant impact on application performance.
Hence, detailed performance evaluations of networks are essen-
tial to quantify the congestion impacts on production application
performance.

Traditionally,MPImicro benchmarks such as Sandia [2], OSU [20],
and Intel [17] microbenchmarks are used to measure the baseline la-
tencies and bandwidths for data transfers across the network. Some
benchmarks such as RMA-MT benchmarks [8, 31] are used to mea-
sure the specific aspects of MPI such as multi-threaded RMA. Hoe-
fler et al. developed a microbenchmark for measuring both latency
and overlap of computation and communication for non-blocking
communication operations [13]. However, these benchmarks are
intended to measure ideal baseline performance.

The impact of tail latency (extreme latency in a long-tailed dis-
tribution; e.g., greater than 99th percentile) on performance is not
unique to HPC systems; this has been studied in the context of
data center networks as well [22]. Yunqi et al. [32] developed a
methodology using quantile regression to analyze, and attribute the
sources of variance in tail latency to various hardware features of
interest. The tail latency effects on production datacenter-scale file
systems are also studied [24]. The congestion impact as measured
using the LDMS telemetry data on two real production systems is
analyzed [18].

There is a significant body of work that has measured the impact
of congestion in HPC systems, but these do not include benchmarks
that induce congestion. Hoefler et al. have developed benchmarks
[14, 15] that consider the system noise aspects for better reflecting
the application performance. Ates et al. developed a performance
anomaly suite [1] that includes a simple network contention gener-
ator using pairs of communicating nodes. Performance modeling
for the proposal, initial testing, and beginning deployment phase
of the Blue Waters supercomputer system utilized LogGP model
with parameters derived from Netgauge [14]. Grant et al. [11] de-
veloped a tool for measuring the impact of network contention
due to interference from other jobs through a continually running
benchmark application and the use of network performance coun-
ters. Prior works [30] showed the importance of considering the
latency variation rather than just considering the latency mean for
characterizing application performance.

These studies emphasize the importance of considering system
noise for accurately quantifying the network efficiency for produc-
tion application performance. However, there exists no standard
benchmark suite for measuring the network performance in pro-
duction scenarios. To be broadly applicable, these benchmarks are
desired to be topology-agnostic, MPI implementation-agnostic, and
network provider-agnostic. The benchmarks we propose in this
study meet these criteria and can characterize network congestion
impacts on various system architectures.

3 BENCHMARK DESIGN
We present the Global Performance and Congestion Network Tests.
GPCNeT1 differs from existing benchmarks by creating systematic
congestion. Two types of communication patterns, sensitive (or
“canary") and potentially congesting (hereafter “congestors"), exe-
cute in a coordinated manner. GPCNeT compares the performance
of sensitive communication in isolation and while congestors are
running. Sensitive traffic is generated by latency and bandwidth-
sensitive communication kernels motivated by HPC applications
(e.g., multi-dimensional nearest-neighbor exchanges). Congestor

1GPCNeT is publicly available at https://github.com/netbench/GPCNET

https://github.com/netbench/GPCNET

The Global Performance and Congestion Network Tests SC ’19, November 17–22, 2019, Denver, CO, USA

traffic is generated by kernels that stress the network (e.g., all-to-all
and incasts). GPCNeT places a load on the network by running sev-
eral congestor traffic patterns at the same time. These operations
are all managed by a single executable in a single job launch. We
identified additional requirements that affect the design of GPCNeT.
The design requirements are that it

(1) is portable across a variety of topologies and architectures,
(2) is not easily manipulated to favor specific networks or im-

plementations,
(3) can generate complex communication patterns with simple

tuning,
(4) reports statistics representing the limiting communication

performance of a latency or bandwidth sensitive HPC appli-
cation,

(5) is able to run on any number of nodes.
GPCNeT uses MPI to generate a variety of network traffic pat-

terns and can run on any system that supports the MPI-3.0 specifi-
cation (first design requirement). GPCNeT can be deployed at full
system scale on a given system. This requirement affects how sen-
sitive and congestor communication patterns are generated, which
is described in more detail in later sections. Process placement is an
important consideration because real-world systems that support a
diverse workload tend to provide non-ideal placement of processes
relative to the network topology. GPCNeT includes features to ap-
proximate non-ideal application placement so that sensitive traffic
patterns cannot be isolated from congestors by relying on MPI rank
reordering (second design requirement).

A key tuning parameter for GPCNeT is the number of MPI ranks
executing on each node. By simply increasing the number of pro-
cesses for a fixed number of nodes, GPCNeT will increase the load
on the network and generate more complex communication pat-
terns (additional detail in § 3.1 and § 3.2), which addresses the third
design requirement. There are many configurations for integrating
a node into an HPC network, however. A node can have multiple
NIC ports for communication, for example. Throughout this paper
we refer to the number of Processes per network Port (PPort) to
describe the relationship between how GPCNeT is run and the
network resources on a node.

Another important set of features in GPCNeT are the metrics
it measures and reports (fourth design requirement). Many MPI
benchmarks measure the minimum, maximum, and average per-
formance of an operation measured across ranks. However, these
values do not reflect the communication performance perceived
by real applications in production environments. Tail latency (e.g.,
99% or 99.9%) is commonly used to describe performance-limiting
communication for datacenter distributed applications [7]. For the
purposes of this work, we define tail latency as a measure of latency
significantly greater than the center of the distribution. Any ap-
plication with synchronization times approaching the tail latency
on a network (under load) can experience performance impacts.
GPCNeT measures and reports 99% tail latency and the 99% tail
performance of all included communication kernels.

3.1 Sensitive (Canary) Traffic
It is essential for the contention measurement tests to span a large
fraction of the system; congestion can be localized in space and

transient in time, and so might not be detected by monitoring a
small number of links or node-pairs. We therefore selected network
traffic patterns that can run on any number of nodes, and are sen-
sitive to both latency and bandwidth effects. The communication
pattern for these "canary" jobs alternates between all-reduce and
a random ring. The all-reduce pattern is ubiquitous throughout
HPC and measures the latency sensitivity of small-message collec-
tive operations, and the random ring targets bandwidth-sensitive
point-to-point operations.

The random ring pattern was motivated by the prevalence of
nearest-neighbor 3D communication in physics-based applications,
but we have limited the dimensionality to a 1D ring so that the
benchmark can run on any number of nodes. Multiple processes
can be run on each node to better represent multi-dimensional
communication patterns. Although randomizing the order of nodes
in the ring eliminates locality (and related optimizations) from the
communication pattern, it ensures that the benchmark is agnostic
to network topology. A secondary benefit of randomization is the
added flavor of irregular communication patterns generated by
task-based programming models and graph processing.

3.1.1 Random Ring Infrastructure. A random ring infrastructure
emulates an application or set of applications performing nearest-
neighbor exchanges. The random ring design is based on a similar
implementation in HPCC [23], where a one-dimensional periodic
ring is generated by randomizing a list of MPI ranks and each rank
communicates to its left and right neighbors in the ring. The random
ring design satisfies the fifth design requirement that GPCNeT be
able to run at any node count. Iterating over many different random
rings also prevents optimizations based on MPI rank reordering.

Communication should only be off-node, preventing the re-
sults from being contaminated by on-node communication. This
is achieved by creating PPort sub-communicators with each pro-
cess on a node in a unique sub-communicator. Ranks in the same
sub-communicator are randomized to form a random ring. With
this design, a given node will communicate with up to 2 × PPort
other nodes, accounting for left and right communication. Commu-
nication patterns resembling a multidimensional decomposition or
unstructured mesh are naturally produced by this behavior. The
connectivity between nodes is less than all-to-all communication
but more complex than a 2-dimensional decomposition. Running
GPCNeT with increasing PPort is therefore a simple way to increase
the number of network pathways traversed by sensitive traffic.

