
Overview of ECP Software Technology

Michael A. Heroux, Sandia National Laboratories
Director of Software Technology

E4S at NERSC 2022, August 25, 2022

2

Outline

• ECP, Briefly

• Establishing software ecosystems

• Developing software for GPU systems

ECP in a Nutshell

4

Application Development (AD) Software Technology (ST) Hardware and Integration (HI)

Integrated delivery of ECP products
on targeted systems at leading DOE

HPC facilities
6 US HPC vendors

focused on exascale node and system
design; application integration and
software deployment to Facilities

Deliver expanded and vertically
integrated software stack to achieve
full potential of exascale computing

70 unique software products
spanning programming models and

run times,
math libraries,

data and visualization

Develop and enhance the predictive
capability of applications critical to

DOE
24 applications

National security, energy,
Earth systems, economic security,

materials, data
6 Co-Design Centers

Machine learning, graph analytics,
mesh refinement, PDE discretization,

particles, online data analytics

ECP’s holistic approach uses co-design and integration to
achieve exascale computing

Performant mission and science applications at scale

Aggressive
RD&D project

Mission apps; integrated
S/W stack

Deployment to DOE
HPC Facilities

Hardware
technology advances

ECP Software Technology Leadership Team

Rajeev Thakur, Programming Models and Runtimes (2.3.1)
Rajeev is a senior computer scientist at ANL and most recently led the ECP Software Technology focus area. His research interests are in parallel
programming models, runtime systems, communication libraries, and scalable parallel I/O. He has been involved in the development of open-source
software for large-scale HPC systems for over 20 years.

Jeff Vetter, Development Tools (2.3.2)
Jeff is a computer scientist at ORNL, where he leads the Future Technologies Group. He has been involved in research and development of
architectures and software for emerging technologies, such as heterogeneous computing and nonvolatile memory, for HPC for over 15 years.

Xaioye (Sherry) Li, Math Libraries (2.3.3)
Sherry is a senior scientist at Berkeley Lab. She has over 20 years of experience in high-performance numerical software, including development of
SuperLU and related linear algebra algorithms and software.

Jim Ahrens, Data and Visualization (2.3.4)
Jim is a senior research scientist at the Los Alamos National Laboratory (LANL) and an expert in data science at scale. He started and actively
contributes to many open-source data science packages including ParaView and Cinema.

Mike Heroux, Software Technology Director
Mike has been involved in scientific software R&D for 30 years. His first 10 were at Cray in the LIBSCI and scalable apps groups. At Sandia he
started the Trilinos and Mantevo projects, is author of the HPCG benchmark for TOP500, and leads productivity and sustainability efforts for DOE.

Lois Curfman McInnes, Software Technology Deputy Director
Lois is a senior computational scientist in the Mathematics and Computer Science Division of ANL. She has over 20 years of experience in HPC
numerical software, including development of PETSc and leadership of multi-institutional work toward sustainable scientific software ecosystems.

Kathryn Mohror, NNSA ST (2.3.6)
Kathryn is Group Leader for the CASC Data Analysis Group at LLNL. Her work focuses on I/O for extreme scale systems, scalable performance
analysis and tuning, fault tolerance, and parallel programming paradigms. She is a 2019 recipient of the DOE Early Career Award.

Todd Munson, Software Ecosystem and Delivery (2.3.5)
Todd is a computational scientist in the Math and Computer Science Division of ANL. He has nearly 20 years of experience in high-performance
numerical software, including development of PETSc/TAO and project management leadership in the ECP CODAR project.

5

6

ECP ST has six technical areas

Programming
Models &
Runtimes

•Enhance and get
ready for exascale the
widely used MPI and
OpenMP
programming models
(hybrid programming
models, deep memory
copies)

•Development of
performance
portability tools (e.g.,
Kokkos and Raja)

•Support alternate
models for potential
benefits and risk
mitigation: PGAS
(UPC++/GASNet)
,task-based models
(Legion, PaRSEC)

•Libraries for deep
memory hierarchy and
power management

Development
Tools

•Continued,
multifaceted
capabilities in
portable, open-
source LLVM
compiler ecosystem
to support expected
ECP architectures,
including support for
F18

•Performance
analysis tools that
accommodate new
architectures,
programming
models, e.g., PAPI,
Tau

Math Libraries
•Linear algebra,
iterative linear
solvers, direct linear
solvers, integrators
and nonlinear
solvers, optimization,
FFTs, etc

•Performance on new
node architectures;
extreme strong
scalability

•Advanced algorithms
for multi-physics,
multiscale simulation
and outer-loop
analysis

•Increasing quality,
interoperability,
complementarity of
math libraries

Data and
Visualization

• I/O via the HDF5
API

• Insightful,
memory-efficient
in-situ
visualization and
analysis – Data
reduction via
scientific data
compression

• Checkpoint
restart

Software
Ecosystem

•Develop features in
Spack necessary to
support all ST
products in E4S, and
the AD projects that
adopt it

•Development of
Spack stacks for
reproducible turnkey
deployment of large
collections of
software

•Optimization and
interoperability of
containers on HPC
systems

•Regular E4S
releases of the ST
software stack and
SDKs with regular
integration of new ST
products

