
Software Deployment at Facilities

E4S at NERSC 2022, Aug 25, 2022
Aug 25, 2022

Ryan Adamson

Overview:

ECP Software Deployment
at Facilities (SD) Activity

NERSC

OLCF

ALCF

Vendor
HW / SW

Integration of ECP ST
products and facility
capabilities:
• Maintain facility-based

continuous integration
platforms for build and test
automation

• Deploy E4S-curated ST
products using the Spack
package manager

• Evaluate vendor system
software

Extreme Scale
Scientific Software
Stack

Spack

GitLab / CI

2.4.4 Software Deployment at Facilities - Mission

Each software team and facility has
individual (and often unique!)
preferences, constraints, and
strategies regarding scientific software
development and deployment

4

WBS 2.4.4: Software Deployment at Facilities

Project Short Name PI Name, Inst Short Description/Objective Program Office(s)
2.4.4.01 Software
Integration

Shahzeb
Siddiqui (LBL) Build/Test/Deploy ST products at facilities ASCR

2.4.4.04 Continuous
Integration

Paul Bryant
(ORNL) Develop and Deploy ECP CI infrastructure ASCR

2.4.4.03 Shasta
Testing

Jay Srinivasan
(LBL) Evaluate and expedite Shasta releases ASCR

2.4.4.05 HPCM /
Slingshot Testing

Scott Atchley
(ORNL)

Explore HPCM and Slingshot as alternatives
to Shasta ASCR

Shahzeb Siddiqui Paul Bryant Jay Srinivasan Scott Atchley

5

The Software Deployment team’s role is to package and integrate
Software Technology products on exascale systems

6

ECP Software Stream: Incubation to Installation
Facilities

Spack release branches
• Stable Spack
• Stable package versions
• Bugfixes backported

Spack development branch
• Very Fresh: 400-600 changes/month
• Latest features and package versions
• CI for latest E4S and SDK versions

E4S release branches
• Facility testing
• Curated public build caches
• Level 2 user support

External Contributors on GitHub

Software Integration at Facilities
• Integration of Vendor Stack
• Local builds and testing
• System tuned configurations
• Local filesystem installation
• Local module scheme

ECP AD Teams Consume Software From
• Direct source builds from ST teams
• Spack development branch
• Spack release branches
• E4S release branches
• Facility Installed and Supported SW Stack

ECP ST Product Teams
• Direct AD collaboration
• Incubation and Hardening
• Packaging into Spack Ecosystem
• Level 3 support for E4S

Incubate

Harden Deliver Deploy Install

7

AD Applications

ST Tools and Libraries

E4S / Spack

Software Integration

Continuous Integration
Infrastructure

Facility Hardware

The Scientific Software Ecosystem model

Software Deployment Efforts

• Software Integration interfaces with the Testing Task
Force, E4S, and ST to adapt builds, tests, and
deployments to facility systems

• Continuous Integration Infrastructure supports the
automation of all activities on facility systems

• Shasta and HPCM testing provides insight into facility
hardware from a system functionality perspective

• The Testing Task Force is the vertical integration of all
these components Te

st
in

g
Ta

sk
 F

or
ce

https://spack.io/ https://e4s-project.github.io/ https://gitlab.com

E4S and Spack are the ‘spanning layers’ of the ECP Software Ecosystem Hourglass

8

Scientific Software Ecosystem roles and responsibilities

ST Developers

• AD and ST teams implement ECP
CI regression testing as appropriate
into existing CI frameworks and
merge new build/test recipes into
spack/develop
– https://e4s-

project.github.io/policies.html

• These software development teams
typically have other automated CI
pipelines, developer-driven unit
testing, and other software
assurance best practices as
determined by their internal policies
– https://ideas-productivity.org/ideas-

ecp/

E4S Software Curators

• Spack Team implements CI build
and smoke testing for
spack/develop
– https://github.com/spack/spack
– https://cdash.spack.io

• E4S Team Prepares Quarterly
Releases for Facility Installation,
freezing on a point-in-time commit
of spack/develop
– https://github.com/E4S-

Project/e4s/tree/master/environments/
21.05

SI / Facilities

• SI Team Deploys packages
selected from a tested and
versioned E4S release onto Facility
Resources.
– https://docs.nersc.gov/applications/e4

s/cori/21.05/

• Facility software and operations
teams have additional verification
and validation tests that are
performed according to facility
software and operations policies
– https://www.exascaleproject.org/event

/buildtest-21-09/

Each role has tailored processes for testing responsibilities provided by that role

https://e4s-project.github.io/policies.html
https://ideas-productivity.org/ideas-ecp/
https://cdash.spack.i/
https://cdash.spack.io/
https://github.com/E4S-Project/e4s/tree/master/environments/21.05
https://docs.nersc.gov/applications/e4s/cori/21.05/
https://www.exascaleproject.org/event/buildtest-21-09/