Listing 1 summarizes the random ring infrastructure and per-
formance measurements in it. A timeout mechanism is included to
prevent tests from running longer than 10 seconds, which is long
enough to measure a statistically significant number of iterations
of any of the communication kernels under most conditions. It is
possible that a test runs longer than 10 seconds, however, when
very heavy load is on the network. The generation of a random
ring is based on the ring loop index. This means the same set of
random rings is produced in each measurement iteration.
/ ∗ nM = t o t a l number o f measurement s

nR = t o t a l number o f random r i n g s
t o g e n e r a t e i n a sub−communica tor

n I = number o f i t e r a t i o n s o f a
communica t i on k e r n e l

myrank = l o c a l MPI rank i n a sub−communica tor
warmup = number o f warmup i t e r a t i o n s

SC ’19, November 17–22, 2019, Denver, CO, USA Sudheer Chunduri et al.

∗ /
t imeou t1 = t ime r () ;
for (m = 0 ; m < nM; m++) {

/ ∗ t e s t i f runn ing t o o l o ng ∗ /
t imeou t = t ime r () − t imeou t1 ;
MPI_Al l reduce (MPI_IN_PLACE , &t imeout , 1 , MPI_DOUBLE ,

MPI_MIN , global_comm) ;
i f (t imeou t > 1 0 . 0) continue ;

/ ∗ l o o p o v e r random r i n g s ∗ /
for (n = 0 ; n < nR ; n++) {

r a n d om i z e _ l i s t (& r a n k l i s t , n) ;
n e i g h b o r _ l e f t = r a n k l i s t [myrank −1] ;
n e i g h b o r _ r i g h t = r a n k l i s t [myrank + 1] ;
for (i = −warmup ; i < n I ; i ++) {

i f (i == 0) t im e r _ b u l k _ s t a r t = t ime r () ;
i f (i >= 0) t i m e r _ f i n e _ s t a r t = t ime r () ;

communica t ion_kerne l (n e i g h b o r _ l e f t ,
n e i g h b o r _ r i g h t) ;

i f (i >= 0)
t im e r _ f i n e [m∗nR ∗ nI + n ∗ nI + i] = t ime r () ;

}
t ime r _bu l k [m∗nR + n] = t ime r () − t i m e r _ b u l k _ s t a r t ;

}
}

Listing 1: Pseudocode of the random ring infrastructure.

Two communication kernels execute in the random ring infras-
tructure. One is a latency measurement and the other measures
bandwidth with a synchronization. The infrastructure is able to
support other kernels as well. GPCNeT can be easily modified to
use MPI-RMA based latency and bandwidth kernels (included in
the package), for example, as additional sensitive traffic.

Random Ring Point-to-point Latency (P2P Lat). P2P Lat measures
the latency of sending and receiving 8 byte messages to and from
the left and right neighbors. This kernel is intended to be more
latency-sensitive than typical HPC applications to provide an upper
limit on the performance impact from congestion. The loop limits
in Listing 1 for this test are nM = 10000, nR = 30, nI = 200, and
warmup = 200, which are sufficient for statistically rigorous results.
Each canary process in the kernel performs two MPI_Irecv and
MPI_Isend with respect to the two random neighbors per iteration
followed by a MPI_Waitall. The walltime of each kernel iteration
is measured and divided by two to account for round-trip time.

Random Ring Point-to-point Bandwidth with Synchronization (P2P
BW+Sync). P2P BW+Sync is motivated by applications performing
boundary value exchanges followed by a small reduction for a time
step size or convergence test. Eight 128 Kbyte messages are sent to
and received from the left and right neighbors (16 messages in total),
which is typically enough messages to achieve peak bandwidth.
Afterwards, a barrier on the sub-communicator synchronizes all
ranks. This test is sensitive to bandwidth contention and latency
from the synchronization. The loop limits in Listing 1 for this test
are nM = 10000, nR = 30, nI = 8, andwarmup = 1. The walltime of
each iteration is measured and converted into a bandwidth value,
accounting for 16 messages.

3.1.2 Allreduce. A separate test for small message MPI_Allreduce
is included outside of the random ring infrastructure. This test is
used to measure the effects from congestion on latency-sensitive
collective communication. The same sub-communicators used in

the random ring infrastructure are used in this test. Therefore, there
are PPort MPI_Allreduce operations occurring simultaneously,
each with only off-node communication. The loop structure for this
kernel is the same as Listing 1, excluding the loop over random
rings, with nM = 100000, nI = 200, andwarmup = 1.

3.1.3 Performance Metrics. GPCNeT uses the two timers, shown
in Listing 1, to compute performance statistics on the communi-
cation kernel – a fine-grained timer that generates histograms for
each configuration of random ring and a bulk timer that provides
overview statistics.

3.2 Congestors
Congestion occurs on a network when there are insufficient re-
sources available to accommodate the demanded load. Communi-
cation patterns that generate an imbalance between ingress and
egress rate can cause congestion. Broadly, we can organize conges-
tion into two categories: endpoint and intermediate. An example
of endpoint is an incast operation where data from N-1 senders is
directed to a single receiver, which is unable to accept data at the
rate it arrives. It is also possible to induce side-effects of conges-
tion, such as queuing delays, by placing heavy loads on a network.
Many-to-many communication patterns (e.g., all-to-all with large
messages) will stress a network and is an example of intermediate
congestion. These patterns develop on networks supporting real
workloads either explicitly by demanding applications or sponta-
neously through the cumulative effects of many applications and
supporting subsystems, such as filesystems. To ensure portability
(first design requirement), GPCNeT uses MPI operations to generate
these communication patterns.

MPI operations define the logical flow of data but do not specify
the underlying methods by which data is moved. For example, a
logical incast can be written in MPI by initiating N-1 non-blocking
receive operations at the root and a send operation from each
sender. This pattern may or may not generate a true incast pattern
depending on the underlying communication protocols (Get/Put)
used in the MPI implementation. MPI-RMA exposes more explicit
operations, such as MPI_Get() and MPI_Put(), but an MPI library
can implement MPI-RMA using two-sided operations. To overcome
these implementation complexities and ensure efficacy across archi-
tectures (first design requirement), GPCNeT runs four congestors
simultaneously to create endpoint and intermediate congestion. A
specific congestor may not produce heavy load or congestion on
its own. But, in the absence of effective congestion management
in the network, some combination of the congestors should pro-
duce heavy load. GPCNeT also uses a common message size for
congestors, which makes it difficult to tune an MPI implementation
to favor one type of a congestor without negatively affecting the
rest of the kernels in the benchmark.

