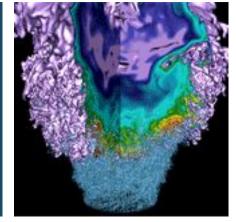
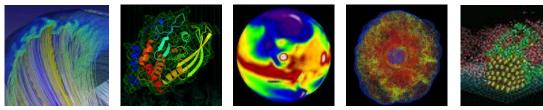

NUG Monthly Telecon February edition

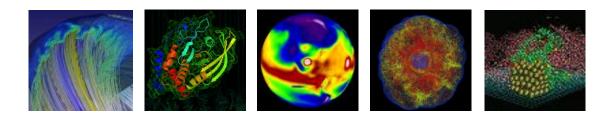
Feb 11th 2016



- Systems update
- Mendel Move update
- Cori update
- Edison update
- NUG annual meeting
- Queues and System Usage
- User Survey results
- Data movement and networks mini-tutorial
- Globus at NERSC

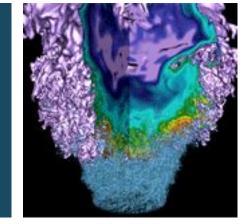


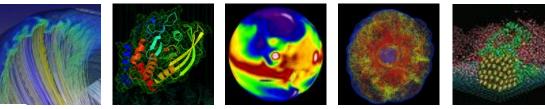
Systems Update


Tina Declerck NUG Monthly, 2/11/2016

Mendel move update

Dan Udwary NUG Monthly, 2/11/2016




- Cori, Edison and all file systems are now in operation at Wang Hall
- HPSS remains in Oakland, connected to Wang Hall via a 400 GB/sec network link
- A cluster servicing JGI & PDSF is shut down and in process of move from OSF to Wang Hall
- No overall Genepool or PDSF downtime due to move

Cori User Environment and Running Jobs Update

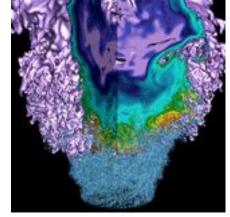
Office of

Science

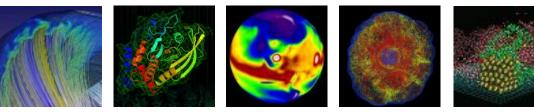
U.S. DEPARTMENT OF

Helen He NUG Monthly, 2/11/2016

Cori Batch System

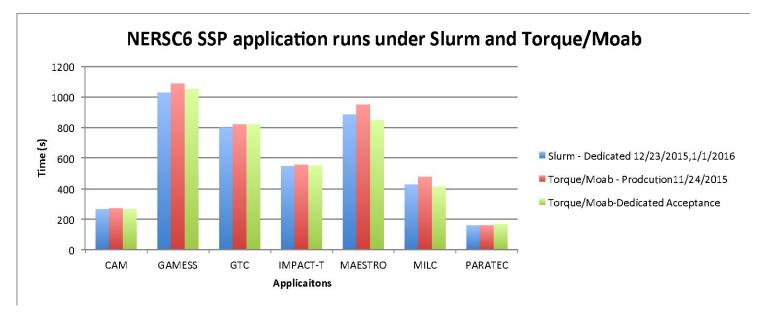

• Major issue with SLURM batch system: batch jobs lost on Feb 9

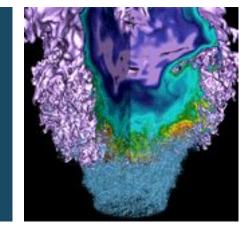
- Jobs submitted between 11:50 am and 5:10 pm were lost.
- All running jobs were terminated at 6:02 pm due to the control daemon crash during the recovery effort.
- Batch system was back to normal as of 8:46 pm.
- We are sorry about the loss and inconvenience.
- Tips to run your jobs faster: <u>https://www.nersc.gov/users/computational-</u> <u>systems/cori/running-jobs/queues-and-policies/</u>
- Hyperthreading is enabled by default.
 - SLURM sees 64 CPUs per node (each Cori node has 32 physical cores, total of 64 logical cores per node.)
- Always use "#SBATCH -N" to request number of nodes.
 - If asking nodes with "#SBATCH -n" (for num_MPI_tasks) only, you may get half the #nodes desired.