NNSA ST
•Open source NNSA
Software projects

•Projects that have
both mission role
and open science
role

•Major technical
areas: New
programming
abstractions, math
libraries, data and
viz libraries

•Cover most ST
technology areas

•Subject to the same
planning, reporting
and review
processes

ECP ST Director: Mike Heroux
ECP ST Deputy Director: L.C. McInnes

Rajeev Thakur Jeff Vetter Sherry Li Jim Ahrens Todd Munson Kathryn MohrorArea
Leads:

7

ST L4 Leads
- WBS
- Name
- PIs
- PCs - Project
Coordinators

WBS WBS Name CAM/PI PC
2.3 Software Technology Heroux, Mike, McInnes, Lois
2.3.1 Programming Models & Runtimes Thakur, Rajeev
2.3.1.01 PMR SDK Shende, Sameer Shende, Sameer
2.3.1.07 Exascale MPI (MPICH) Guo, Yanfei Guo, Yanfei
2.3.1.08 Legion McCormick, Pat McCormick, Pat
2.3.1.09 PaRSEC Bosilca, George Carr, Earl
2.3.1.14 Pagoda: UPC++/GASNet for Lightweight Communication and Global Address Space Support Hargrove, Paul Hargrove, Paul
2.3.1.16 SICM Graham, Jonathan Turton, Terry
2.3.1.17 OMPI-X Bernholdt, David Grundhoffer, Alicia
2.3.1.18 RAJA/Kokkos Trott, Christian Robert Trujillo, Gabrielle
2.3.1.19 Argo: Low-level resource management for the OS and runtime Beckman, Pete Gupta, Rinku

2.3.2 Development Tools Vetter, Jeff
2.3.2.01 Development Tools Software Development Kit Miller, Barton Tim Haines
2.3.2.06 Exa-PAPI++: The Exascale Performance Application Programming Interface with Modern C++ Dongarra, Jack Jagode, Heike
2.3.2.08 Extending HPCToolkit to Measure and Analyze Code Performance on Exascale Platforms Mellor-Crummey, John Meng, Xiaozhu
2.3.2.10 PROTEAS-TUNE Vetter, Jeff Hornick, Mike
2.3.2.11 SOLLVE: Scaling OpenMP with LLVm for Exascale Chandrasekaran, Sunita Oryspayev, Dossay
2.3.2.12 FLANG McCormick, Pat Perry-Holby, Alexis

2.3.3 Mathematical Libraries Li, Sherry
2.3.3.01 Extreme-scale Scientific xSDK for ECP Yang, Ulrike Yang, Ulrike
2.3.3.06 Preparing PETSc/TAO for Exascale Munson, Todd Munson, Todd
2.3.3.07 STRUMPACK/SuperLU/FFTX: sparse direct solvers, preconditioners, and FFT libraries Li, Sherry Li, Sherry
2.3.3.12 Enabling Time Integrators for Exascale Through SUNDIALS/ Hypre Woodward, Carol Woodward, Carol
2.3.3.13 CLOVER: Computational Libraries Optimized Via Exascale Research Dongarra, Jack Carr, Earl
2.3.3.14 ALExa: Accelerated Libraries for Exascale/ForTrilinos Prokopenko, Andrey Grundhoffer, Alicia
2.3.3.15 Sake: Solvers and Kernels for Exascale Rajamanickam, Siva Trujillo, Gabrielle

2.3.4 Data and Visualization Ahrens, James
2.3.4.01 Data and Visualization Software Development Kit Atkins, Chuck Bagha, Neelam
2.3.4.09 ADIOS Framework for Scientific Data on Exascale Systems Klasky, Scott Hornick, Mike
2.3.4.10 DataLib: Data Libraries and Services Enabling Exascale Science Ross, Rob Ross, Rob
2.3.4.13 ECP/VTK-m Moreland, Kenneth Moreland, Kenneth
2.3.4.14 VeloC: Very Low Overhead Transparent Multilevel Checkpoint/Restart/Sz Cappello, Franck Ehling, Scott
2.3.4.15 ExaIO - Delivering Efficient Parallel I/O on Exascale Computing Systems with HDF5 and Unify Byna, Suren Bagha, Neelam
2.3.4.16 ALPINE: Algorithms and Infrastructure for In Situ Visualization and Analysis/ZFP Ahrens, James Turton, Terry

2.3.5 Software Ecosystem and Delivery Munson, Todd
2.3.5.01 Software Ecosystem and Delivery Software Development Kit Willenbring, James M Willenbring, James M
2.3.5.09 SW Packaging Technologies Gamblin, Todd Gamblin, Todd
2.3.5.10 ExaWorks Laney, Dan Laney, Dan

2.3.6 NNSA ST Mohror, Kathryn
2.3.6.01 LANL ATDM Mike Lang Vandenbusch, Tanya Marie
2.3.6.02 LLNL ATDM Becky Springmeyer Gamblin, Todd
2.3.6.03 SNL ATDM Jim Stewart Trujillo, Gabrielle