3.2.1 Congestor Infrastructure. Congestor communication kernels
are executed within a common infrastructure, similar to the ran-
dom ring infrastructure in § 3.1. Ranks on a congestor node are
assigned one of the congestor kernels for the duration of execution.
Listing 2 summarizes the congestor infrastructure. A difference
from the random ring infrastructure is the use of MPI_Iallreduce
to manage a timeout. This improves the chances that load from

The Global Performance and Congestion Network Tests SC ’19, November 17–22, 2019, Denver, CO, USA

a congestor is constant despite the presence of other collective
communication. Similar to the sub-communicators used for sen-
sitive traffic, a congestor kernel is executed with PPort different
sub-communicators simultaneously to avoid any on-node traffic.
Tests of GPCNeT with different PPort not only tune the behavior
of sensitive traffic (see § 3.1.1), they also tune the intensity of the
congestors. The performance of each congestor is measured and is
included in GPCNeT output for verbose compilations.
/ ∗ nM = t o t a l number o f measurement s

n I = number o f i t e r a t i o n s o f t h e k e r n e l
myrank = l o c a l MPI rank i n a sub−communica tor

∗ /
t imeou t1 = t ime r () ;
for (m = 0 ; m < nM; m++) {

/ ∗ t e s t i f runn ing t o o l o ng ∗ /
MPI_Wait (& req , MPI_STATUS_IGNORE) ;
i f (t imeou t > 1 0 . 0) continue ;
t imeou t = t ime r () − t imeou t1 ;
MP I _ I a l l r e d u c e (MPI_IN_PLACE , &t imeout , 1 , MPI_DOUBLE ,

MPI_MIN , scom , &req) ;

for (i = −1; i < n I ; i ++) {
i f (i == 0)

t im e r _ b u l k _ s t a r t = t ime r () ;
i f (i >= 0)

t i m e r _ f i n e _ s t a r t = t ime r () ;

c o n g e s t o r _ k e r n e l (myrank) ;

i f (i >= 0)
t im e r _ f i n e [m∗nR ∗ nI + n ∗ nI + i] = t ime r () ;

}
t ime r _bu l k [m∗nR + n] = t ime r () − t i m e r _ b u l k _ s t a r t ;

}

Listing 2: Pseudocode of congestors infrastructure.

3.2.2 All-to-all (A2A). An all-to-all communication pattern is gen-
erated with a pair-wise exchange algorithm. This implementation
provides more uniformity across MPI libraries than MPI_Alltoall,
which might be highly tuned in some cases. This congestor uses 4
Kbyte messages, which are sufficient to generate significant traffic
while limiting the size of the send and receive buffers. The loop
limits in Listing 2 for this kernel are nM = 256 and nI = 512.

3.2.3 Point-to-point Incast (P2P Incast). P2P Incast is one congestor
kernel that can generate an incast for some MPI implementations.
An incast is generated for MPI libraries that use a RDMA Put-
based protocol for send and receive operations to transfer a 4 Kbyte
message, the message size used in this kernel. This message size is
sufficient to generate an intense incast while limiting the time to
complete the operation (roughly 4 Kbyte divided by the ejection
rate at the root). The loop limits in Listing 2 for this kernel are
nM = 256 and nI = 512.

3.2.4 One-sided RMA Incast (RMA Incast). Logical incasts using
MPI_Putwill generate a true incast for MPI libraries that implement
MPI-RMA with one-sided RDMA operations for the tested network.
If MPI-RMA is implemented with two-sided operations instead, this
congestor kernel is approximately identical to the point-to-point
incast kernel and also uses 4 Kbyte messages. The loop limits in
Listing 2 for this kernel are nM = 256 and nI = 512.

3.2.5 One-sided RMA Broadcast (RMA Bcast). An incast can be
implicitly generated by a naive one-sided broadcast. In this case,

the actual data is flowing from the root to the receivers, but request
packets for that data from all of the receivers produce an incast. This
pattern occurs for MPI libraries that implement MPI-RMAwith one-
sided RDMA operations for the tested network. MPI libraries that
implement MPI-RMA with two-sided operations may also generate
an incast for this kernel if an RDMA Get-based protocol is used to
transfer a 4 Kbyte messages. The loop limits in Listing 2 for this
kernel are nM = 256 and nI = 512.

3.3 Execution Sequence
The nodes on which GPCNeT is executing are divided into one
group that executes sensitive communication kernels (S) and an-
other that executes the congestors’ communication kernels (C). The
execution sequence is summarized as follows.

(1) The full set of nodes is shuffled. 20% of the set are assigned to
group S and the remaining 80%2 to group C, which is further
sub-divided evenly across the four congestor types (C0-C3).

(2) The ranks on nodes from group S are arranged into sub-
communicators such that the Nth rank on each node is in
the same sub-communicator. The same is done for ranks in
node groups C0 - C3. This approach prevents any on-node
communication from contributing to measurements.

(3) Ranks in group S loop through each of the tests, gathering
baseline performance until reaching a barrier which initiates
congestors C0-C3.

(4) Ranks in group C begin executing their communication as a
warm-up while ranks in group S wait. Once ranks in group
C have executed their warm-up, they release ranks in group
S

(5) Ranks in group S execute one of the sensitive communication
tests and inform ranks in group C once the measurements
are complete

(6) Steps 4-6 are repeated for each sensitive communication test.

The node list randomization in Step 1 uses the local time on rank
0 as the seed by default. The reason for this is to prevent application
placement optimizations or node-level tuning (e.g., predictive QoS
or specifying traffic classes) that would not typically be available
to users or easily tuned for each job on production systems. This
randomization does introduce potential run-to-run variability in
the results from GPCNeT, however. Users can optionally modify
GPCNeT to use a fixed seed if desired.

4 VALIDATION OF DESIGN REQUIREMENTS
In this section we perform a wide range of experiments on two test
systems to evaluate whether our benchmarks fulfill the require-
ments set out in § 3. We explore the impact (1) of process and node
count, (2) of MPI Library and (3) the isolated congestors have on
GPCNeT results. We also examine the effect of network conges-
tion on a real HPC application, MILC, and compare the effects of
GPCNeT’s synthetic congestion to production environments.

2Ratio of canary:congestors is adjustable.

SC ’19, November 17–22, 2019, Denver, CO, USA Sudheer Chunduri et al.

Figure 1: Histogramof P2P Latmeasurements at 64 (top) and
696 (bottom) nodes on a XC40 system. The upper and lower
panel on each is without and with congestors, respectively.
Runs use 1, 8, or 32 processes per node.

4.1 Test Systems
We use different HPC network architectures and MPI libraries (de-
tailed in Table 1) to evaluate the effectiveness of GPCNeT at gener-
ating and measuring congestion impact.

Experiments on these systems cover a range of job sizes and
choices of PPort. It is important to select the job size to fill a region
of a network’s topology or to fill (or nearly fill) the entire network.
For an idle system, adaptive routing features on some networks
may provide sufficient extra bandwidth to a smaller job to avoid
congestion impacts. For the Cray XC40 system, Crystal, the relevant
scales are within a chassis (64 nodes), within a group (336 nodes),
and the full system (696 nodes). Results for 64 and 696 nodes are
included in this analysis. The only relevant scale on the CS500
system, Osprey, is all 128 nodes. These experiments used default
settings for the MPI libraries and default site-specific settings for
the network.

4.2 Effect of Varying PPort and Node Count
Figure 1 shows the histograms of P2P Lat, described in § 3.1.1,
at different node counts with 1, 8, and 32 PPort. The peak of the
isolated runs is between 1.7 µs and 2 µs, and the tail increases in
response to both increasing PPort and job size. Nearly all samples
are well below 100 µs. The distributions are multimodal, likely
related to extra hops for minimal and non-minimal routes. When
congestors load the network, the distributions spread and flatten
out. This data shows that increasing node count and PPort result
in larger impacts from congestion, with latency values exceeding
10 ms for 32 PPort on 696 nodes.

Histograms for P2P BW+Sync with synchronization are in Figure
2. Note that bandwidth is reported per MPI rank. Runs at 64 nodes
show an expected drop in bandwidth per rank as PPort increases,
but there is only a small effect from congestion. Runs at 696 nodes

Figure 2: Histogram of P2P BW+Sync measurements at 64
(top) and 696 (bottom) nodes on a XC40 system. The upper
and lower panel on each is without and with congestors, re-
spectively. Processes per node are 1, 8, and 32.

show more effect from congestion, especially at 32 PPort. Band-
width drops from ∼100 MiB/s/rank to only a few MiB/s/rank at 32
PPort and 696 nodes when congestors load the network.

