

Fusion Energy Sciences Program Summary & Status

Presented at the DOE Technical Program Review on Large Scale Production Computing and Storage Requirements for Fusion Energy Sciences: Target 2017

John Mandrekas

Fusion Energy Sciences Office of Science US Department of Energy

March 19-20, 2013

The mission of the Fusion Energy Sciences (FES) program is to expand the fundamental understanding of matter at very high temperatures and densities and to build the scientific foundations needed to develop a fusion energy source. This is accomplished by studying plasmas under a wide range of temperature and density conditions, developing advanced diagnostics to make detailed measurements of plasma properties, and creating theoretical and computational models to resolve the essential physics ideas and principles.

- Advance the fundamental science of magnetically confined plasmas to develop the predictive capability needed for a sustainable fusion energy source
- Support the development of the scientific understanding required to design and deploy the materials needed to support a burning plasma environment
- Pursue scientific opportunities and grand challenges in high energy density plasma science to explore the feasibility of the inertial confinement approach as a fusion energy source, to better understand our universe, and to enhance national security and economic competitiveness
- Increase the fundamental understanding of basic plasma science, including both burning plasma and low temperature plasma science and engineering, to enhance economic competiveness and to create opportunities for a broader range of science-based applications

- Advance the fundamental science of magnetically confined plasmas to develop the predictive capability needed for a sustainable fusion energy source

 Magnetic Fusion Energy Science (MFES)
- Support the development of the scientific understanding required to design and deploy the materials needed to support a burning plasma environment
- Pursue scientific opportunities and grand challenges in high energy density plasma science to explore the feasibility of the inertial confinement approach as a fusion energy source, to better understand our universe, and to enhance national security and economic competitiveness
- Increase the fundamental understanding of basic plasma science, including both burning plasma and low temperature plasma science and engineering, to enhance economic competiveness and to create opportunities for a broader range of science-based applications

MFES - ITER

- World's first burning plasma experiment
 - Enable the creation & study of self-heated plasmas
- ITER's mission: demonstrate the scientific and technological feasibility of fusion energy
- Being built in Cadarache, France, by an international consortium (U.S., China, India, Japan, South Korea, Russian Federation, & EU)
- First plasma expected ~ 2020

Status of ITER site – February 2013

ITER Physics R&D Needs

Office of Science

Area	Issues
MHD Stability	 Disruption Mitigation System (DMS) Error field control RWM / locked modes control by ELM coils
Divertor & Plasma-Wall Interactions	 All metal wall for DT phase (Be first wall & W divertor) Heat Fluxes to PFCs W performance material migration, fuel (T) retention, dust
Pedestal Physics	 ELM Control Pedestal Characteristics H-mode access
Confinement & Transport	 H-mode access / exit Particle / impurity transport Rotation & momentum transport Model validation
Integrated Operating Scenarios	 Investigation of candidate hybrid & steady-state scenarios Heating & Current Drive scenario validation Integrated plasma control capability
Energetic Particle Physics	Fast ion transport, redistribution, & lossPrediction & control of Alfvén Eigenmodes

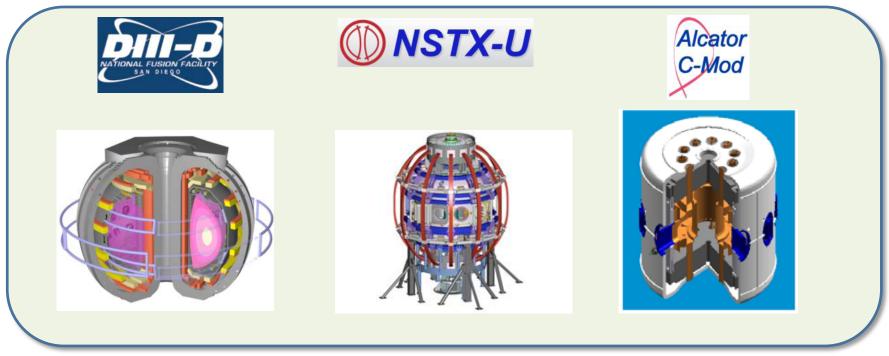
David Campbell, ITER Directorate for Plasma Operation (POP), ITPA meeting, December 2012