9

Leadership software is almost turnkey: early Perlmutter lessons

Vendor Updates to PE can break software stacks

• Examples of required vendor fixes:
– Some older versions of cray provided modules were removed:

cray-mpich, cray-libsci, libfabrics, and nvhpc
– There were some changes to the way certain modulefiles

work, such as combining multiple nvhpc modules
– Missing paths in vendor provided nvhpc modulefiles needed to

be fixed

• Examples of required Spack / E4S fixes:
– Spack was unable to find the correct nvhpc, which

necessitated a Spack issue ticket and subsequent patch
– Lmod module creation via Spack resulted in placement in the

wrong hierarchy for hypre because it relied on external cray-
mpich packages

Lessons Learned from Perlmutter

• It is useful for vendors to use a spack.yaml configuration
that we provide to build software as a gating mechanism
for a PE release

• This would catch breaking changes that sites would need
to troubleshoot regardless

• If packages are not easy to install, we know that they
won’t be installed!

• However, software stack installations on Leadership
systems are significantly easier now than they ever have
been

10

There are three main use cases for CI on facility systems

1) Software Development Testing

• Regression Testing
– Software failures are detected when

new code is introduced. This
prevents latent bugs from existing
well after a feature has been
implemented.

– Correctness of results is assessed by
examining changes in the output of a
well-understood and tested problem.

• Performance Testing
– Performance regressions are caught

in the exact same environment where
performance is important.

2) Ecosystem Integration

• Extreme Scale Scientific Software
Stack (E4S) integration tests
– Regular builds of spack versions and

release candidates of E4S ensure that
facility software integrators will not
experience issues during installation.

– Recurring tests of E4S team installed
software stacks detect underlying
issues that change over time.

• Individual software ‘build’ recipes
– Individual products can be built

periodically on facility systems and
failures addressed by developers or
integrators as appropriate.

3) Facility Operations Assurance

• Regular tests of installed facility
software stack
– Environments drift over time. CI can

catch issues related to hardware,
vendor PE, or other Facility service
updates.

• Regular tests of user managed
container images
– Security assessments can be

automated with CI pipelines to inspect
container images, run static analysis
tools, and pass security unit tests.

Workload
requires HPC

Work can be
performed anywhere

There is a Value Per Cycle tradeoff

11

Types of testing found within the ECP Software Ecosystem

Teams and Testing Assurance Layers

• ST teams drive implementation of all
types of tests on developer, cloud, or
product specific build and test CI pipelines

• ST teams may run selected, high-value
tests of all types of tests on facility CI
platforms

• Spack CI pipelines test builds of
packages in the cloud and at some
facilities

• E4S team performs build, validation, and
integration tests on facility systems and
elsewhere

• SI teams run build, validation, and
integration tests on facility systems

• Facility users run validation tests such as
‘spack test’ and the E4S test suite

Test type Complexity Notes

Build Low
Build tests check that all software components have
been built successfully by using the appropriate
compilers and tunables.

Validation Low

Validation tests are run to demonstrate that a piece
of software is installed correctly and to clearly
demonstrate usage of the appropriate unique
hardware features of the system, such as
accelerators or high-speed interconnects.

Integration Medium

Integration tests are implemented to ensure that
versions of libraries along with compile time options
do not conflict adversely with other related libraries
as part of a larger software ecosystem.

Regression High

Regression tests are maintained and run as
frequently as developers create new software
changes to determine whether the changes impact
any already working features of the software.

Performance High
Performance tests are implemented to detect
regressions in runtime or degradation in time to
solution or network bandwidth.

12

E4S / Facility support model is prepared to last beyond ECP

The E4S Level 2 support plan has funding and facility
buy-in

• The E4S issue tracker on GitHub is the single point of
collaboration. (https://github.com/E4S-Project/e4s/issues)

• A new-issue template identifies facility submitted issues

• E4S L2 support will address facility-submitted E4S issues
by E4S L2 support staff within 3 business days

• Facilities can raise priority of major issues

• E4S issues will be updated by E4S product teams as
progress is being made

• E4S L2 support will provide regular reporting of E4S
support metrics to facility staff

• We expect the support model to evolve as needs change Example issue of this process in action:
https://github.com/E4S-Project/e4s/issues/9

https://github.com/E4S-Project/e4s/issues
https://github.com/E4S-Project/e4s/issues/9

13

E4S / Facility Software Support Model

14

Thank you
This research was supported by the Exascale Computing Project (17-SC-20-SC), a joint project of
the U.S. Department of Energy’s Office of Science and National Nuclear Security Administration,
responsible for delivering a capable exascale ecosystem, including software, applications, and
hardware technology, to support the nation’s exascale computing imperative.