Figure 3 shows the histograms for MPI_Allreduce. Cray MPICH
uses a recursive doubling algorithm for MPI_Allreduce by default
under these conditions. The node counts (64 and 696) result in a
non-power of two number of ranks in all of the canary kernels,
which adds two extra steps to the algorithm. These extra steps
may account for additional peaks in the isolated distributions. Load
from congestors results in significant impacts on performance, in
particular at 696 nodes. From these results, it is clear that GPCNeT
demonstrates the effects of congestion on tail latencies, and these
effects increase with scale. The algorithmic complexity underly-
ing MPI_Allreduce adds additional sensitivity, but the effects of
congestion on bandwidth manifest only at larger concurrencies.

4.3 Effect of Each Congestor
GPCNeT deploys four congestors across 80% of the allocated pro-
cesses by default. While 80% of the nodes acting as congestors
represents worst-case behavior, GPCNeT is easily configurable to
customize this ratio or use a subset of congestion patterns. Different
congestors are needed to represent the variety of ways commu-
nication patterns can manifest as congestion in the network. For
example, congestion may occur at network endpoints from incast
or at internal bisection taperings from all-to-all patterns. Another
reason to use multiple congestor patterns is that MPI libraries differ
in underlying implementation. For example, on the Aries network,
the GPCNeT point-to-point incast congestor does not induce con-
gestion because the underlying library is performing Get opera-
tions. By deploying four unique congestion patterns, we provide a
portable benchmark suite that is useful to a broad community of
facilities and researchers (design requirement 1).

The Global Performance and Congestion Network Tests SC ’19, November 17–22, 2019, Denver, CO, USA

Table 1: HPC system configurations.

System Name Site Architecture Processor MPI Library Interconnect Network Topology # Nodes # Ports per Node

Crystal Cray XC40 Intel Broadwell (mix) Cray MPICH v7.7.7 Cray Aries
3-level dragonfly with 2 groups
and 100% global to injection band-
width

696 1

Osprey Cray CS500 Intel Skylake and Broad-
well (mix)

MVAPICH 2.3.1 and
OpenMPI 4.0.1 Mellanox EDR Tree with 100% global to injection

bandwidth 128 1

Edison NERSC XC50 Intel Ivybridge Cray MPICH v7.7.7(Pre) Cray Aries 3-level dragonfly with 50% global
to injection bandwidth 5586 1

Theta ALCF XC40 Intel KNL Cray MPICH v7.7.7(Pre) Cray Aries 3-level dragonfly with 55% global
to injection bandwidth 4392 1

Sierra LLNL IBM Power9 and NVIDIA
V100 Spectrum MPI v10.2.0.11 Dual-port Mellanox EDR Tree with 50% global to injection

bandwidth 4320 2

Summit ORNL IBM Power9 and NVIDIA
V100 Spectrum MPI v10.2.0.11 Dual-port Mellanox EDR Tree with 100% global to injection

bandwidth 4608 2

Malbec Cray Slingshot Intel Skylake (mix) early Cray MPICH for
Shasta

Cray Slingshot withMellanox
ConnectX-5 NICs

2-level dragonfly with 4 groups
and 50% global to injection band-
width

485 1

Figure 3: Histogram of MPI_Allreduce latency measure-
ments at 64 (top) and 696 (bottom) nodes on a XC40 system.
The upper and lower panel on each is without and with con-
gestors, respectively. Processes per node are 1, 8, and 32.

To demonstrate the importance of including multiple congestors,
we present the impact of individual congestors on two systems
(Crystal XC40 and Osprey CS500). Figures 4 and 5 show the results
of each individual congestor running with the latency, bandwidth,
and MPI_Allreduce benchmarks for these systems with different
MPI implementations. For the results on the Osprey system we
ran the experiments with both OpenMPI and MVAPICH; however,
since the results are similar, we present data only for MVAPICH.

In Figure 4, the P2P Incast congestor has no significant impact
on performance of either average or 99th percentile latency or
bandwidth for the Crystal system. However, in Figure 5 the P2P
Incast congestor has a significant impact on Osprey, increasing
mean latency by two orders of magnitude. This shows the substan-
tial differences observed across architectures and the importance
of including multiple congestors. For both systems, Alltoall con-
gestors produce a modest amount of congestion for the latency
benchmarks, but bandwidth is not impacted. The greatest impact
of congestion is from the RMA Incast congestor. On both systems
this creates substantial bottlenecks at the network endpoints.

The default congestor ratio (20:20:20:20) is designed to elicit con-
gestion from any HPC system, however facilities and researchers
may wish to adjust the ratios to stress a particular type of conges-
tion (e.g., endpoint or intermediate). These ratios, in conjunction
with PPort, can be configured within GPCNeT to mimic specific pro-
duction environments. Additional suggestions on how to analyze
system wide congestion are provided in § 4.5.

4.4 Effect of MPI Implementation
Figures 6 - 7 show the same distributions as Figures 1 - 3 except or
the CS500 system, Osprey. For Osprey results for both OpenMPI and
MVAPICH are shown to demonstrate any effect differences in the
MPI library have on the measurements. In Figure 6, isolated point-
to-point latency is similar between the two libraries, except that
OpenMPI is able to take advantage of potential overlap in the kernel
and achieves slightly better latency. The impact on congestion at 1
PPort is negligible for both libraries. At 8 PPort some impact on the
tail occurs with a sharp cutoff at 30 µs and 50 µs for MVAPICH and
OpenMPI respectively. The tail goes out to ∼300 µs at 32 PPort.

Experiments at different PPort for P2P BW+Sync show similar
effects on Osprey to the measurements on Crystal, described in
§4.2. The bandwidth per rank drops with PPort, and the effect from
congestion is only significant at 32 PPort. The differences between
OpenMPI and MVAPICH are negligible.

Figure 7 shows the histograms for MPI_Allreduce. Similar to
Cray MPICH, both OpenMPI and MVAPICH use a recursive dou-
bling algorithm for the conditions of these tests, and the number
of ranks running this kernel is not a power of two. The MVAPICH
distribution shows a distinct second peak at 8 and 32 PPort in the
isolated runs near 60 µs. This may be due to the extra steps for
non-power of two ranks, but OpenMPI does not have the same
peak. Neither library shows any effect from congestors at 1 PPort.
Both libraries show an effect at 8 PPort, but MVAPICH has a longer
tail approaching 300 µs and OpenMPI only 40 µs. Similar behavior
occurs at 32 PPort, with congestors inducing samples out to ∼3 ms
for MVAPICH and ∼500 µs for OpenMPI. Both libraries, on EDR
Infiniband, are capable of producing and being susceptible to con-
gestion. However, this data shows that subtle differences between
MPI implementations can have a moderate impact on the degree of
congestion experienced.

SC ’19, November 17–22, 2019, Denver, CO, USA Sudheer Chunduri et al.

Figure 4: Histograms of P2P Lat (left), P2P BW+Sync (center), and MPI_Allreduce (right) at 696 nodes on a XC40 system. The
isolated result is shown in the top panel. Result when only one congestor was running is on each panel below that. Each
run was with 32 Processes per network Port (PPort). The mean and 99% values are indicated with red and green vertical lines
respectively.

Figure 5: Histograms of P2P Lat (left), P2P BW+Sync (center), and MPI_Allreduce (right) at 128 nodes on a CS500 system using
the MVAPICH . Isolated result is shown in the top panel. Result with individual congestors is in each panel below that. Each
run was with 32 Processes per network Port (PPort). The mean and 99% values are indicated with red and green vertical lines
respectively.

