
1

Scientific Deep
Learning on
Perlmutter

Peter Harrington, Steven Farrell
Perlmutter User Training

Jan. 7th, 2022

- Deep learning for science @ NERSC
- Deep learning stack on Perlmutter
- How to use DL frameworks on Perlmutter: performance and optimization
- Additional tools & hands-on activity

Outline

3

Deep Learning is powered by deep neural networks

4

How to train your neural network

● Loss function: Compare model prediction
to training dataset

● Gradient Descent: Dominant method to
optimize network parameters to minimize
the loss function θ* θ

Loss

● Backpropagation: Propagate updates
to parameters through network using
chain-rule of calculus

5

Why is deep learning so successful?

1) Data: large curated datasets 2) GPUs: linear algebra accelerators

3) Algorithmic advances: optimizers, regularization, normalization … etc.

6

Deep Learning is transforming science

It can enhance various scientific workflows
● Analysis of large datasets
● Accelerating expensive simulations

Adoption is on the rise in the science communities
● Rapid growth in ML+science conferences
● Recognition of AI achievements:

2018 Turing Award; 2018, 2020 Gordon Bell prizes
● HPC centers awarding allocations for AI,

optimizing next-gen systems for AI
The DOE is investing heavily in AI for science
● Funding calls from ASCR (and other funding agencies), ECP ExaLearn
● Popular, enthusiastic AI4Science town hall series, 300 page report

https://www.anl.gov/ai-for-science-report

7

 Extract Enhance Explore

Accelerating science with deep learning

Pathak et al. 2020 arXiv:2010.00072Hayat et al. 2021 arXiv:2012.13083 Chanussot et al. 2021 arXiv:2010.09990

https://arxiv.org/abs/2010.00072
https://arxiv.org/abs/2012.13083
https://arxiv.org/abs/2010.09990

8

Scientific ML: endless possibilities!

9

ML@NERSC survey and results
We track Machine Learning trends through our ML@NERSC
survey on a 2-year cadence (2018, 2020, 2022)

• Targets scientific communities which (potentially) use HPC
resources (NERSC and non-NERSC users)

• Tracks trends in types of types of problems, workload,
model architectures, framework, scaling strategies,
hardware and software needs, etc.

• Tracks current use cases of NERSC ML stack and attempts
to identify areas for user experience and performance
improvements

• Attempts to anticipate future workloads’ needs

10

Training
● Iterative, interactive R&D
● Compute, network, and data intensive at large scale

Model selection / development, hyper-parameter optimization
● Massive compute resources
● Searching the model space for the best possible model
● Many parallel training applications

Inference
● Production analytics
● High-throughput
● Offline analytics
● Realtime processing

Deep Learning workloads

ML@NERSC 2020

11

The need for scale in deep learning R&D

● Rapid prototyping/model evaluation (faster
time to solution)

● Problem scale

● Volume of scientific datasets can be large

● Scientific datasets can be complex
(multivariate, high dimensional)

12

More complex tasks, bigger models, more compute

Models get bigger and more compute
intensive as they tackle more complex
tasks

ML@NERSC 2020

Credit: NVIDIA

https://developer.nvidia.com/blog/using-deepspeed-and-megatron-to-train-megatron-turing-nlg-530b-the-worlds-largest-and-most-powerful-generative-language-model/

13

Deep Learning parallelization strategies

Data Parallelism
Distribute input samples.

Model Parallelism
Distribute network
structure (layers).

Layer Pipelining
Partition by layer.

Fig. credit: Ben-Nun and Hoefler arXiv:1802.09941

https://arxiv.org/abs/1802.09941

14

Deep Learning parallelization strategies

Data parallelism is the most common strategy in
practice, especially for inter-node scaling.

TensorFlow and PyTorch support data and
intra-node pipeline parallelism natively. Horovod is
the leading non-native distribution framework. All
support MPI and/or NCCL backends.