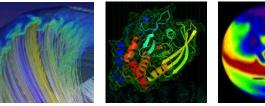


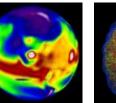
Edison Update

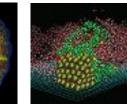
Zhengji Zhao NERSC User Engagement Group


NUG Monthly Teleconference, Berkeley CA, Feb 11 2016


- Host IP change
- NEW SSH authentication mechanism (1/12/2016)
- Power outages

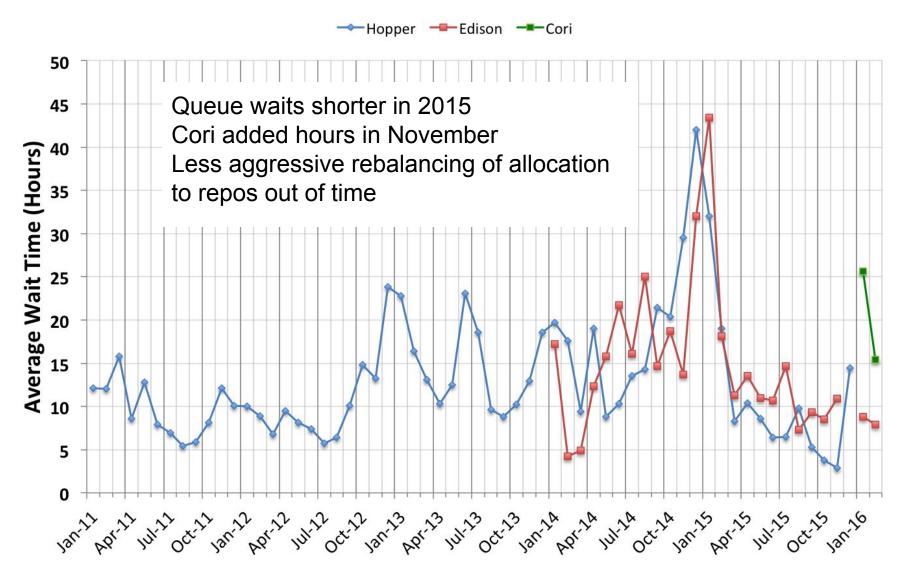

- The SSP benchmark we use to monitor the Edison performance get similar performance before and after the move.
- Please let us know if you observe any performance regression after the Edison move.

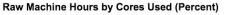

http://www.nersc.gov/users/computational-systems/edison/updates-and-status/timeline-and-updates/

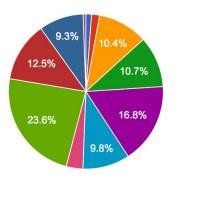

Queues and System Usage

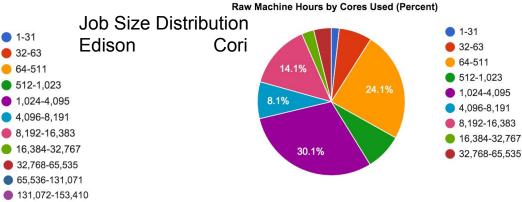
Cori/Edison Queues and Usage

- Goals
 - Edison: large compute intensive jobs
 - Cori: general purpose HPC jobs, data-optimized features
- Simplified queue structure for 2016
- Repos out of time get jobs moved to scavenger queue automatically
 - Minimal transfers to repos that exhaust their allocation
- NERSC recently implemented SLURM batch scheduler on Cori and Edison
 - still working out edge cases
- There have been user questions about job mix and throughput

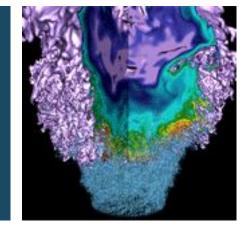


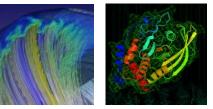

Batch Wait Time (Regular Charge Class)

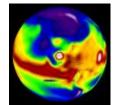


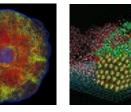

Job Distribution AY2016

Queue	Edison Hours	Edison N Jobs	Cori Hours	Cori N Jobs
Debug	3.3 %	33.0 %	5.2 %	19.0 %
Premium	1.1 %	1.8 %	7.4 %	1.7 %
Regular	82.9 %	60.1 %	83.0 %	26.7 %
Low	10.8 %	4.7 %	1.7 %	3.5 %
Scavenger*	1.2 %	0.4 %	1.1 %	0.3 %
Shared Node			1.2 %	46.2 %




*9 out of 699 repos are out of time




Users Group and Achievement Awards

Users Group Meeting 2016

NUG 2016

Registration is Open!