ECP ST Stats

- 250 staff
- 70 products
- 35 L4 subprojects
- 30 universities
- 9 DOE labs
- 6 technical areas
- 1 of 3 ECP focus

areas

7

8

ECP Software Technology works on products that apps need now and in the future

Example Products Engagement

MPI – Backbone of HPC apps Explore/develop MPICH and OpenMPI new features & standards

OpenMP/OpenACC –On-node parallelism Explore/develop new features and standards

Performance Portability Libraries Lightweight APIs for compile-time polymorphisms

LLVM/Vendor compilers Injecting HPC features, testing/feedback to vendors

Perf Tools - PAPI, TAU, HPCToolkit Explore/develop new features

Math Libraries: BLAS, sparse solvers, etc. Scalable algorithms and software, critical enabling technologies

IO: HDF5, MPI-IO, ADIOS Standard and next-gen IO, leveraging non-volatile storage

Viz/Data Analysis ParaView-related product development, node concurrency

Key themes:
• Focus: GPU node architectures and advanced memory & storage technologies
• Create: New high-concurrency, latency tolerant algorithms
• Develop: New portable (Nvidia, Intel, AMD GPUs) software product
• Enable: Access and use via standard APIs
Software categories:
• Next generation established products: Widely used HPC products (e.g., MPICH, OpenMPI, PETSc)
• Robust emerging products: Address key new requirements (e.g., Kokkos, RAJA, Spack)
• New products: Enable exploration of emerging HPC requirements (e.g., SICM, zfp, UnifyCR)

Legacy: A stack that
enables performance
portable application
development on
leadership platforms

9

Exascale Systems – Primary targets for ECP Software Teams

Exascale
Systems

ORNL
HPE/AMD

LLNL
HPE/AMD

ANL
Intel/HPE

Aurora

• ECP libraries & tools migrating to GPU platforms

• Target AMD, Intel and Nvidia (Perlmutter) devices

• Growing support for Arm/SVE in the same stack

• Mature MPI/CPU stack also robust and evolving

• Eye toward specialized devices, e.g., dataflow

• Legacy:
– A stack to support application portability
– Across many different distributed systems with
– Multiple kinds of devices (GPUs, CPUs, etc)

Perlmutter is an important target and vehicle for our
ECP work. It is essential for progress and delivery!

The Growing
Complexity of Scientific
Application Software
Stacks

11

Challenges

As our software gets more complex, it is getting harder to
install tools and libraries correctly in an integrated and
interoperable software stack.

12

13

7

10

7

40

11

17

31

7 7

32

5

10

8

6

15

8

5

0

4

10

13 13

20

16

13

5

8

11

77

15

0

6

19

3

9

11

6

1

7

11

12

8

0

5

2

5

0

1

4

2

4

0

21

3

5

24

4

3

11

3

5

3

10

2

11

9

2

0

7

5

6

11

3

4

2

1

3 3

9

1

4

3

2

6

1

8

4

2

THE NUMBER OF ECP SOFTWARE TECHNOLOGY PROJECT DEPENDENCIES
FOR EACH ECP APPLICATION PROJECT (ANONYMIZED)

Critical Important Interested

1 2 3 … … 30
Application Project (Anonymized)

Total Avg Max
Critical 359 12.0 40

Important 198 6.6 24
Interest 141 4.7 11

13

Integration: AD Teams Depend Heavily on ST Software to Meet KPPs

nanoBragg code ported
from Nvidia to AMD GPUs
with minimal effort

ExaFEL

Kokkos

ADIOS enables in-memory
coupling between GENE
and XGC

WDMApp

ADIOS

hypre solve performance
on AMD GPUs 30-40%
faster than Summit

ExaWind

hypre
Slide courtesy of
Andrew Siegel
and Erik Draeger

14

Interesting Themes Arising from 2021 AD Assessment

Sparse solver progress/research challenges

Evolving OpenMP offload performance

Co-maturation of vendor compilers,
software stack

 ST and CD integration success stories

Maturity of performance analysis tools

Network performance Slide courtesy of
Andrew Siegel
and Erik Draeger

15

A Sampler of Products

• No two project alike

• Some personality driven

• Some community driven

• Small, medium, large

16

Takeaways from product sampler
• Wide range of products and teams: libs, tools, small personality-driven, large community-driven

• Varied user base and maturity: widely used, new, emerging

• Variety of destinations: direct-to-user, facilities, community stacks, vendors, facilities, combo of these

• Wide range of dev practices and workflows from informal to formal

• Wide range of tools: GitHub, GitLab, Doxygen, Readthedocs, CMake, autotools, etc.

• Question at this point might (should?) be:
– Why are you trying to make a portfolio from this eclectic assortment of products?

• Answer:
– Each product team charged with challenging tasks:

• Provide capabilities for next-generation leadership platforms
• Address increasing software quality expectations
• While independently developed, product compatibility and complementarity improvements matter

– Working together on these frontiers is better than going alone

17

• The ECP software ecosystem is truly a complex system, not just complicated

• Plan, execute, track and assess. Repeat

• Challenges are emergent: technical, sociological, and cognitive

Takeaways from software complexity

Responding to
complexity: Software
Ecosystem via
Platforms

19

Software Platforms: “Working in Public” Nadia Eghbal

• Platforms in the software world are digital environments that
intend to improve the value, reduce the cost, and accelerate the
progress of the people and teams who use them

• Platforms can provide tools, workflows, frameworks, and cultures
that provide a (net) gain for those who engage

• Eghbal Platforms:

Eghbal, Nadia. Working in Public: The Making and Maintenance of Open Source Software (p. 60). Stripe Press. Kindle Edition.