15

Data-parallel training considerations
Weak scaling: converge faster by taking fewer, bigger, faster steps

• i.e., more GPUs, larger batch sizes, larger learning rates

Caveat: for stability & convergence, requires tuning

• Warm-up+scale learning rate, adaptive optimizers, etc
• See our SC21 “Deep Learning at Scale” tutorial for more tips

Upper: 3 SGD steps w. learning-rate = η
Lower: 1 SGD step w. learning-rate = 3 * ηw0

w1

w2

w3

w’1

https://docs.google.com/presentation/d/1j_rxcLY6WzVqiDPm-LWnk-UISJiYtRwEHQZZWkZpktI/edit#slide=id.gf80317373c_0_92

Deep Learning on Perlmutter:
Software stack and best practices

17

Deep Learning on Perlmutter
Our goal is to provide a functional, performant system for scientific DL
workloads
● Hardware, software, tools, and methods
● For a highly diverse set of scientific domains and application types

How do we do that?
● by deploying optimized software in partnership with vendors
● by testing and evaluating system performance through benchmarking
● by helping users through consulting tickets
● documentation and training for best practices (like today)
● through our science engagements and own research projects

18

Perlmutter: next-gen system for science, awesome for deep learning!

Cray Shasta system with 3-4x capability of Cori
Phase 1: 12 GPU cabinets with 4x NVIDIA Ampere
GPU nodes. Total >6000 GPUs!
35 PB of All-Flash storage
Phase 2 (mid-2021): 12 AMD CPU-only cabinets
Cray Slingshot high performance network

https://blogs.nvidia.com/blog/2021/05/27/nersc-perlmutter-ai-supercomputer/

https://devblogs.nvidia.com/nvidia-ampere-architecture-in-depth/
https://blogs.nvidia.com/blog/2021/05/27/nersc-perlmutter-ai-supercomputer/

19

Perlmutter deep learning software stack overview
General strategy:

● Provide functional, performant installations of the most
popular frameworks and libraries

● Enable flexibility for users to customize and deploy their
own solutions

Frameworks:

Distributed training libraries:
● Horovod
● PyTorch distributed

Productive tools and services:
● Jupyter, Shifter

https://docs.nersc.gov/machinelearning/

https://docs.nersc.gov/machinelearning/

20

Frameworks trends

Repositories on
PapersWithCode:
(research works with
published code)

Google Search trends:

https://paperswithcode.com/trends

https://paperswithcode.com/trends

21

How to use the Perlmutter DL software stack

We have modules you can load which contain python and DL libraries:
module load tensorflow/2.6.0

module load pytorch/1.10.0

Check which software versions are available with:
module avail pytorch

You can install your own packages on top to customize:
pip install --user MY-PACKAGE

Or, clone a conda environment from our modules:
conda create -n my-env --clone /path/to/module/installation

Or, create custom conda environments from scratch:
conda create -n my-env MY-PACKAGES

More on how to customize your setup can be found in the docs (TensorFlow, PyTorch).

https://docs.nersc.gov/analytics/machinelearning/tensorflow/#customizing-environments
https://docs.nersc.gov/analytics/machinelearning/pytorch/#customizing-environments

22

Containerized DL: using Shifter on Perlmutter

NERSC currently supports containers with Perlmutter via Shifter

• Easy, performant: Top500 HPL number was from a container!

To see images currently available:
shifterimg images | grep pytorch

To pull desired docker images onto Perlmutter:
shifterimg pull <dockerhub_image_tag>

To use interactively:

shifter --module gpu --image=nvcr.io/nvidia/pytorch:21.08-py3

Use Slurm image shifter options for best performance in batch jobs:

#SBATCH --image=nersc/pytorch:1.5.0_v0
srun shifter python my_python_script.py

https://docs.nersc.gov/development/shifter/gpus/

23

Best Practices for DL + Shifter on Perlmutter

NVIDIA provides containers optimized for deep learning on GPUs with

• Pytorch or TensorFlow+Horovod
• Optimized drivers, CUDA, NCCL, cuDNN, etc
• Many different versions available