4.5 Understanding and Tuning the Scope of
Congestion

In the development of GPCNeT, one of our goals was to develop
a method to understand how the intensity of its congestors com-
pares to "ambient" congestion when many jobs run simultaneously
on a shared system. In this section, we present several techniques
that HPC facilities can use to better understand where congestion
manifests in the system and how to tune it to emulate specific sce-
narios. While we demonstrate this for the Cray Aries Network [9],
the methodology is easily generalized to other network architec-
tures. This level of evaluation requires system-level counters that all
HPC networks provide, namely bytes transmitted and stalls/delays
incurred at the router and node level.

These experiments utilized 5575 nodes of NERSC Edison. We
present system level counters to examine the flow of traffic as well
as the distribution of stalls3 (a proxy for congestion) in the network.
This allows us to look at the detailed distributions of communication
on a production system. Specifically, we examine the router tiles

3A stall is a router cycle which no data is transferred even though data resides in the
router buffers. This is normally due to a lack of credits or arbitration policies.

and last-hop processor tile (PTile)4 counters for each router in the
system. For the purposes of this work, we distinguish PTiles from
other router tiles. Router tiles include intermediate traffic that may
pass through the network, as it takes several hops to reach the
final destination. PTile data is specific to the nodes that are locally
attached to a given router. Router and PTile datasets complement
each other by providing a view of both inter-router and endpoint
traffic and congestion, respectively. We utilize these counters to
compare performance for several configurations of the benchmark
suite.

In each configuration, we reserve 20% of nodes for canaries.
Across the runs, we vary (1) the number of MPI processes per node
(either 1 or 24 PPort) and (2) the background traffic on the remaining
80% of the nodes. These remaining 80% of nodes operate in one of
the following modes:

Quiet: remaining nodes are reserved and idle
Wild: remaining nodes contain production workloads
Congestors: 20% splits of each of the four congestor types

4Processor tiles are the last-hop within an Aries Network router, and are the entry
point to the network for Aries NICs.

The Global Performance and Congestion Network Tests SC ’19, November 17–22, 2019, Denver, CO, USA

Figure 6: Histograms of random ring point-to-point latency
at 128 nodes on a CS500 system. Results for both Open-
MPI (top two panels) and MVAPICH (bottom two panels)
are shown. Isolatedmeasurements andmeasurementswhile
congestors loaded the network are shown for each library.
Processes per node are 1, 8, and 32.

Figure 7: Histograms of MPI_Allreduce latency at 128 nodes
on a CS500 system. Results for both OpenMPI (top two pan-
els) and MVAPICH (bottom two panels) are shown. Isolated
measurements and measurements while congestors loaded
the network are shown for each library. Processes per net-
work Port (PPort) are 1, 8, and 32.

In Figures 8-10 we present the distributions of these counters
collected over the entire Edison system for each run. Data is dis-
played in a violin plot format wherein each vertical bar shows the
normalized magnitude of the of throughput or stalls, and the width
of the bar signifies the number of routers achieving that measure.
Each value is normalized to the mean recorded on the quiet canary
run. The three hash marks in each bar show the min, median, and

Figure 8: Distribution of last-hop (endpoint) throughput
with production and GPCNeT congestion.

Figure 9: Distribution of last-hop (endpoint) stalls under pro-
duction and GPCNeT load.

Figure 10: Distribution of router stalls (intermediate conges-
tion) under production and GPCNeT load.

maximum value. These figures show two sets of production runs
(Wild-1 and Wild-2) separated over several days to demonstrate the
shifts in network load as the variety of jobs changes over time. We
obtained 18 wild runs on the Edison system, but space constraints

SC ’19, November 17–22, 2019, Denver, CO, USA Sudheer Chunduri et al.

limits displaying all of them. The two runs shown are approximate
of the inner quartile range for Edison bandwidth in the wild (1.7 to
2.0 Gbps for 1 PPort).

Figure 8 shows the endpoint throughput measured across the
entire system. Comparing the first two bars we see that the first
run utilizing one PPort is unable to fully utilize the bandwidth
of the system with a peak bandwidth approximately 20% and a
median less than 50% of the Quiet 24 PPort run. Adding production
traffic causes peak and median throughput to decrease slightly. It
is important to point out that each bar includes the throughput of
the production traffic as well as the canary tasks. Therefore, unless
congestion is occurring we would expect to see an increase in
median traffic compared to the quiet runs. Network congestion also
explains why in the wild we do not see any substantial difference
in the distributions when comparing 1 PPort and 24 PPort for these
runs. We can clearly see throughput diminish for the last two runs
which include the congestor benchmarks (Cong 1 PPort and Cong
24 PPort).

Comparing Figure 8 to Figure 9 shows the impact endpoint stalls
has on throughput. For a quiet system using 1 PPort, the distribu-
tion of endpoint congestion is fairly contained with the max stalls
just 1.8X the mean. Increasing PPort to 24, the distribution of stalls
begins to creep upward with a median 5.4X greater than 1 PPort.
The Wild-1 and Wild-2 runs show very different distributions of
endpoint congestion, particularly in the worst case. Wild-2 nears
60X increase to the worst-case stalls of a quiet system. Comparing
the wild runs to runs with GPCNeT congestors, we see that worst-
case endpoint congestion with GPCNeT is reasonably similar to
what may be observed in a production system. The primary differ-
ence is that more nodes experience moderate endpoint congestion
in the wild than with GPCNeT.

Lastly, we examine congestion for inter-router traffic in Figure 10.
We observe that inter-router traffic does not necessarily result in
bad performance of the system. The Quiet 24 PPort run shows
that the median router stalls is 10X greater than Quiet 1 PPort;
however, the 24 PPort run achieved 1.9X bandwidth in GPCNeT.
One possible explanation for this is that the system is able to take
advantage of adaptive routing, in which the stalls have limited
impact on the application. Wild-1 and Wild-2 runs do not appear to
be limited by system throughput as the distribution of router stalls
is lower than the Quiet 24 PPort job. This is possible if, as Figure 9
suggests, the bottleneck is instead endpoint congestion. Both of
the congested runs (Cong 1 PPort and Cong 24 PPort) incur a high
number stalls in the worst-case. Additionally, in the 24 PPort run,
back-pressure from congestion has spread throughout the entire
system and creates a 14.2X increase in median stalls over Quiet 1
PPort.

Tuning congestion benchmarks to perfectly match all combi-
nations of systems and workloads is not a feasible task. However,
these charts illustrate how system architects might analyze the
GPCNeT benchmarks to evaluate how the intensity of congestion
relates to a production system and workload of interest. An example
of this can be see in Figures 9 and 10. We can see that for NERSC
Edison workloads, the default configuration of the GPCNeT bench-
marks provides a reasonable approximation of worst-case endpoint
congestion. Furthermore we can see that the inter-router traffic
generated by GPCNeT defaults appears to be 3X to 6X greater than

Figure 11: Mean and P99 Congestion Impact (Eq 1) across a
range of systems and architectures for latency, bandwidth,
and Allreduce. Raw values are in Table 2. Y-axis is log scale.

what we observe in the wild. However, each system is unique, and
for systems running a single large capability job, the background
traffic in the wild would place greater demands on inter-router
traffic than observed in our runs. By using this information and
adjusting the fraction of nodes devoted to each congestor pattern
(§ 4.3), it is possible to tune GPCNeT’s congestors to approximate a
range of systems and workloads.

5 CONGESTION IMPACT ON HPC SYSTEMS
In this section we examine the impact of congestion on a range of
systems, reporting the raw results in Table 2 and the congestion
impact (see Equation 1). This includes the results on the world’s
most powerful HPC system, Summit [27], and a next-generation
Slingshot [6] system,Malbec.We demonstrate the utility of GPCNeT
for systems designers as we evaluate the impact of congestion across
topologies and architectures.