ITER Physics R&D Needs - 2

US MFES efforts strongly focused on addressing ITER Physics R&D needs

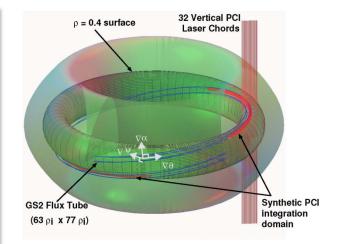
- Consistent with ITER Organization's (IO) expectation to rely on its members for resolving physics issues
- High fidelity simulations critical during ITER operations
 - Each ITER shot may cost ~\$1M
 - Experimental proposals expected to be accompanied by modeling justification to ensure machine integrity and consistency with ITER's capabilities

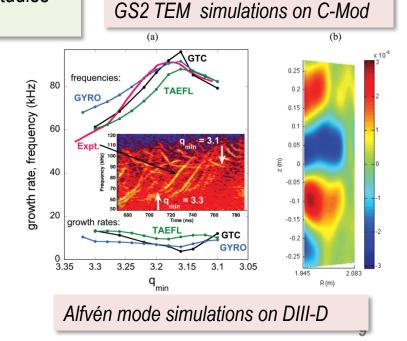
• NERSC resources critical for advancing this mission:

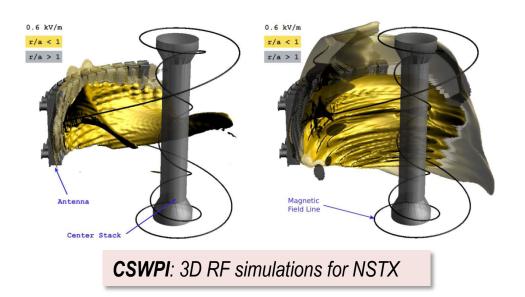

- Large fraction of NERSC MFES repository allocation used to address—directly and indirectly—ITER Physics R&D needs
- The FES 7 SciDAC Centers—major users of NERSC resources—are well aligned with ITER priorities
- Need for NERSC allocations expected to rise as ITER first plasma date approaches and a formal ITER research program is initiated, and as demand for higher fidelity / more integrated simulations increases

ite

MFES – Major User Facilities

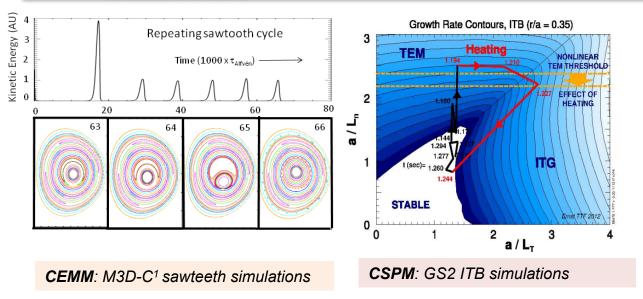

The major FES magnetic confinement **user facilities** provide the essential tools for the U.S. research community to explore and solve fundamental issues of fusion plasma physics. In addition, research at these facilities focuses on developing the predictive science needed for ITER operations and providing solutions to high-priority ITER technical issues.

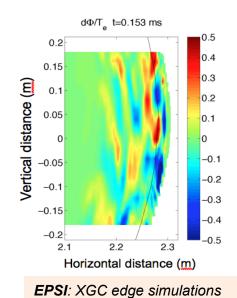


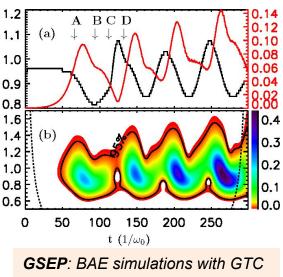


User Facilities & NERSC

- While local computing resources at each facility are still used for supporting day-to-day operations and between-shot analysis, NERSC resources are becoming increasingly important for validation studies
- A significant fraction of the MFES repo allocation is used for simulations supporting each facility's experimental program as well as joint coordinated activities, such as the annual FES Joint Research Target (JRT)
- Need is expected to increase as more computationally demanding, high physics fidelity models are employed in the validations studies