March 21-24, 2015 Wang Hall/CRT Building Berkeley Lab

http://www.nersc.gov/users/NUG/annual-meetings/nug-2016/

Monday, March 21: New User Training/Data & Vis training; Hack-a-thon Tuesday, March 22: Science & Technology Wednesday, March 23: Application Readiness and NESAP Thursday, March 24: Business Meeting (NERSC Updates and Discussions)

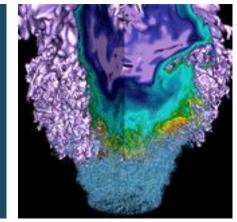
NERSC Science Achievement Awards: Call for Nominations Coming

2015 Recipients

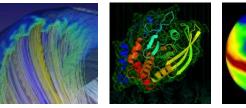
High Impact Scientific Achievement Berkeley Lab Particle Accelerator Sets World Record, LBNL BELLA team (Carlo Benedetti)

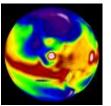
Early Career - Ken Chen, UC Santa Cruz Current: EACOA Fellow at the National Observatory of Japan

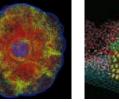
Innovative Use of HPC SPOT Suite Transforms Beamline Science (Craig Tull)

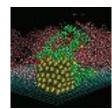


Early Career - Taylor Barnes, Caltech

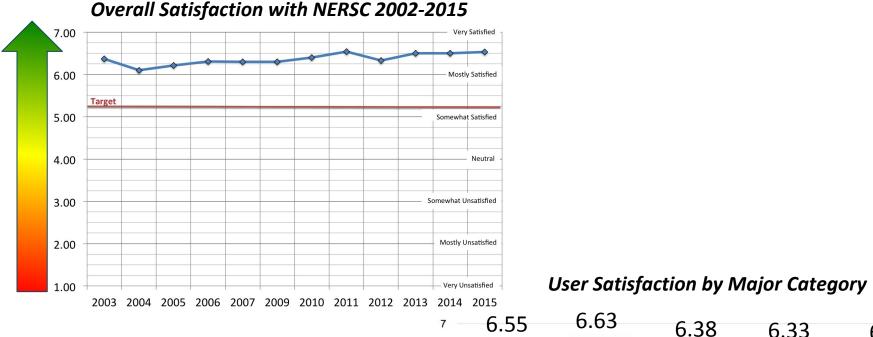

Current: Rear Admiral Grace Murray Hopper Postdoctoral Fellow at NERSC

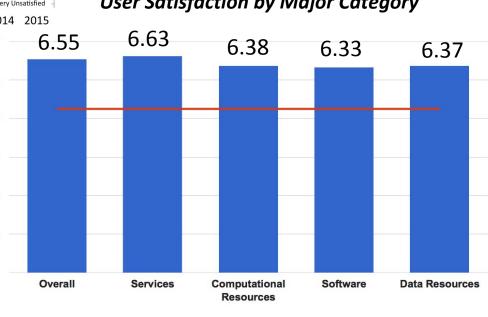



User Survey Results and User Ticket Statistics



Customer Satisfaction


- Annual NERSC User Survey
- Users score NERSC using a 1-7 scale
 - 7 Very satisfied
 - 6 Mostly satisfied
 - 5 Somewhat satisfied
 - 4 Neutral
 - 3 Somewhat dissatisfied
 - 2 Mostly dissatisfied
 - 1 Very dissatisfied
- Minimum satisfactory score 5.25
- 606 survey respondents
 - Similar response rate as in previous years (~10%)
 - Represents 63% of raw hours used on NERSC systems



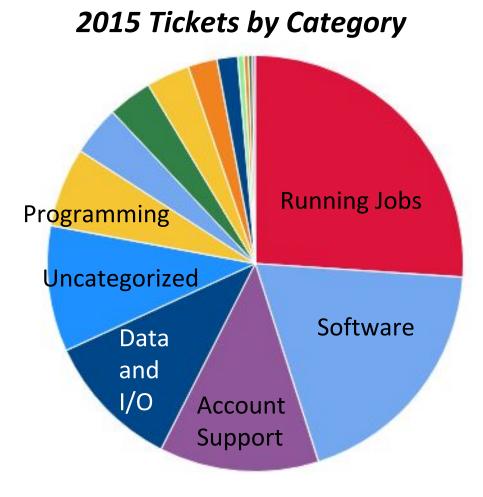
User satisfaction across all areas was high