5.1 Test Systems
These experiments include several production systems with dif-
ferent architectures and usage models. Table 1 shows details on
the configuration of each. We use the default (production) network
configurations on each system and a single traffic class for all traffic
from GPCNeT following the discussion in § 3. We include CPU-
only systems (Crystal, Osprey, Edison, Theta, and Malbec) as well
as hybrid CPU-GPU systems (Summit and Sierra). Three network
architectures are represented (Cray Aries, Mellanox EDR IB, and
Cray Slingshot) with a range of topologies.

The Cray Slingshot network is a new Ethernet-compatible HPC
interconnect for the Shasta architecture. Its Rosetta switch ASIC
implements 64 ports operating at 200 Gbps/dir, allowing it to scale
to over 250,000 endpoints using a dragonfly topology with a di-
ameter of just three switch-to-switch hops. Slingshot provides ex-
tensive quality-of-service controls and is able to route packets or
flows adaptively. It also has sophisticated congestion management
mechanisms that detect contention and quickly provide targeted

The Global Performance and Congestion Network Tests SC ’19, November 17–22, 2019, Denver, CO, USA

Table 2: Sensitive communication kernel performance on test systems in isolation and with congestors loading the network.
P2P Lat (Lat) values are in µs, P2P BW+Sync (BW) values are in MiB/s/rank, and Allreduce values are in µs. The data for Osprey
is for MVAPICH only.

Isolated Average Loaded Network Average Isolated 99% Loaded Network 99%
System Name Nodes Used PPort Lat BW Allreduce Lat BW Allreduce Lat BW Allreduce Lat BW Allreduce

Crystal

64 1 1.8 4764.5 9.4 1.9 4496.6 9.8 6.3 3813.8 10.1 5.4 3705.0 11.6
64 8 1.9 606.0 10.0 9.5 593.7 33.7 7.5 437.7 11.6 25.6 438.4 78.7
64 32 5.1 133.9 11.7 38.0 111.0 153.5 20.8 101.1 13.8 113.2 89.9 341.9
696 1 2.0 3735.8 19.9 13.7 3268.4 69.5 6.6 3541.4 22.3 47.1 2756.8 130.4
696 8 2.0 528.9 20.9 117.2 219.7 1060.6 2.7 380.2 23.3 484.7 113.5 2289.6
696 20 5.3 187.3 24.2 391.6 20.6 3462.5 9.9 130.5 71.6 2474.9 9.2 9337.0
696 32 8.0 111.0 26.0 2312.9 1.6 26765.9 25.1 81.0 102.0 9146.6 0.3 52551.7

Osprey 128

1 1.1 6310.1 9.5 1.1 6234.4 9.5 3.9 4677.2 21.5 3.3 4570.7 21.1
8 1.3 1078.3 16.1 5.8 1022.5 64.0 3.8 708.7 56.9 27.1 628.6 290.7
20 1.7 451.6 47.9 22.1 274.5 286.5 9.4 289.5 90.1 163.2 136.8 1129.2
32 1.6 278.5 53.3 40.8 126.1 1088.7 9.7 175.8 88.8 228.9 38.9 2679.3

Edison 5575 1 3.1 1750.1 57.2 216.3 326.9 1427.7 10.1 1603.5 74.3 785.5 232 2492.7
24 3.0 139.3 52 6014.4 2.1 87983.5 7.2 107.4 70 27117.9 1.3 158883.7

Theta 4096 1 11.2 2635.6 123.5 84.8 695.2 724.2 18.5 2533.0 153.8 370.7 463.3 1289.0
16 11.1 230.0 119.8 8803.1 3.0 66491.9 16.7 170.7 145.3 36738.1 2.2 136865.4

Summit 4500 4 2.8 2314.6 26.7 32.8 166.1 1424.3 6.6 1971.9 39.2 613.5 33.5 3811.7
21 3.3 555.4 34.0 447.9 46.0 9274.4 10.8 378.7 79.4 7142.9 4.6 57770.2

Sierra 4200 3 3.0 2747.3 28.8 98.3 672.3 1269.4 7.1 1884.6 37.7 1406.4 194.3 6446.0
20 3.8 419.9 35.1 1686.6 11.5 24996.0 10.6 265.4 59.9 15276.2 4.6 92193.8

Malbec 485 20 1.8 565.0 26.6 2.1 523.2 27.9 9.1 475.9 43.7 9.7 437.2 45.2

back pressure. We examine these capabilities, which are enabled
by default on Slingshot, with the GPCNeT benchmark. Although
Slingshot is a 200 Gbps/dir network, we limit it to 100 Gbps/dir
for our experiments in order to match the 50% global to injection
bandwidth of the Theta and Edison systems.

5.2 Congestion Impact
In order to standardize comparisons across architectures with dif-
ferent baseline performance, GPCNeT reports a normalized metric
that is the impact on performance from the congestors. The Con-
gestion Impact (CI) is defined for latency (l) and bandwidth (b) as
follows:

CIl = lcongested/lisolated (1)

CIb = bisolated/bcongested (2)

where lcongested and lisolated are the latency measurements (e.g.,
99%) for either P2P Lat or Allreduce with and without congestors,
and bcongested and bisolated are the bandwidth measurements
for P2P BW+Sync with and without congestors. In Figure 11 we
explore the impact of congestion across multiple systems using
high process count to test the limits of the the network and how
each system operates under pressure. We report the average and
99% Congestion Impact using the default ratio of congestors (20%
canary and 80% congestors) and processes per network port ranging
from 16 to 24. We use average isolated performance rather than
minimum as the baseline for CI in our comparisons, because the
mean is more representative of expected performance. In future
work we will examine additional parameters, including the impact
of reduced congestor ratios and the relative impact of individual
congestors.

Figure 11 shows no system is completely immune to the im-
pacts of congestion (results in log scale). In the worst case, latency
degradation approaches four orders of magnitude on the Edison
system. On the whole, the Aries systems (Crystal, Theta, and Edi-
son) experience the worst congestion. These systems have a taper
of approximately 50% for global bandwidth which translates into

a bisection to injection ratio of 25%. Aries does not deploy fine-
grained congestion control. While modern InfiniBand systems do
employ congestion control mechanisms, configuration of the set-
tings can be difficult and misconfiguration can lead to poor baseline
performance [10, 21, 33]. For these reasons, Summit and Sierra have
disabled this feature in production. The Infiniband systems (Osprey,
Sierra, Summit) perform better than the similarly sized Aries sys-
tems. Sierra has a reduced bisection to injection ratio compared
to Summit and is more sensitive to congestion. Of all the systems
evaluated, the Malbec system shows the lowest Congestion Impact,
even when comparing to systems of similar or smaller size. The
99th percentile congestion impact remains under 10 for all tests.
The primary reason for this is the advanced congestion control
mechanisms of the Slingshot architecture, which detects the con-
gestion and applies appropriate back pressure. In the future we
would like to perform a larger set of experiments to show how
congestion control algorithms may be optimized, but this is outside
the scope of this work.

Last, we measured the application CI to relate the GPCNeT mea-
surements to job performance. This measurement was conducted
by running the Lulesh hydrodynamics proxy app [19] on 32 nodes
simultaneously with a point-to-point ingress congestion pattern
(not the full suite of GPCNeT congestors) on the remaining nodes
of Crystal, Osprey, and Malbec. The time per Lulesh iteration is
listed in Table 3, along with the application CI,

CIapp = tisolated/tcongested (3)

(the ratio of iteration timers). Comparing Tables 2 and 3 shows
that the application CI follow the same trends as the GPCNeT CIs;
networks with high GPCNeT CIs also have higher application CIs.
These trends are merely qualitative because (a) Lulesh spends a
smaller faction of its runtime communicating than GPCNeT, making
it less sensitive to network effects, and (b) processor differences
between the systems also change their absolute runtimes.