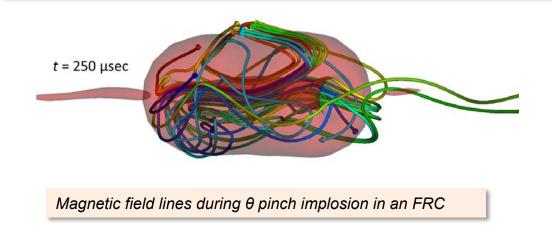


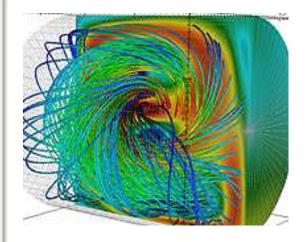


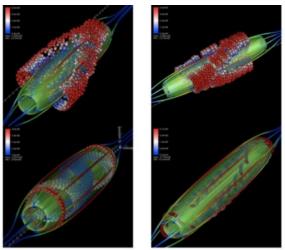


MFES -- Theory & Advanced Simulations

- **Theory**: advances scientific understanding of the fundamental physical processes governing the behavior of magnetically confined plasmas
- SciDAC: advances scientific discovery in fusion plasma science and materials science by exploiting leadership-class computing resources and associated advances in computational science
- NERSC resources—along with INCITE resources at the OLCF and ALCF Centers and HPC resources allocated via the ALCC program are <u>critical</u> for advancing the mission of these programs
 - SciDAC projects collectively used more than 50% of the entire FES NERSC allocation in AY2012



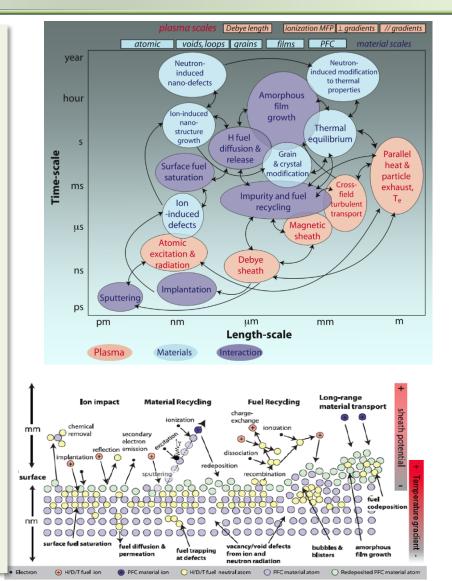



MFES--Small Scale Experimental Plasma Research (EPR)

- The EPR program provides data from small/intermediate-scale experiments at universities and national laboratories to:
 - Help validate theoretical models and simulation codes to develop an experimentally validated predictive capability for magnetically confined fusion plasmas
 - Test theories and scale phenomena relevant to burning plasma systems
- The EPR program emphasizes stellarators, spherical tori, field-reversed configurations, and spheromaks
- Within the EPR program, the multi-institutional Plasma
 Science & Innovation (PSI) Center uses NERSC resources to provide simulation support to the EPR community

Spheromac HiFi Simulation

Particle orbits for a single particle in an FRC field.

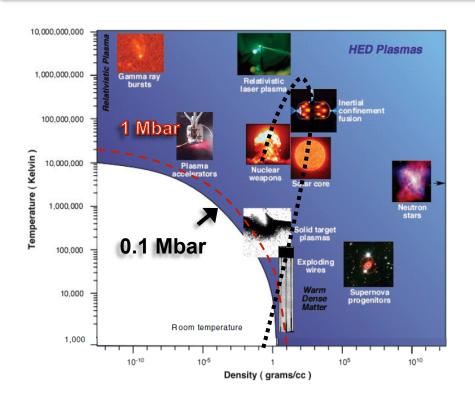

- Advance the fundamental science of magnetically confined plasmas to develop the predictive capability needed for a sustainable fusion energy source
- Support the development of the scientific understanding required to design and deploy the materials needed to support a burning plasma environment
- Pursue scientific opportunities and grand challenges in high energy density plasma science to explore the feasibility of the inertial confinement approach as a fusion energy source, to better understand our universe, and to enhance national security and economic competitiveness
- Increase the fundamental understanding of basic plasma science, including both burning plasma and low temperature plasma science and engineering, to enhance economic competiveness and to create opportunities for a broader range of science-based applications