Greatest Areas of Satisfaction and Areas of Improvements

Survey Item	2015 Score
HPSS: Uptime (Availability)	6.74
SERVICES: Account support and passwords	6.72
PROJECT: Reliability	6.71
OVERALL: NERSC Security	6.70
HPSS: Reliability (data integrity)	6.69
PROJECT: Uptime	6.66
CONSULT: Consulting Overall	6.64
WEB: System Status Info	6.64
OVERALL: NERSC Services	6.63
CONSULT: On-line help desk	6.62

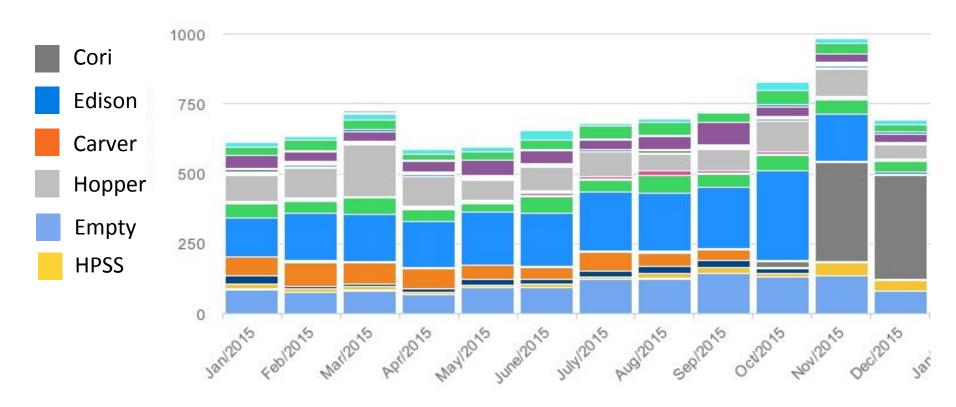
Survey Area	Score	Improvement over 2014
NERSC SW: Applications software	6.43	+0.11
HOPPER: Overall	6.38	+0.12
HOPPER: Batch queue structure	6.17	+0.20
DATA: Long-term data retention	6.15	+0.18
HOPPER: Batch wait time	5.92	+0.75
DATA: Scratch purge policy	5.86	+0.30
EDISON: Batch wait time	5.12	+0.24

Survey Area	Score	Decrease from 2014
WEB: NIM web accounting interface	6.40	-0.13
PROJECT: File and Directory Operations	6.32	-0.18
EDISON: Uptime (Availability)	6.27	-0.13
SERVICES: Allocations process	6.23	-0.20
TRAINING: Video Tutorials	5.95	-0.28



Tickets by Category

- 8,422 tickets were submitted by NERSC program users in 2015
- Compared to 2014 consultants are fielding more questions about performance, profiling, and data and I/O



Tickets by Month and System

Ticket Count by Month and by System

Moving Data Over Networks Network-Based Data Transfer at NERSC

Eli Dart, Network Engineer ESnet Science Engagement Lawrence Berkeley National Laboratory