20

About Platforms and ECP

• The ECP is commissioned to provide new scientific software capabilities on the frontier of
algorithms, software and hardware

• The ECP provides platforms to foster collaboration and cooperation as we head into the frontier:
– E4S: a comprehensive portfolio of ECP-sponsored products and dependencies
– SDKs: Domain-specific collaborative and aggregate product development of similar capabilities

21

Delivering an open, hierarchical software ecosystem
More than a collection of individual products

E4S
Source: ECP E4S team; Non-ECP Products (all dependencies)
Delivery: spack install e4s; containers; CI Testing

SDKs
Source: SDK teams; Non-ECP teams (policy compliant, spackified)
Delivery: Apps directly; spack install sdk; future: vendor/facility

ST
Products Source: ECP L4 teams; Non-ECP Developers; Standards Groups

Delivery: Apps directly; spack; vendor stack; facility stack

Levels of Integration Product Source and Delivery

• Group similar products
• Make interoperable
• Assure policy compliant
• Include external products

• Build all SDKs
• Build complete stack
• Assure core policies
• Build, integrate, test

• Standard workflow
• Existed before ECP

ECP ST Open Product Integration Architecture

ECP ST Individual Products

22

Extreme-scale Scientific Software Stack (E4S)
• E4S: HPC software ecosystem – a curated software portfolio
• A Spack-based distribution of software tested for interoperability

and portability to multiple architectures
• Available from source, containers, cloud, binary caches
• Leverages and enhances SDK interoperability thrust
• Not a commercial product – an open resource for all
• Growing functionality: May 2022: E4S 22.05 – 100+ full release products

https://e4s.io
E4S lead: Sameer Shende (U Oregon)

Also includes other products, e.g.,
AI: PyTorch, TensorFlow, Horovod
Co-Design: AMReX, Cabana, MFEM

https://spack.io
Spack lead: Todd Gamblin (LLNL)

Community Policies
Commitment to SW quality

DocPortal
Single portal to all
E4S product info

Portfolio testing
Especially leadership

platforms

Curated collection
The end of dependency hell

Quarterly releases
Release 22.2 – February

Build caches
10X build time
improvement

Turnkey stack
A new user experience https://e4s.io Post-ECP Strategy

LSSw, ASCR Task Force

https://e4s.io/
https://e4s.io/
https://spack.io/
https://spack.io/
https://e4s.io/

23

E4S DocPortal

• Single point of access

• All E4S products

• Summary Info
– Name
– Functional Area
– Description
– License

• Searchable

• Sortable

• Rendered daily from repos

https://e4s-project.github.io/DocPortal.html

All we need from the software team is
a repo URL + up-to-date meta-data files

https://e4s-project.github.io/DocPortal.html

24

Goal: All E4S product documentation accessible from single portal on E4S.io
(working mock webpage below)

https://e4s-project.github.io/DocPortal.html

https://e4s-project.github.io/DocPortal.html

25

Policies: Version 1
https://e4s-project.github.io/policies.html

• P1: Spack-based Build and Installation

• P2: Minimal Validation Testing

• P3: Sustainability

• P4: Documentation

• P5: Product Metadata

• P6: Public Repository

• P7: Imported Software

• P8: Error Handling

• P9: Test Suite

E4S Community Policies: A commitment to quality improvement

• Enhance sustainability and interoperability
• Serve as membership criteria for E4S

– Membership is not required for inclusion in E4S

– Also includes forward-looking draft policies

• Modeled after xSDK community policies
• Multi-year effort led by SDK team

– Included representation from across ST

– Multiple rounds of feedback incorporated from
ST leadership and membership

SDK lead: Jim Willenbring (SNL)

https://e4s-project.github.io/policies.html
https://e4s-project.github.io/policies.html
https://e4s.io/
https://xsdk.info/

26

Request for E4S Policy Status
Drove Software Improvements

• L4 Project reviews required gap assessment
against E4S Policies

• But no requirement to increase compatibility

• However, teams responded by reducing gaps

• On the right:
– Flurry of E4S Validation Test Suite PRs prior to

reviews
– Other low hanging fruit changes made too

27

E4S and SDKs as platforms are providing tremendous value
Activity SDKs E4S
Planning Transparent and collaborative requirements, analysis and design,

delivery – better plans, less effort, improved complementarity
Campaign-based portfolio planning coordinated with Facilities, vendors,
community ecosystem, non-DOE partners

Implementation Leverage shared knowledge, infrastructure, best practices ID and assist product teams with cross-cutting issues

Cultivating
Community

Within a specific technical domain: Portability layers, LLVM
coordination, sparse solvers, etc.