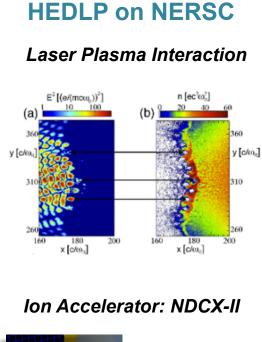
Materials Science

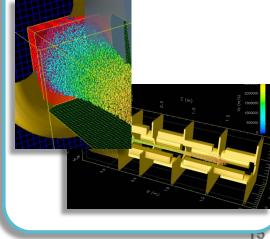
Office of Science

- Challenge is to develop a scientific understanding of candidate materials in order to better understand the mechanisms controlling performance limiting phenomena of materials for fusion reactors.
- Advanced simulations have a unique role to play, considering the significant extrapolation necessary to bridge the gap from the existing parameter space to the fusion energy regime due to the current absence of fusionrelevant neutron sources and plasma material interactions test stands.
- Although, historically, materials science research was a modest user of NERSC resources, this is rapidly changing after the addition of a multi-institutional Plasma Surface Interaction SciDAC partnership in the FES portfolio.
- Structural materials researchers have been relying on local resources for their simulation needs but, as their needs grow, migration to NERSC is very likely.
- Access to NERSC resources can help address the multiphysics, multiscale challenges of fusion materials science.

Wirth, Nordlund, Whyte, and Xu, Materials Research Society Bulletin 36 (2011) 216-222

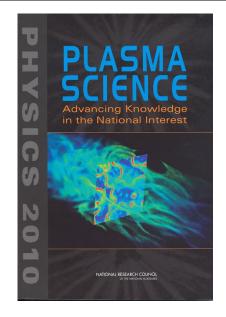



- Advance the fundamental science of magnetically confined plasmas to develop the predictive capability needed for a sustainable fusion energy source
- Support the development of the scientific understanding required to design and deploy the materials needed to support a burning plasma environment
- Increase the fundamental understanding of basic plasma science, including both burning plasma and low temperature plasma science and engineering, to enhance economic competiveness and to create opportunities for a broader range of science-based applications

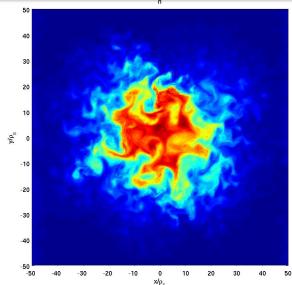


HEDLP & IFES

- HPC role in advancing HEDLP and IFE science is significant
- Large fraction of this community relies on NNSA or other HPC resources, including INCITE
- NERSC usage has been steadily increasing



- Advance the fundamental science of magnetically confined plasmas to develop the predictive capability needed for a sustainable fusion energy source
- Support the development of the scientific understanding required to design and deploy the materials needed to support a burning plasma environment
- Pursue scientific opportunities and grand challenges in high energy density plasma science to explore the feasibility of the inertial confinement approach as a fusion energy source, to better understand our universe, and to enhance national security and economic competitiveness


General Plasma Science

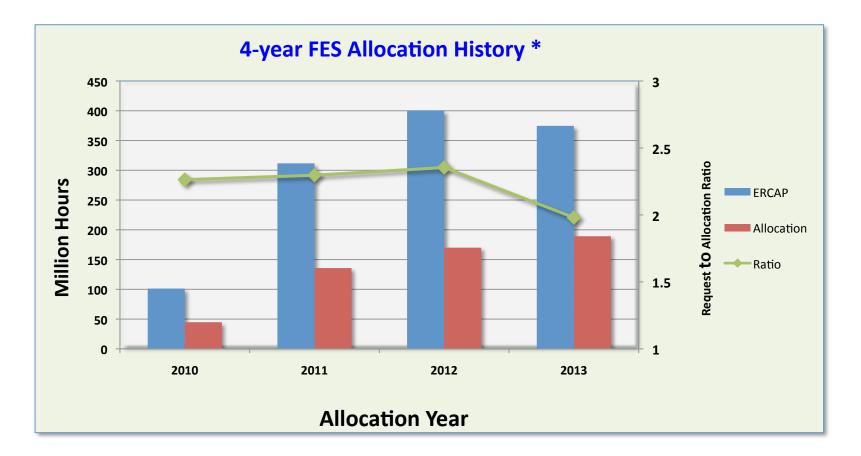
- An area of FES stewardship, consistent with the recommendations of the Plasma 2010 National Academies report
- Includes the NSF/DOE Partnership in Basic Plasma Science and Engineering, multi-institutional Plasma Science Centers, General Plasma Science efforts at National Laboratories, and an EPSCoR Center at UNH
- Most computational intensive efforts are in the crosscutting areas of magnetic reconnection and turbulence and in fusion-relevant atomic physics research