NERSC User Group Monthly Telecon

Berkeley, CA

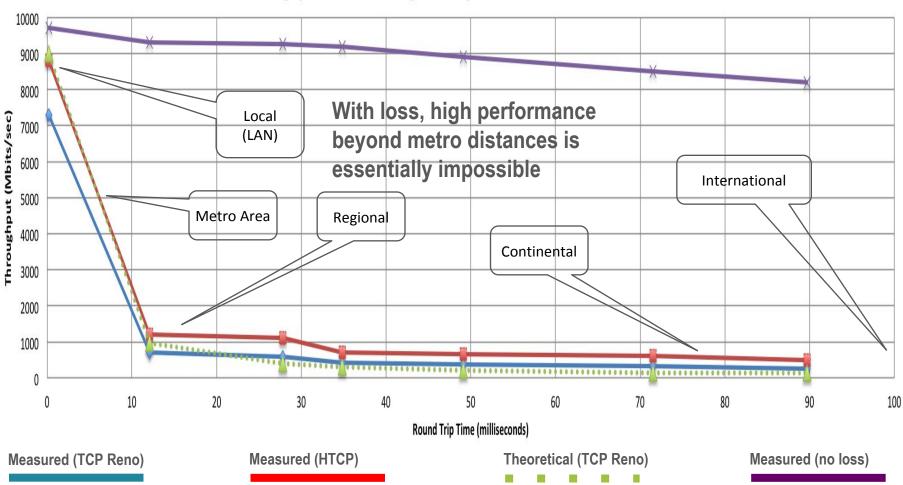
February 11, 2016

Motivation

- Networks are an essential part of data-intensive science
 - Connect data sources to data analysis
 - Connect collaborators to each other
 - Enable machine-consumable interfaces to data and analysis resources (e.g. portals), automation, scale
- Performance is critical
 - Exponential data growth
 - Constant human factors
 - Data movement and data analysis must keep up
- Effective use of wide area (long-haul) networks by scientists has historically been difficult
- Some of this is for your system administrator
 - Point your sysadmin to <u>http://fasterdata.es.net/</u> for more info
 - Feel free to follow up with me later engage@es.net

The Central Role of the Network

- The very structure of modern science assumes science networks exist: high performance, feature rich, global scope
- What is "The Network" anyway?
 - "The Network" is the set of devices and applications involved in the use of a remote resource
 - This is not about supercomputer interconnects
 - This is about data flow from experiment to analysis, between facilities, etc.
 - User interfaces for "The Network" portal, data transfer tool, workflow engine
 - Therefore, servers and applications must also be considered
- What is important? Ordered list:
 - 1. Correctness
 - 2. Consistency
 - 3. Performance



TCP – Ubiquitous and Fragile

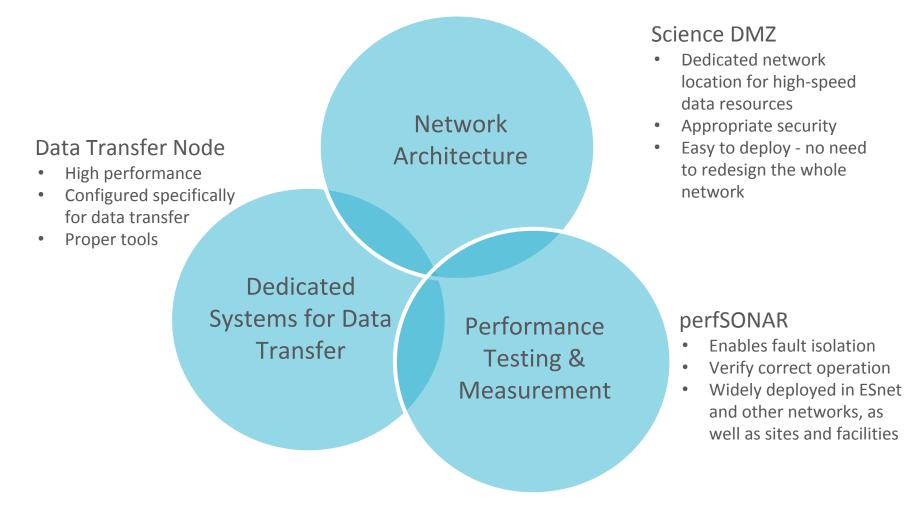
- Networks provide connectivity between applications running on hosts
 - From an application's perspective, the interface to "the other end" is a socket
 - Host operating system kernel provides socket interface, kernel implements TCP where the application can't see
 - Communication is between applications mostly over TCP
- TCP the fragile workhorse
 - TCP is (for very good reasons) timid packet loss is interpreted as congestion
 - Like it or not, TCP is used for the vast majority of data transfer applications (more than 95% of ESnet traffic is TCP)
 - Packet loss in conjunction with latency is a performance killer