Across delivery and deployment, with software teams, facilities’ staff,
with non-DOE users in industry, US agencies

Resolving issues,
sharing solutions

Performance bottlenecks and tricks, coordinated packaging and use
of substrate, e.g., Desul for RAJA and Kokkos

Build system bugs and enhancements, protocols for triage, tracking &
resolution, leverage across & beyond DOE

Improving quality Shared practice improvement, domain-specific quality policies,
reduced incidental differences and redundancies, per-commit CI
testing of portfolio

Portfolio-wide quality policies with assessment process and quality
improvement efforts, documentation portal, portfolio testing on many
platforms not available to developers. Address supply chain needs

Path-finding Collaborative exploration and development of leading-edge tools
and processes

Exploration and development of leading-edge packaging and distribution
tools and workflows that provide capabilities and guidance for others

Training Collaborative content creation and curation, coordinated training
events for domain users, deep, problem-focused solutions using
multiple products

Portfolio installation and use, set up of build caches, turnkey and
portable installations, container and cloud instances

Developer
experience

Increased community interaction, increased overhead (some devs
question value), improved R&D exploration, e.g., variable precision

Low-cost product visibility via doc portal, wide distribution via E4S as
from-source/pre-installed/container environment

User experience Improve multi-product use, better APIs through improved design,
easier understanding of what to use when

Rapid access to latest stable feature sets, installation on almost any
HPC system, leadership to laptop

Scientific
Software R&D

Shared knowledge of new algorithmic advances, licensing, build
tools, and more

Programmatic cultivation of scientific software R&D not possible at
smaller scales

Community
development

Attractive and collaborative community that attracts junior members
to join, establishes multi-institutional friendships & careers

Programmatic cultivation of community through outreach and funded
opportunities that expand the sustainable membership possibilities

The SDK and E4S platforms provide compelling value for modest cost in ways that become more important going forward

Expanding the Value and
Impact of Software
Ecosystems Going Forward

29

Pre-E4S User Support Model

DOE App
Developers and
Facilities Users

DOE Library
and Tool

Developers

DOE Facilities
User Support

Staff

App teams and facilities
support staff port and
debug app code

Facilities support staff have
difficulty finding support from
library/tool teams except from
local teams

App teams work with
library/tool teams they
know, mostly local

Industry and
Other Agency

users

Non-DOE users find it very
difficult to use DOE libraries
and tools. No support beyond
basic usage

30

E4S Phase 1 Support Model – Old relationships plus DOE E4S

DOE App
Developers and
Facilities Users

DOE Library
and Tool

Developers

DOE Facilities
User Support

Staff

App teams and facilities
support staff port and
debug app code

Facilities support staff have
difficulty finding support from
library/tool teams except from
local teams

App teams work with
library/tool teams they
know, mostly local

Industry and
Other Agency

users

Non-DOE users find it very
difficult to use DOE libraries
and tools. No support beyond
basic usage

DOE E4S Team

DOE E4S Team enables a portfolio approach:
• Integrated delivery/support of libs/tools
• Single point of contact for planning and issues

31

E4S Phase 2 Support Model – Previous plus commercial E4S

DOE App
Developers and
Facilities Users

DOE Library
and Tool

Developers

DOE Facilities
User Support

Staff

App teams and facilities
support staff port and
debug app code

Facilities support staff have
difficulty finding support from
library/tool teams except from
local teams

App teams work with
library/tool teams they
know, mostly local

Industry and
Other Agency

users

Non-DOE users find it very
difficult to use DOE libraries
and tools. No support beyond
basic usage

DOE E4S Team

DOE E4S Team enables a portfolio approach:
• Integrated delivery/support of libs/tools
• Single point of contact for planning and issues

Commercial
E4S Team

Close interaction:
• DOE team in charge of strategy/policy
• Commercial team handles support

First of a kind interactions:
• Industry/agencies can acquire support
• Shared costs and benefits with DOE

32

Expanding the Scope of Cost and Benefit Sharing for DOE
Software Libraries and Tools

Support Phase Primary Scope Primary Cost and Benefit Sharing Opportunities
Pre-E4S Local facility Local costs and benefits: Prior to ECP and E4S, libraries and tools

were typically strongly connected to the local facility: ANL libs and tools
at ALCF, LBL at NERSC, LLNL at Livermore Computing, etc.

+ ECP E4S All DOE facilities DOE complex-shared costs and benefits: ECP requires, and E4S
enables, interfacility availability and use of libs across all facilities: First-
class support of ANL libs and tools at other facilities, etc.

+ Commercial
E4S

DOE facilities,
other US
agencies,
industry, and
more

Universal shared costs and benefits: Commercial support of E4S
expands cost and benefit sharing to non-DOE entities: DOE costs are
lower, software hardening more rapid. US agencies, industry and others
can contract for support, gaining sustainable use of E4S software and
contributing to its overall support.

Software Sustainability
Activities

34

Key observation: We are scientists,
problem solvers. Let’s use science
to address our challenges!

Now: Improved SW environments
(Jupyter), integration of software
specialists as team members, data
mining of repos

Next: Research Software Science
- Use scientific method to

understand, improve development
& use of software for research.

- Incorporate cognitive & social
sciences.