We also provide images based on NVIDIA's, which have a few useful extras

You can also build your own custom containers (easy to build on top of NVIDIA’s)

Notes
● Customization: from inside the container, do pip install --user MY-PACKAGE

(make sure to set $PYTHONUSERBASE to a custom path for the desired container)

● NVIDIA NGC containers use OpenMPI, which requires specific options if you require MPI.
Instructions: https://docs.nersc.gov/development/shifter/gpus/#shifter-mpich-module

https://docs.nvidia.com/deeplearning/frameworks/
https://github.com/NERSC/nersc-ml-images
https://docs.nersc.gov/machinelearning/tensorflow/#containers
https://docs.nersc.gov/development/shifter/gpus/#shifter-mpich-module

24

General guidelines for deep learning at NERSC
NERSC documentation: https://docs.nersc.gov/machinelearning/

Use our provided modules/containers if appropriate
● They have the recommended builds and libraries tested for functionality and performance
● We can track usage which informs our software support strategy

For developing and testing your ML workflows
● Use interactive QOS or Jupyter for on-demand compute resources
● Visualize your models and results with TensorBoard or Weights & Biases

For performance tuning
● Next section of these slides

On Perlmutter, refer to these pages for known issues:
● https://docs.nersc.gov/current/
● https://docs.nersc.gov/machinelearning/known_issues/

If you need additional help, open a ticket: https://help.nersc.gov/

https://docs.nersc.gov/machinelearning/
https://docs.nersc.gov/current/
https://docs.nersc.gov/machinelearning/known_issues/
https://help.nersc.gov/

25

TensorFlow at NERSC docs:
https://docs.nersc.gov/machinelearning/tensorflow/

For distributed training, we recommend using Horovod
● Easy to use and launch with SLURM
● Can use MPI and NCCL as appropriate
● Horovod examples:

https://github.com/horovod/horovod/tree/master/examples

TensorFlow has some nice built-in profiling capabilities
● TF profiler in TF 2: https://www.tensorflow.org/guide/profiler
● Keras TensorBoardCallback in TF 1

Guidelines - TensorFlow distributed training

https://docs.nersc.gov/machinelearning/tensorflow/
https://github.com/horovod/horovod/tree/master/examples
https://www.tensorflow.org/guide/profiler

26

Guidelines - PyTorch distributed training
PyTorch at NERSC docs:
https://docs.nersc.gov/machinelearning/pytorch/

For distributed training, use PyTorch’s DistributedDataParallel
● Simple model wrapper, native to Pytorch
● Works on CPU and GPU
● Highly optimized for distributed GPU training
● Docs: https://pytorch.org/tutorials/beginner/dist_overview.html

Distributed backends
● On Perlmutter, use the NCCL backend for optimized GPU

communication

https://docs.nersc.gov/machinelearning/pytorch/
https://pytorch.org/tutorials/beginner/dist_overview.html

Deep Learning on Perlmutter:
Performance & benchmarking

28

Deep Learning Performance on Perlmutter
Good performance for DL workloads on Perlmutter is essential
● for fast iteration in R&D for individual scientists
● for production workloads with computational constraints (e.g. realtime)
● to optimize overall system throughput for all NERSC users

This is true regardless of your type of workload
● Single GPU vs. 1000s of GPUs
● Jupyter notebooks or batch scripts

Ideally, the DL frameworks/tools would give both maximal flexibility, ease of use,
and performance out-of-the-box
● Not always the case; there can be performance limitations/pitfalls
● It is always useful to spend a little time evaluating the performance of your

workload; you could have a lot to gain

29

How do we evaluate system performance?
Running various tests and benchmarks
● NCCL tests
● Torchvision benchmarks