SC ’19, November 17–22, 2019, Denver, CO, USA Sudheer Chunduri et al.

Table 3: Lulesh congestion impact on different systems.

System Name tisolated (ms) tconдested (ms) CI
Crystal 45 85 1.9
Osprey 55 65 1.2
Malbec 30 30 1.0

6 CONCLUSIONS
Performance variation due to network congestion has been an issue
on HPC platforms for many years. Our development of a bench-
mark suite to quantitatively induce and measure congestion on
HPC machines yielded a number of insights into the nature of the
causes of congestion and how different networks are affected by
it. These insights, and the methods we used to derive them, have a
number of implications for future studies of performance variation.
By using the benchmark suite as it stands now, potentially with
the calibration technique we describe, operators of HPC systems
can determine what the sources of contention on their current ma-
chines are and actively work to minimize these effects. Additionally,
they now have a benchmark and associated metric to evaluate the
effectiveness of new network contention reduction mechanisms.

Our work also has implications for MPI (and other communica-
tion) library developers. By using the benchmark suite, they can
determine how implementations can be designed to utilize protocols
and algorithms that can tolerate the effects of network congestion
more effectively. Also, by including feedback via the instrumenta-
tion mechanisms we describe into their libraries they could even
provide runtime adaptivity to current network conditions.

In previous requests for proposals (RFPs) for leadership class
machines, a desire for the minimization of network congestion
has been expressed by specifying a simple co-efficient of variation
between different runs of the same application [25]. In future work
we plan to explore the inclusion of this benchmark into future RFPs.

ACKNOWLEDGMENTS
We are grateful to Ramesh Pankajakshan at LLNL for providing
data from Sierra, Scott Atchley at ORNL for providing data from
Summit and James Botts and Eric Roman at NERSC for providing
access to Edison time and system data.

This research used resources of the National Energy Research
Scientific Computing Center (NERSC), a U.S. Department of Energy
Office of Science User Facility operated under Contract No. DE-
AC02-05CH11231.

This research used resources of the Argonne Leadership Com-
puting Facility, which is a U.S. Department of Energy Office of Sci-
ence User Facility operated under contract DE-AC02-06CH11357.
Argonne National Laboratory’s work was supported by the U.S.
Department of Energy, Office of Science, under contract DE-AC02-
06CH11357.

REFERENCES
[1] Emre Ates, Yijia Zhang, Burak Aksar, Jim Brandt, Vitus J. Leung, Manuel Egele,

and Ayse K. Coskun. 2019. HPAS: An HPC Performance Anomaly Suite for
Reproducing Performance Variations. In Proceedings of the 48th International
Conference on Parallel Processing (ICPP 2019). ACM, New York, NY, USA, Article
40, 10 pages. https://doi.org/10.1145/3337821.3337907

[2] Brian W Barrett and K Scott Hemmert. 2009. An application based MPI mes-
sage throughput benchmark. In 2009 IEEE International Conference on Cluster
Computing and Workshops. IEEE, 1–8.

[3] Abhinav Bhatele, KathrynMohror, StevenH. Langer, and Katherine E. Isaacs. 2013.
There Goes the Neighborhood: Performance Degradation Due to Nearby Jobs.
In Proceedings of the International Conference on High Performance Computing,
Networking, Storage and Analysis (SC ’13). ACM, New York, NY, USA, Article 41,
12 pages. https://doi.org/10.1145/2503210.2503247

[4] A. Bhatele, A.R. Titus, J.J. Thiagarajan, N. Jain, T. Gamblin, P.-T. Bremer, M.
Schulz, and L.V. Kale. 2015. Identifying the Culprits Behind Network Congestion.
In Parallel and Distributed Processing Symposium (IPDPS), 2015 IEEE International.
113–122. https://doi.org/10.1109/IPDPS.2015.92

[5] Sudheer Chunduri, Kevin Harms, Scott Parker, Vitali Morozov, Samuel Oshin,
Naveen Cherukuri, and Kalyan Kumaran. 2017. Run-to-run Variability on Xeon
Phi Based Cray XC Systems. In Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis (SC ’17). ACM, New
York, NY, USA, Article 52, 13 pages. https://doi.org/10.1145/3126908.3126926

[6] Cray. 2019. Slingshot: The Interconnect for the Exascale Era. https://www.cray.
com/resources/slingshot-interconnect-for-exascale-era-download

[7] Jeffrey Dean and Luiz André Barroso. 2013. The Tail at Scale. Commun. ACM 56,
2 (Feb. 2013), 74–80. https://doi.org/10.1145/2408776.2408794

[8] MatthewGFDosanjh, Taylor Groves, Ryan E Grant, Ron Brightwell, and Patrick G
Bridges. 2016. RMA-MT: a benchmark suite for assessing MPI multi-threaded
RMA performance. In 2016 16th IEEE/ACM International Symposium on Cluster,
Cloud and Grid Computing (CCGrid). IEEE, 550–559.

[9] Greg Faanes, Abdulla Bataineh, Duncan Roweth, Tom Court, Edwin Froese,
Bob Alverson, Tim Johnson, Joe Kopnick, Mike Higgins, and James Reinhard.
2012. Cray Cascade: A Scalable HPC System Based on a Dragonfly Network.
In Proceedings of the International Conference on High Performance Computing,
Networking, Storage and Analysis (SC ’12). IEEE Computer Society Press, Los
Alamitos, CA, USA, Article 103, 9 pages. http://dl.acm.org/citation.cfm?id=
2388996.2389136

[10] Ernst Gunnar Gran, Magne Eimot, Sven-Arne Reinemo, Tor Skeie, Olav Lysne,
Lars Paul Huse, and Gilad Shainer. 2010. First experiences with congestion
control in InfiniBand hardware. In 2010 IEEE International Symposium on Parallel
& Distributed Processing (IPDPS). IEEE, 1–12.

[11] Ryan E. Grant, Kevin T. Pedretti, and Ann Gentile. 2015. Overtime: A Tool for
Analyzing Performance Variation Due to Network Interference. In Proceedings
of the 3rd Workshop on Exascale MPI (ExaMPI ’15). ACM, New York, NY, USA,
Article 4, 10 pages. https://doi.org/10.1145/2831129.2831133

[12] T. Groves, Y. Gu, and N. J. Wright. 2017. Understanding Performance Variability
on the Aries Dragonfly Network. In 2017 IEEE International Conference on Cluster
Computing (CLUSTER). 809–813. https://doi.org/10.1109/CLUSTER.2017.76

[13] Torsten Hoefler, Andrew Lumsdaine, and Wolfgang Rehm. 2007. Implementation
and Performance Analysis of Non-blocking Collective Operations for MPI. In
Proceedings of the 2007 ACM/IEEE Conference on Supercomputing (SC ’07). ACM,
NewYork, NY, USA, Article 52, 10 pages. https://doi.org/10.1145/1362622.1362692

[14] Torsten Hoefler, Torsten Mehlan, Andrew Lumsdaine, and Wolfgang Rehm. 2007.
Netgauge: A network performance measurement framework. In International
Conference on High Performance Computing and Communications. Springer, 659–
671.