Social & Cognitive
Specialists

+ Data & SW
Specialists

+ Math & CS
Specialists

Domain Science
Specialists

Te
am

 S
ki

lls
 O

ve
r T

im
e

Expanding Software Team Skills: Research Software Science (RSS)

https://bssw.io/blog_posts/research-software-science-a-scientific-approach-to-understanding-and-improving-how-we-develop-and-use-software-for-research

https://bssw.io/blog_posts/research-software-science-a-scientific-approach-to-understanding-and-improving-how-we-develop-and-use-software-for-research

35

First-of-a-kind US DOE Workshop

• The Science of Scientific-Software Development and Use
– Dec 13 – 16, 2021
– https://www.orau.gov/SSSDU2021

• Workshop Brochure available:
– https://doi.org/10.2172/1846008

• Workshop Report in progress:
– 3 Priority Research Directions
– 3 Crosscutting Themes

https://www.orau.gov/SSSDU2021
https://doi.org/10.2172/1846008

36

SSSDU Priority Research Directions

• PRD1: Develop methodologies and tools to comprehensively improve team-based scientific
software development and use

– Key question: What practices, processes, and tools can help improve the development, sustainment,
evolution, and use of scientific software by teams?

• PRD2: Develop next-generation tools to enhance developer productivity and software
sustainability

– Key questions: How can we create and adapt tools to improve developer effectiveness and efficiency,
software sustainability, and support for the continuous evolution of software? How can we support and
encourage the adoption of such tools by developers?

• PRD3: Develop methodologies, tools, and infrastructure for trustworthy software-intensive
science

– Key questions: How can we facilitate and encourage effective and efficient reuse of data and software
from third parties while ensuring the integrity of our software and the resulting science? How can we provide
flexible environments that “bake in” the tracking of software, provenance, and experiment management
required to support peer review and reproducibility?

Focus: Team Impact

Focus: Developer Impact

Focus: Societal Impact

37

SSSDU Crosscutting Themes

• Theme 1: We need to consider both human and technical elements to better understand how to
improve the development and use of scientific software.

• Theme 2: We need to address urgent challenges in workforce recruitment and retention in the
computing sciences with growth through expanded diversity, stable career paths, and the
creation of a community and culture that attract and retain new generations of scientists.

• Theme 3: Scientific software has become essential to all areas of science and technology, creating
opportunities for expanded partnerships, collaboration, and impact.

38

Takeaways from Expanding Impact in the Future

• Introduction of commercial support for E4S users makes broad benefit & cost sharing possible

• Other agencies & industry can use E4S with confidence because they can acquire support

• The pursuit of effective and efficient scientific software can itself be informed by science

Developing software for
GPU systems

40

Heterogeneous accelerated-node computing
Accelerated node computing: Designing, implementing, delivering, & deploying advanced
agile software that effectively exploits heterogeneous node hardware

• Execute on the largest systems … AND on today and tomorrow’s laptops, desktops, clusters, …

• We view accelerators as any compute hardware specifically designed to accelerate certain mathematical
operations (typically with floating point numbers) that are typical outcomes of popular and commonly used
algorithms. We often use the term GPUs synonymously with accelerators.

Diagram credit:
Andrew Siegel

41

Kokkos/RAJA

•Two distinct products: Kokkos and RAJA
– Both originate in NNSA
– RAJAs main funding/usage in NNSA
– Kokkos gets half its funding from NNSA, but >70% of users outside of NNSA

•Learn from and leverage each other’s work
– Desul – common atomics library
– Memory management – different strategies

• Other options: OpenMP, vendor-specific (CUDA, HIP, SYCL)

New algorithms
highlights – batched
computations, mixed
precision

The “coopetition” model:

Step 1: Collaborative design space exploration

Step 2: Adaptation and implementation in each library

43

Scope and objectives
• Establish goals and needs for batched sparse linear

algebra implementations
• Iterate over interface design choices for relevant ECP

applications and their implementation options
• Limit memory usage and transfers for Phase 1

implementations
• Deliver performance that maximizes the compute

throughput and/or attained memory bandwidth
Project accomplishment
• Batched band Phase 1 implementation
• Batched sparse iterative and direct Phase 1 implementation
• Preparations for inclusion of batched functions in xSDK

libraries and ECP applications
• Progress report on batched sparse linear algebra Phase 1

implementation

Impact

• Enable batched sparse linear algebra routines on GPUs
• Allow input from ECP applications, numerical library

developers, and hardware vendors
• Provide new interoperability layers so that applications

can easily use sparse batched solvers and
preconditioners

Speedup of Ginkgo batched iterative solvers over dgbsv

Batched Sparse Linear Algebra
Phase 1 Implementation

ECP WBS WBS 2.3.3.01

PI Ulrike Meier Yang, LLNL

Members

Milestone Lead

ANL, LBNL, LLNL, SNL, UC Berkeley, UTK

Piotr Luszczek, UTK

Deliverables The report is available at https://confluence.exascaleproject.org/display/STMS05/xSDK+Project+Documents in the file
“Milestone 45 Report_Batched Sparse LA Phase 1 Implementation” – Ask Piotr Luszczek for copy

• Initial results using matrices from the
XGC framework of the WDMApp ECP
project

• Speedup for 5 Picard iterations using
batched BiCGStab on 3 different GPUs
over the banded solver on CPU

• The results compare against the
current best solution with the required
solver functionality on Skylake (CPU)

https://confluence.exascaleproject.org/display/STMS05/xSDK+Project+Documents

44

The opportunity: Low-precision arithmetic is fast (and dangerous)
• We currently witness

– the integration of low precision special function units into HPC hardware (NVIDIA Tensor Core, AMD Matrix Engine, etc.),
– a widening gap between compute power and memory bandwidth,
– and the increasing adoption of low precision floating point formats (fp16, bf16, etc.).