A small amount of packet loss makes a huge difference in TCP performance

Throughput vs. Increasing Latency with .0046% Packet Loss

Working With TCP In Practice

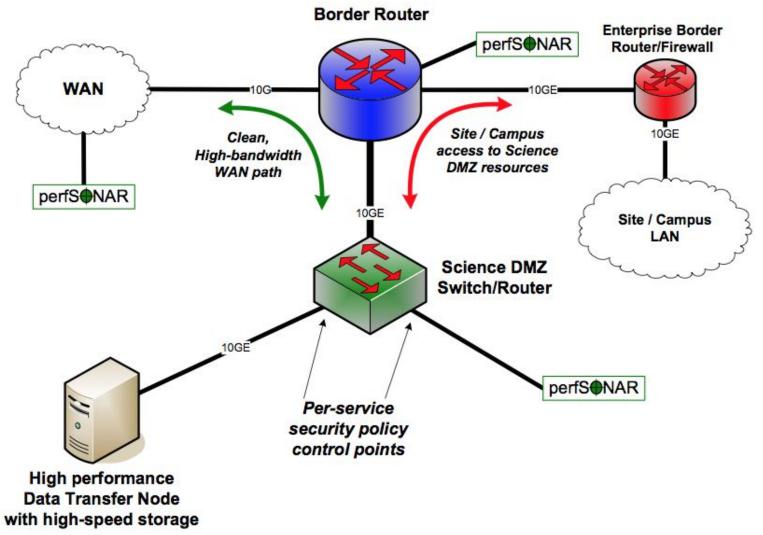
- Far easier to support TCP than to fix TCP
 - People have been trying to fix TCP for years limited success
 - Like it or not we're stuck with TCP in the general case
- Pragmatically speaking, we must accommodate TCP
 - Sufficient bandwidth to avoid congestion
 - Zero packet loss
 - Verifiable infrastructure
 - Networks are complex
 - Must be able to locate problems quickly
 - Small footprint is a huge win small number of devices so that problem isolation is tractable
- What if I don't use TCP?
 - TCP benefits are significant, but are not the only reason for Science DMZ
 - Architecture, cost, operational benefits



Putting A Solution Together

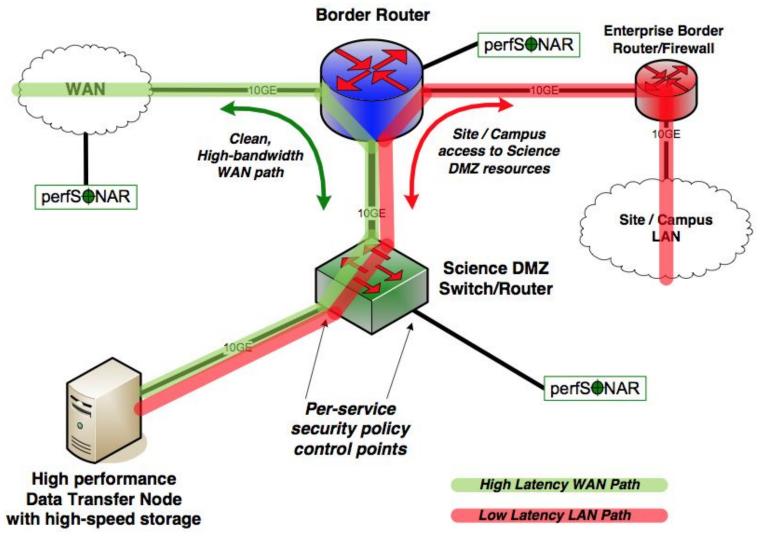
- Effective support for TCP-based data transfer
 - Design for correct, consistent, high-performance operation
 - Design for ease of troubleshooting
- Easy adoption is critical
 - Large laboratories and universities have extensive IT deployments
 - Drastic change is prohibitively difficult
- Cybersecurity defensible without compromising performance
- Borrow ideas from traditional network security
 - Traditional DMZ
 - Separate enclave at network perimeter ("Demilitarized Zone")
 - Specific location for external-facing services
 - Clean separation from internal network
 - Do the same thing for science Science DMZ

The Science DMZ Design Pattern



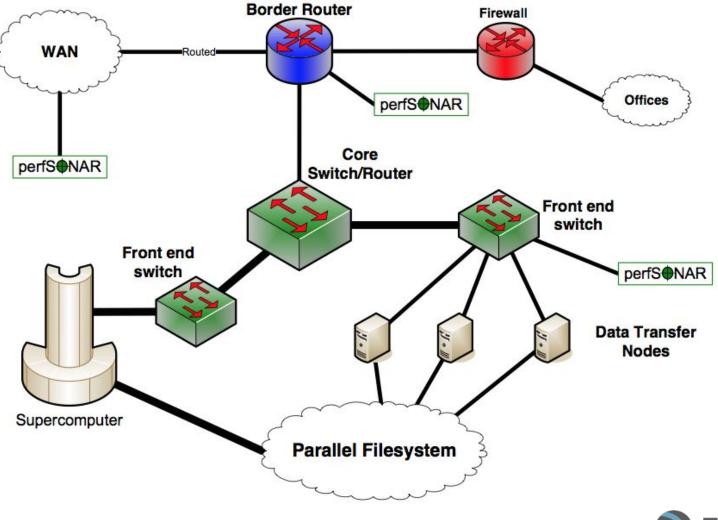
Abstract or Prototype Deployment

- (This section is for your system administrator send them to me, use <u>engage@es.net</u>)
- Add-on to existing network infrastructure
 - All that is required is a port on the border router
 - Small footprint, pre-production commitment
- Easy to experiment with components and technologies
 - DTN prototyping
 - perfSONAR testing
- Limited scope makes security policy exceptions easy
 - Only allow traffic from partners
 - Add-on to production infrastructure lower risk than rebuilding existing infrastructure