MLPerf HPC - DL benchmarking for
HPC science from MLCommons
● Measures time-to-train models as well

as system throughput (models/min)
● The v1.0 submission round had 3 scientific applications:

○ DeepCAM - climate segmentation
○ CosmoFlow - 3D CNN regression
○ OpenCatalyst - GNN predicting energy+forces in atomic system

● We submitted highly competitive results for v1.0 with Perlmutter Phase 1
○ Leading time-to-train result for OpenCatalyst, sub-leading results for

CosmoFlow+DeepCAM
○ Largest scale GPU throughput measurement (5120 GPUs)
○ See the full results here: https://mlcommons.org/en/training-hpc-10/

https://mlcommons.org/en/training-hpc-10/

30

What can cause performance problems for DL?
At the single GPU level
● Spending too much time in (single-threaded) Python code

○ Keep as much of the work as possible on the GPU and/or in numerical libraries.
● Poorly-performing input data pipelines

○ probably the most common source of DL performance problems
○ relatively straightforward to diagnose (e.g. low GPU utilization), sometimes easy to fix

● Unoptimized GPU kernels

At the multi-GPU and multi-node levels
● Network communication bottlenecks

○ Poorly configured communication libraries - can be easy to fix
○ Poorly optimized communication patterns - may be able to tweak library settings

● Load imbalance for irregular-sized scientific data samples
● Parallel file system

○ DL random read patterns are not very friendly to large parallel filesystems like Lustre

31

How can you diagnose performance problems?
Start simple, e.g. check GPU utilization
● Use nvidia-smi, gpustat, or another monitoring tool like Weights & Biases

● If utilization is low, you’re not making good use of the GPU. Investigate deeper to
figure out why

Run nvidia-smi in the background, log to CSV
nvidia-smi -l 1 \
 --query-gpu=timestamp,name,index,utilization.gpu,memory.used \
 --format=csv > nvsmi.csv &
NVSMI_PID=$!

Run your training
srun python train.py ...

Terminate nvidia-smi
kill $NVSMI_PID

Example using nvidia-smi in your sbatch script

32

Use a profiler to gain deeper insights
● Nsight-systems is a highly standard NVIDIA tool which can collect and visualize

the execution timeline to enable insights
○ E.g., you can see visually how the GPU is waiting for data from CPU
○ Understanding the timeline can take a little bit of practice, though

● Nsight-compute is a powerful tool for collecting kernel-level information about your
application

○ E.g., if you want to look at performance of individual kernels, make roofline
plots, etc.

○ Challenging to use unless you’re a performance expert
● DL-framework-specific tools are getting better all the time, and try to provide

high-level recommendations:
○ TensorFlow profiler, PyTorch profiler, NVIDIA’s DLProf

How can you diagnose performance problems?

33

Nsight Systems example
Nsight Systems can let you see what your application is doing in a nice
interactive timeline view, which can help elucidate performance issues

e.g., gaps in cuda
execution due to
data loading

Refer to our full SC21 Deep Learning at Scale tutorial for a very nice real-world
walkthrough: https://github.com/NERSC/sc21-dl-tutorial#profiling-with-nsight-systems

https://github.com/NERSC/sc21-dl-tutorial#profiling-with-nsight-systems

34

TensorFlow and PyTorch profilers
The framework profilers try to give you
nice, actionable, summary information
about performance

You can view the results
in TensorBoard

https://pytorch.org/blog/introducing-pytorch-profiler-the-new-and-improved-performance-tool/

https://www.tensorflow.org/guide/profiler

https://pytorch.org/blog/introducing-pytorch-profiler-the-new-and-improved-performance-tool/
https://www.tensorflow.org/guide/profiler

35

Tips for improving performance
Tune your data loading pipeline
● Adjust num_workers, use pin_memory (PyTorch)
● If I/O (from lustre) is a bottleneck, consider staging data onto nodes

○ Use per-process memory, or /tmp (126 GB shared by all workers on node)
○ Larger datasets may require partitioning across nodes to fit