• … the US Exascale Computing Project decided for the aggressive step of building a
multiprecision focus effort to take on the challenge of designing and
engineering novel algorithms exploiting the compute power available in low
precision and adjusting the communication format to the application specific needs.

Mark Gates (UTK)

Nov 2009 Top500:
• Jaguar #1 system
• 1.75 petaflops/s
• FP64 (not FP16)

45

Step 1: Concurrent exploration of the algorithm and software space

• In cross-laboratory expert teams, we focus on:
– Mixed precision dense direct solvers (MAGMA and SLATE);
– Mixed precision sparse direct solvers (SuperLU);
– Mixed precision multigrid (on a theoretical level and in hypre);
– Mixed precision FFT (heFFTE);
– Mixed precision preconditioning (Ginkgo, Trilinos);
– Separating the arithmetic precision from the memory precision (Ginkgo);
– Mixed precision Krylov solvers (theoretical analysis, Ginkgo, Trilinos);

• Mixed precision algorithms acknowledge and boost the GPU usage
– Algorithm development primarily focuses on GPU hardware (Summit, Frontier);
– Latest evaluations on NVIDIA A100 (Perlmutter), AMD MI100 (Spock), Intel Gen9 GPU

• Integrating mixed precision technology as production-ready implementation into
ECP software products allows for the smooth integration into ECP applications.

46

Step 2: Incorporate lessons learned into library ecosystem

For library interoperability and mixed precision usage:

• PETSc develops an abstraction layer to device solvers (vendor libraries, Kokkos Kernels, etc.)
that allows flexible composition of Krylov solves in mixed-precision;

• hypre already supports the compilation in different precisions and work now focuses on
compiling multiple precisions at a time to compose algorithms out of routines running in
different precision formats;

• Ginkgo makes the “memory accessor” integration-ready for other software libraries;

• Kokkos and KokkosKernels implements support for compiling in IEEE754 half precision;

• SLATE contains mixed precision algorithms and templates the working precision; and

• MAGMA compiles in different precisions (z,c,d,s).

Status of early-access
system experience

Excellent progress toward Exascale readiness and a lot
more to do

48

Performance portability
• Portability strategy:

– Strategy 1: Isolate performance-impacting code to select kernels, write own CUDA, HIP, SYCL
– Strategy 2: Product uses Kokkos and RAJA as primary portability layers
– Blend 1 & 2: Provide both
– Notes:

• No ST products use OpenMP directly for GPU portability but
• Kokkos and RAJA have OpenMP backends as an option

Package NVIDIA GPU AMD GPU Intel GPU
ArborX support (Kokkos) support (Kokkos) in progress (Kokkos-SYCL backend)
DTK support (Kokkos) support (Kokkos) in progress (Kokkos-SYCL backend)
Ginkgo support (CUDA) support (HIP) support (DPC++)
heFFTe support (CUDA) support (HIP) support (DPC++)
hypre support (CUDA, RAJA, Kokkos) support (HIP) in progress (DPC++)
libEnsemble supports apps running on GPUs N/A N/A
MAGMA support (CUDA) support (HIP) planned
MFEM support (CUDA) support (HIP) support (DPC++)
PETSc support (CUDA | Kokkos) support (HIP | Kokkos) in progress (DPC++ | Kokkos-SYCL)
SLATE support (CUDA) support (HIP) in progress (DPC++)
STRUMPACK support (CUDA) support (HIP) in progress (SYCL, oneAPI)
Sundials support (CUDA, RAJA) support (HIP, RAJA) support (SYCL, oneAPI, RAJA)
SuperLU support (CUDA) support (HIP) in progress (DPC++, oneAPI)
Tasmanian support (CUDA) support (HIP) support (DPC++), but not in spack
Trilinos support (Kokkos) support (Kokkos) in progress (Kokkos-SYCL backend)

49

The E4S Two-Step

• Step 1:
– Migrate existing MPI-CPU code on top of E4S:

• All E4S libraries & tools compile & run well on CPU architectures, including multi-threading & (improving) vectorization
• Pick a performance portability approach (as described above)
• Rewrite your loops for parallel portability, e.g., rewrite in Kokkos or RAJA
• Link against E4S CPU versions of relevant libraries

– Potential benefits:
• Migrating to E4S on a stable computing platform, easy to migrate incrementally and detect execution diffs
• Single build via Spack
• Potential for using build caches (10x rebuild time improvement)
• Single point of access to documentation
• Increased quality of user experience via E4S support, E4S and SDK quality commitments
• Preparation for Step 2…

50

The E4S Two-Step

• Step 2: Turn on GPU build
– Builds with GPU backends (especially if using Kokkos or RAJA)
– Transition to GPU is a debugging and adaptation exercise
– Track growth in E4S GPU capabilities as E4S products improve GPU offerings