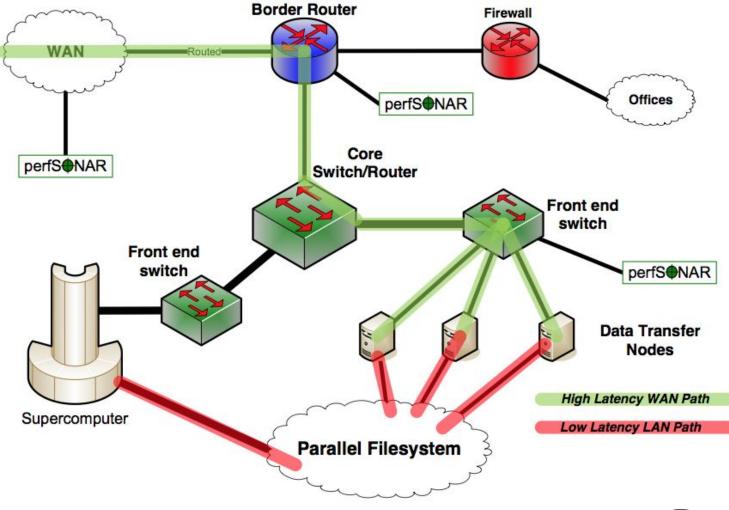
Science DMZ Design Pattern (Abstract)

Local And Wide Area Data Flows



Supercomputer Center Deployment

- High-performance networking is assumed in this environment
 - Data flows between systems, between systems and storage, wide area, etc.
 - Global filesystem often ties resources together
 - Portions of this may not run over Ethernet (e.g. IB)
 - Implications for Data Transfer Nodes
- "Science DMZ" may not look like a discrete entity here
 - By the time you get through interconnecting all the resources, you end up with most of the network in the Science DMZ
 - This is as it should be the point is appropriate deployment of tools, configuration, policy control, etc.
- Office networks can look like an afterthought, but they aren't
 - Deployed with appropriate security controls
 - Office infrastructure need not be sized for science traffic



HPC Center

HPC Center Data Path

Common Threads

- Two common threads exist in all these (and many other) examples
- Accommodation of TCP
 - Wide area portion of data transfers traverses purpose-built path
 - High performance devices that don't drop packets
- Ability to test and verify
 - When problems arise (and they always will), they can be solved if the infrastructure is built correctly
 - Small device count makes it easier to find issues
 - Multiple test and measurement hosts provide multiple views of the data path
 - perfSONAR nodes at the site and in the WAN
 - perfSONAR nodes at the remote site

Dedicated Systems – Data Transfer Node

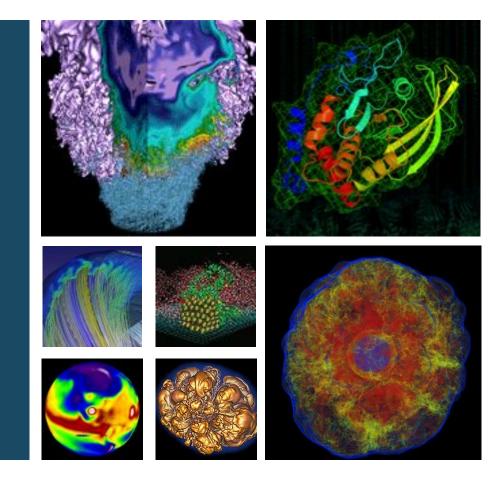
- The DTN is dedicated to data transfer
- Set up **specifically** for high-performance data movement
 - System internals (BIOS, firmware, interrupts, etc.)
 - Network stack
 - Storage (global filesystem, Fibrechannel, local RAID, etc.)
 - High performance tools
 - No extraneous software
- Limitation of scope and function is powerful
 - No conflicts with configuration for other tasks
 - Small application set makes cybersecurity easier

Data Transfer Tools For DTNs

- Parallelism is important
 - It is often easier to achieve a given performance level with four parallel connections than one connection
 - Several tools offer parallel transfers, including Globus/GridFTP
- Latency interaction is critical
 - Wide area data transfers have much higher latency than LAN transfers
 - Many tools and protocols assume a LAN
- Workflow integration is important
- Key tools: Globus, HPN-SSH

Data Transfer Tool Comparison

- In addition to the network, using the right data transfer tool is critical
- Data transfer test from Berkeley, CA to Argonne, IL (near Chicago).
 RTT = 53 ms, network capacity = 10Gbps.