[15] T. Hoefler, T. Schneider, and A. Lumsdaine. 2008. Multistage switches are not
crossbars: Effects of static routing in high-performance networks. In 2008 IEEE
International Conference on Cluster Computing. 116–125. https://doi.org/10.1109/
CLUSTR.2008.4663762

[16] InfiniBand Trade Association. 2019. http://www.infinibandta.org/.
[17] Intel. 2015. Intel MPI benchmarks 4.0. https://software.intel.com/en-us/articles/

intel-mpi-benchmark
[18] S. Jha, A. Patke, J. Brandt, A. Gentile, M. Showerman, E. Roman, Z. Kalbarczyk,

and R. Iyer. 2019. A Study of Network Congestion in Two Supercomputing High-
Speed Interconnects. In Proceedings of the 26th Symposium on High Performance
Interconnects (HotI) (HotI ’19).

[19] Ian Karlin, Jeff Keasler, and Rob Neely. 2013. LULESH 2.0 Updates and Changes.
Technical Report LLNL-TR-641973. 1–9 pages.

[20] Jiuxing Liu, Balasubramanian Chandrasekaran, Weikuan Yu, Jiesheng Wu, Dar-
ius Buntinas, Sushmitha Kini, Dhabaleswar K Panda, and Pete Wyckoff. 2004.
Microbenchmark performance comparison of high-speed cluster interconnects.
Ieee Micro 24, 1 (2004), 42–51.

[21] Qian Liu, Robert D Russell, and Ernst Gunnar Gran. 2016. Improvements to the
InfiniBand congestion control mechanism. In 2016 IEEE 24th Annual Symposium
on High-Performance Interconnects (HOTI). IEEE, 27–36.

[22] S. Liu, H. Xu, L. Liu, W. Bai, K. Chen, and Z. Cai. 2018. RepNet: Cutting Latency
with Flow Replication in Data Center Networks. IEEE Transactions on Services
Computing (2018), 1–1. https://doi.org/10.1109/TSC.2018.2793250

[23] Piotr R Luszczek, David H Bailey, Jack J Dongarra, Jeremy Kepner, Robert F
Lucas, Rolf Rabenseifner, and Daisuke Takahashi. 2006. The HPC Challenge
(HPCC) Benchmark Suite. In Proceedings of the 2006 ACM/IEEE Conference on
Supercomputing (SC ’06). ACM, New York, NY, USA, Article 213. https://doi.org/

https://doi.org/10.1145/3337821.3337907
https://doi.org/10.1145/2503210.2503247
https://doi.org/10.1109/IPDPS.2015.92
https://doi.org/10.1145/3126908.3126926
https://www.cray.com/resources/slingshot-interconnect-for-exascale-era-download
https://www.cray.com/resources/slingshot-interconnect-for-exascale-era-download
https://doi.org/10.1145/2408776.2408794
http://dl.acm.org/citation.cfm?id=2388996.2389136
http://dl.acm.org/citation.cfm?id=2388996.2389136
https://doi.org/10.1145/2831129.2831133
https://doi.org/10.1109/CLUSTER.2017.76
https://doi.org/10.1145/1362622.1362692
https://doi.org/10.1109/CLUSTR.2008.4663762
https://doi.org/10.1109/CLUSTR.2008.4663762
http://www.infinibandta.org/
https://software.intel.com/en-us/articles/intel-mpi-benchmark
https://software.intel.com/en-us/articles/intel-mpi-benchmark
https://doi.org/10.1109/TSC.2018.2793250
https://doi.org/10.1145/1188455.1188677
https://doi.org/10.1145/1188455.1188677

The Global Performance and Congestion Network Tests SC ’19, November 17–22, 2019, Denver, CO, USA

10.1145/1188455.1188677
[24] Pulkit A. Misra, María F. Borge, Íñigo Goiri, Alvin R. Lebeck, Willy Zwaenepoel,

and Ricardo Bianchini. 2019. Managing Tail Latency in Datacenter-Scale File
Systems Under Production Constraints. In Proceedings of the Fourteenth EuroSys
Conference 2019 (EuroSys ’19). ACM, New York, NY, USA, Article 17, 15 pages.
https://doi.org/10.1145/3302424.3303973

[25] Department of Energy. 2013. Trinity / NERSC-8 RFP. https://www.nersc.gov/
users/computational-systems/cori/nersc-8-procurement/trinity-nersc-8-rfp/

[26] David Skinner and William Kramer. 2005. Understanding the causes of perfor-
mance variability in HPC workloads. InWorkload Characterization Symposium,
2005. Proceedings of the IEEE International. IEEE, 137–149.

[27] Summit: Oak Ridge National Laboratory’s 200 petaflop supercomputer . 2019.
https://www.olcf.ornl.gov/olcf-resources/compute-systems/summit/.

[28] Nathan R Tallent, Abhinav Vishnu, Hubertus Van Dam, Jeff Daily, Darren J
Kerbyson, and Adolfy Hoisie. 2015. Diagnosing the causes and severity of one-
sided message contention. In ACM SIGPLAN Notices, Vol. 50. ACM, 130–139.

[29] The Gen-Z Consortium. 2019. https://genzconsortium.org/.

[30] Robert Underwood, Jason Anderson, and Amy Apon. 2018. Measuring Net-
work Latency Variation Impacts to High Performance Computing Applica-
tion Performance. In Proceedings of the 2018 ACM/SPEC International Confer-
ence on Performance Engineering (ICPE ’18). ACM, New York, NY, USA, 68–79.
https://doi.org/10.1145/3184407.3184427

[31] Hans Weeks, Matthew GF Dosanjh, Patrick G Bridges, and Ryan E Grant. 2016.
SHMEM-MT: a benchmark suite for assessing multi-threaded SHMEM perfor-
mance. InWorkshop on OpenSHMEM and Related Technologies. Springer, 227–231.

[32] Yunqi Zhang, David Meisner, Jason Mars, and Lingjia Tang. 2016. Tread-
mill: Attributing the Source of Tail Latency Through Precise Load Testing
and Statistical Inference. In Proceedings of the 43rd International Symposium
on Computer Architecture (ISCA ’16). IEEE Press, Piscataway, NJ, USA, 456–468.
https://doi.org/10.1109/ISCA.2016.47

[33] Yibo Zhu, Haggai Eran, Daniel Firestone, Chuanxiong Guo, Marina Lipshteyn,
Yehonatan Liron, Jitendra Padhye, Shachar Raindel, Mohamad Haj Yahia, and
Ming Zhang. 2015. Congestion control for large-scale RDMA deployments. ACM
SIGCOMM Computer Communication Review 45, 4 (2015), 523–536.

https://doi.org/10.1145/1188455.1188677
https://doi.org/10.1145/3302424.3303973
https://www.nersc.gov/users/computational-systems/cori/nersc-8-procurement/trinity-nersc-8-rfp/
https://www.nersc.gov/users/computational-systems/cori/nersc-8-procurement/trinity-nersc-8-rfp/
https://www.olcf.ornl.gov/olcf-resources/compute-systems/summit/
https://genzconsortium.org/
https://doi.org/10.1145/3184407.3184427
https://doi.org/10.1109/ISCA.2016.47

	Abstract
	1 Introduction
	2 Background and Related Work
	3 Benchmark Design
	3.1 Sensitive (Canary) Traffic
	3.2 Congestors
	3.3 Execution Sequence

	4 Validation of Design Requirements
	4.1 Test Systems
	4.2 Effect of Varying PPort and Node Count
	4.3 Effect of Each Congestor
	4.4 Effect of MPI Implementation
	4.5 Understanding and Tuning the Scope of Congestion

	5 Congestion Impact on HPC Systems
	5.1 Test Systems
	5.2 Congestion Impact

	6 Conclusions
	Acknowledgments
	References