• Consider interactions with E4S commercial support team
– Pay someone for support
– Get advice on product choices

• DOE teams generally can’t give you good advice on which solver or IO library to use
– Like asking Microsoft and Apple to tell whether to purchase a PC or Mac

51

GPU Efforts Summary

• One legacy of ECP & E4S will be a SW stack that is portable across Nvidia, AMD, and Intel GPUS

• Porting to modern GPUs requires almost everything to be done on the GPUs

• Common refactoring themes:
– Async under collectives
– Batch execution
– Pre-allocation and highly concurrent assembly: Sparse matrix assembly via COO format with atomics

• Two+hybrid portability models are used:
– Use portability layers: Kokkos, RAJA or (eventually) OpenMP w target offload (OpenACC?)
– Isolate & and custom write: Isolate perf-portable kernels and write your own CUDA, HIP, SYCL backend
– Hybrid: Use portability layers, customize key kernels only

• Explore low-precision arithmetic: Substantial benefit (and risks)

• Rely more on third-party reusable libraries and tools.

52

Summary
• Using a portfolio-based approach for HPC software is about going together vs going alone
• While products vary greatly, we all face the same frontiers: Evolving demands and systems
• Success on the frontier is important for all HPC configurations: leadership to laptop
• The new and evolving E4S and SDK platforms enable better, faster and cheaper, in net

• A collective approach, E4S, enables new relationships with facilities, vendors, apps, industry
• Discussions with other US agencies progressing: NOAA, NSF, NASA – my hope: A national stack

• Potential NERSC user interests from ECP libraries and tools efforts
– Spack – can be transformative itself, independent of E4S
– Latest MPI, IO capabilities – available in E4S first
– Flang – IMO the future of Fortran hinges on the success of Flang, industry engagement matters
– Kokkos/RAJA portability layers – lessons learned, starting point for your own layer, direct use
– Lessons learned in new algorithms for highly-concurrent nodes
– Longer term: leverage E4S and SDKs for better/faster/cheaper use of open source
– Longer term: Social/cognitive aspects of technical software teams?

53

Thank you
This research was supported by the Exascale Computing Project (17-SC-20-SC), a joint project of
the U.S. Department of Energy’s Office of Science and National Nuclear Security Administration,
responsible for delivering a capable exascale ecosystem, including software, applications, and
hardware technology, to support the nation’s exascale computing imperative.

Thank you to all collaborators in the ECP and broader computational science communities. The
work discussed in this presentation represents creative contributions of many people who
are passionately working toward next-generation computational science.

https://www.exascaleproject.org

ECP Director: Doug Kothe
ECP Deputy Director: Lori Diachin

https://www.exascaleproject.org/

2022

	Overview of ECP Software Technology
	Outline
	ECP in a Nutshell
	ECP’s holistic approach uses co-design and integration to achieve exascale computing
	ECP Software Technology Leadership Team
	ECP ST has six technical areas
	ST L4 Leads��- WBS�- Name�- PIs�- PCs - Project � Coordinators
	ECP Software Technology works on products that apps need now and in the future
	Exascale Systems – Primary targets for ECP Software Teams
	The Growing Complexity of Scientific Application Software Stacks
	Challenges
	Slide Number 12
	Integration: AD Teams Depend Heavily on ST Software to Meet KPPs
	Interesting Themes Arising from 2021 AD Assessment
	A Sampler of Products
	Takeaways from product sampler
	Takeaways from software complexity
	Responding to complexity: Software Ecosystem via Platforms
	Software Platforms: “Working in Public” Nadia Eghbal
	About Platforms and ECP
	Delivering an open, hierarchical software ecosystem�More than a collection of individual products
	Extreme-scale Scientific Software Stack (E4S)
	E4S DocPortal
	Goal: All E4S product documentation accessible from single portal on E4S.io (working mock webpage below)
	E4S Community Policies: A commitment to quality improvement
	Request for E4S Policy Status Drove Software Improvements
	E4S and SDKs as platforms are providing tremendous value
	Expanding the Value and Impact of Software Ecosystems Going Forward�
	Pre-E4S User Support Model
	E4S Phase 1 Support Model – Old relationships plus DOE E4S
	E4S Phase 2 Support Model – Previous plus commercial E4S
	Expanding the Scope of Cost and Benefit Sharing for DOE�Software Libraries and Tools
	Software Sustainability Activities
	Expanding Software Team Skills: Research Software Science (RSS)
	First-of-a-kind US DOE Workshop
	SSSDU Priority Research Directions
	SSSDU Crosscutting Themes
	Takeaways from Expanding Impact in the Future
	Developing software for GPU systems
	Heterogeneous accelerated-node computing
	Kokkos/RAJA
	New algorithms highlights – batched computations, mixed precision
	Batched Sparse Linear Algebra�Phase 1 Implementation
	The opportunity: Low-precision arithmetic is fast (and dangerous)
	Step 1: Concurrent exploration of the algorithm and software space�
	Step 2: Incorporate lessons learned into library ecosystem
	Status of early-access system experience
	Performance portability
	The E4S Two-Step
	The E4S Two-Step
	GPU Efforts Summary
	Summary
	Thank you
	Slide Number 54