Tool	Throughput
SCP:	140 Mbps
HPN patched SCP:	1.2 Gbps
FTP	1.4 Gbps

GridFTP, 4 streams 5.4 Gbps GridFTP, 8 streams 6.6 Gbps

- NERSC DTNs have both HPN-SSH and Globus
- Key point your local DTN and network significantly affect your ability to move data in and out of NERSC
 ESr

Data Transfers at **NERSC**

Office of

Science

U.S. DEPARTMENT OF

Jeff Porter rjporter@lbl.gov **Data and Analytics Services NERSC User Group Webinar**

February 11, 2016

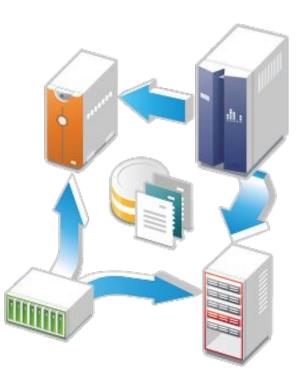
Dedicated Data Transfer Systems: Data Transfer Nodes

- Data Transfer Nodes (DTN) are servers dedicated to data transfer
 - At NERSC there are currently 4 nodes \rightarrow dtn[01-04].nersc.gov

• DTN features

- High bandwidth network interfaces
- Access to global NERSC file systems
- Tuned for efficient data transfers
- Tuned for transferring large volumes of data between NERSC and other major facilities (ORNL, ANL etc.)
- Can also move data between NERSC file systems and HPSS
- Use DTNs to move large volumes of data in & out of NERSC

- 4


Data Transfer Tools

- Globus.org ("Globus Online")
 - Reliable transfers of large data sets between sites or systems
- scp
 - copying individual files and directories
- GridFTP (globus-url-copy)
 - high performance CLI w/ grid certificates
- hsi/htar
 - data transfer into & out of HPSS
- Science Gateways

Office of

Science

– Community-specific services \rightarrow will be a topic for future NUG

Globus.org

• Managed 3rd party transfers

- <u>https://www.globus.org/</u>
- Web based interface
- REST/API for script access
- Managed data operations:
 - Endpoints
 - Sources & Destinations
 - NERSC endpoints:
 - #dtn
 - #cori, #edison, #pdsf, #jgi
 - Transfers
 - Files & directory selection
 - Initiate transfers
 - Activities
 - Status of transfer tasks

• Web Interface Demo

	5			_		LOCINI	ACTIVITY	00 V	• •
Endpoint porter#star4	4				Endpoint	NERSC D	ſN		
Path /star/institu	tions/lbl_prod/embedding/p	Go			Path	/~/STAR/			G
select all t_ i	up one folder 🖒 refresh list		≡ se	lect all	t_ up	one folder	C refree	sh list	=
2004			Folder	StRoot					Fold
e 2006_pp62			Folder 🛑	dbstuff					Folde
2007ProductionMinBia	as		Folder 📒	scripts					Folde
2008			Folder						
e 2010			Folder						
🛑 2010_auau39			Folder						
2011			Folder						
AuAu200_production			Folder						
AuAu7_production			Folder						
P10ih			Folder						
P10ik			Folder						
auau200_jetc			Folder						
production2009_200G			Folder						
tof_production2009_s			Folder						
AuAu7_P10ih_MuDst.	lis		.51 KB						
auau200_jetc_files.lis	-		.35 KB 66 MB						
auau200_jetc_mudst.									
auau200_jetc_mudst_ auau200_jetc_mudst_			41 MB .23 KB						
auau200_jetc_tm.lis	npss_mer.ns		.23 KB						
auau39_p10ih.lis		100	.66 KB						
auau39_p10ik.lis			.35 KB						
	lat ab								
Label This Transfer									
	This will be displayed in your transfe	r activity.							
Transfer Settings	sync - only transfer new or	changed files	0						
	delete files on destination ti								
	preserve source file modific								
	verify file integrity after tran								
							Get G	lobus Connect Pe	ersonal
	encrypt transfer @						Turn	your computer into	an endp