Thank you to all collaborators in the ECP and broader computational science communities. The
work discussed in this presentation represents creative contributions of many people who are
passionately working toward next-generation computational science.

https://www.exascaleproject.org

https://www.exascaleproject.org/

15

Questions?

16

Scientific Software Ecosystem in detail

SI Team Deploys
tested, versioned E4S
on Facility Resources

E4S Team
implements CI build
and smoke testing
for spack/develop

ALCF

GitLab ECP CI Platform at Facilities

E4S CI
PipelinesLL

VM

Spack
Recipes

Continuous Integration (2.4.4.04)

H
D

F5

PE
TS

c

Ex
aF

EL

…

NERSC OLCF

…

ALCF

E4S Installed as Module Files

LL
VM

H
D

F5

PE
TS

c

Ex
aF

EL

…

NERSC OLCF

E4S Spack Environment / Build Cache

AD and ST teams implement ECP CI
regression testing as appropriate into

existing CI frameworks and merge new
build/test recipes into spack/develop

AD teams access stable ST software
through Facility-maintained modules.
Build cache and config available to

AD/ST teams for integrating hotfixes

E4S Team Prepares
Quarterly Releases for

Facility Installation,
freezing on a point-in-time
commit of spack/develop

Newer
Spack recipes

Software Integration (2.4.4.01)

17

Software feature development lifecycle model for an ST product
Phase

Incubate Harden Deliver Deploy

Developers Explore new
algorithms &
implementations

Refactor and merge
exploratory code, complete
tests, documentation

Promote to release branch,
integrate into SDK and E4S

Finalize smoke tests, DocPortal,
community policy, engage SD, facilities

Integrators Collaborative work in
a sandbox
environment

Product team integrates
feature

Product team promotes to
release, collaborates with
SDK/E4S team

Product team works with E4S team, SD
and facilities staff

Users Early collaborators,
co-develop with app
partners

Friendly app teams
prepared to work with the
ST team on debugging

App teams looking for latest
stable features and staffed to
incorporate new features

Apps looking for stable functionality in
turnkey environment

Availability Forked repo or local
branch

Develop (pre-release) repo
branch

Directly from main repo
branch

Product release site, E4S, vendor,
facility, community repo, or combo

Some Takeaways:
• AD users of ST products tend to engage in the incubate and harden phases of ST feature development
• First priority for ST teams must be engaging AD users
• First EAS/Exascale ports happen in incubation/harden phases
• For many ST features, sustainable deployment is not E4S (even though E4S inclusion is important)

18

Software feature development lifecycle model: Examples
Phase

Incubate Harden Deliver Deploy

Nalu-Wind &
hypre

Nalu-Wind team forks hypre repo, prototypes GPU-friendly 2-stage
Gauss-Seidel smoother consulting with hypre team, also fixes
GPU-only bugs in other parts of hypre

hypre team ingests
prototype GS smoother,
provides coverage tests

Available to all
hypre users

Coming
soon

SUNDIALS &
Ginkgo

SUNDIALS team collaborates with Ginkgo team on interface for
batched sparse solvers needed for Pele-C, others

Gingko refactors existing
APIs, tests

Available to all
Gingko users

Coming
soon

ALPINE &
VTK-m

ALPINE team prototypes a distributed contour tree algorithm within
their fork of VTK-m

VTK-m team merges into
their develop branch for
hardening

VTK-m
promotes to
release branch

In E4S
V21.11

Key points:
• Many of the most impactful ST capabilities are developed using this collaborative development pattern
• Incubation and hardening occur on the early-access systems since these systems are driving the need
• Ingesting for sustainable production use ends with promotion to the official release branch for delivery
• E4S integration occurs quarterly, several months after new features are available from product release branch

	Software Deployment at Facilities�
	Overview:��ECP Software Deployment at Facilities (SD) Activity
	Slide Number 3
	WBS 2.4.4: Software Deployment at Facilities
	The Software Deployment team’s role is to package and integrate Software Technology products on exascale systems
	ECP Software Stream: Incubation to Installation
	The Scientific Software Ecosystem model
	Scientific Software Ecosystem roles and responsibilities
	Leadership software is almost turnkey: early Perlmutter lessons
	There are three main use cases for CI on facility systems
	Types of testing found within the ECP Software Ecosystem
	E4S / Facility support model is prepared to last beyond ECP
	E4S / Facility Software Support Model
	Thank you
	Questions?
	Scientific Software Ecosystem in detail
	Software feature development lifecycle model for an ST product
	Software feature development lifecycle model: Examples