The LAPD device at the UCLA Basic Plasma Science Facility (BaPSF)

Turbulent Transport: Global 3D 2-fluid Braginskii simulations of LAPD (CICART)

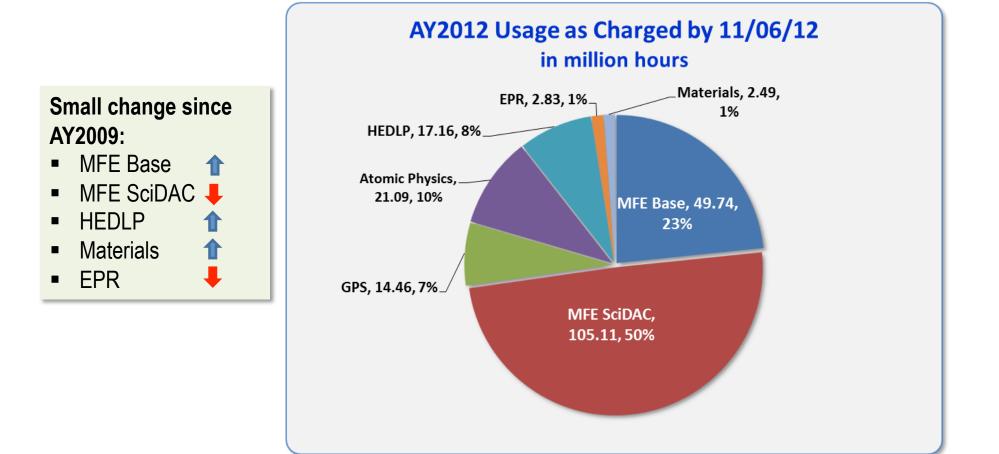
NERSC & FES

- From the days of the Controlled Thermonuclear Research (CTR) & the National Magnetic Fusion Energy Computer Center (MFECC) in the mid-1970's—the predecessors of NERSC—High Performance Computing (HPC) and NERSC have played a significant role in fusion energy research
- NERSC allocations—distributed via the annual ERCAP process and supplemented by ALCC—provide a <u>reliable</u> and <u>predictable</u> resource for meeting critical FES mission needs
 - Although allocations at OLCF and ALCF tend to be larger, the award process through INCITE entails significant risk and cannot be relied upon for programmatic mission-critical needs.

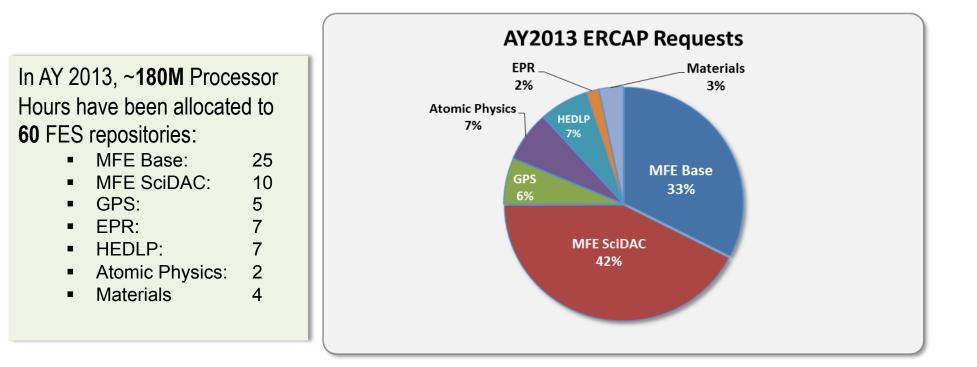


2013: Edison, CRAY XC30

1976: CDC 7600 at MFECC


Allocation History

* Reflects initial allocations; does not include infusions from NERSC reserves during the AY or ALCC allocations


Usage by Topical Area

ERCAP Requests by Topical Area

Office of Science

Program Review Meetings / Workshops

Program review meetings and workshops shape future directions. It's a unique opportunity to exchange information with all stakeholders.

2010 Large Scale Computing & Storage Requirements for FES

Thank You!