● Consider NVIDIA DALI library for GPU-accelerated data transformations/augmentations,
parallel host-to-device streams

Tune single-GPU performance
● Try mixed-precision training
● Try JIT compiling your model
● For PyTorch, try Apex fused optimizers

Tune distributed performance
● For a fixed global batch size, scaling to more GPUs trades off efficiency for runtime - tune for

your needs
● Tune communication backend settings (e.g. pytorch bucket size)

Refer to our full SC21 tutorial for more: https://github.com/NERSC/sc21-dl-tutorial

https://github.com/NERSC/sc21-dl-tutorial

Deep Learning on Perlmutter:
Workflow tools

37

Jupyter for deep learning
JupyterHub service provides a rich,
interactive notebook ecosystem on Cori
● Very popular service with hundreds of users
● A favorite way for users to develop ML code

Users can run their deep learning workloads
● on dedicated Perlmutter GPU nodes
● using our pre-installed DL software kernels
● using their own custom kernels

https://docs.nersc.gov/services/jupyter/#conda-environments-as-kernels

38

TensorBoard at NERSC
TensorBoard is the most popular tool for visualizing
and monitoring DL experiments, widely adopted by
TensorFlow and PyTorch communities.
We recommend running TensorBoard in Jupyter
using nersc-tensorboard helper module.

import nersc_tensorboard_helper

%load_ext tensorboard

%tensorboard --logdir YOURLOGDIR --port 0

then get an address to your TensorBoard GUI:
nersc_tensorboard_helper.tb_address()

https://docs.nersc.gov/analytics/machinelearning/tensorboard/
https://github.com/NERSC/nersc-tensorboard-helper

39

Hyper-parameter optimization (HPO) solutions
Model selection/tuning are critical for getting the most out of deep learning
● Many methods and libraries exist for tuning your model hyper-parameters
● Usually very computationally expensive because you need to train many models

=> Good for large HPC resources

Users can use whatever tools work best for them
● Ask us for help if needed!

40

HPO Example: Ray Tune

Tune is an open-source Python library for experiment
execution and hyperparameter tuning at any scale.
● Supports any ML framework
● Implements state of the art HPO strategies
● Natively integrates with optimization libraries

(HyperOpt, BayesianOpt, and Facebook Ax)
● Integrates well with Slurm
● Handles trials micro scheduling on

multi-gpu-node resources (no GPU binding
boilerplate needed)

Example of Multi-node HPO using RayTune
used by NESAP team to optimize Graph
Neural Network models for catalysis
applications (Brandon Wood et al.)

https://docs.ray.io/en/master/tune.html

Outreach & additional resources

42

Training events
The Deep Learning for Science School at Berkeley Lab (https://dl4sci-school.lbl.gov/)
● Comprehensive program with lectures, demos, hands-on sessions, posters
● You can view the full 2019 material (videos, slides, code) online:

https://sites.google.com/lbl.gov/dl4sci2019
● 2020 webinar series – recorded talks:

https://dl4sci-school.lbl.gov/agenda
The Deep Learning at Scale Tutorial
● Jointly organized with NVIDIA (& Cray in previous years)
● Presented at SC18-21, ECP Annual 2019, ISC19
● Detailed lectures + hands-on material:

○ Distributed training, profiling & optimization on Perlmutter
○ Basis for today’s hands-on exercises

● See the full SC21 material here

NERSC Data Seminar Series:
https://github.com/NERSC/data-seminars

https://dl4sci-school.lbl.gov/
https://sites.google.com/lbl.gov/dl4sci2019
https://dl4sci-school.lbl.gov/agenda
https://github.com/NERSC/sc21-dl-tutorial
https://github.com/NERSC/data-seminars

43

Conclusions
Deep learning for science is here and growing
● Powerful capabilities
● Enthusiastic community
● Increasing HPC workloads

Perlmutter has a productive, performant software stack for deep learning
● Optimized frameworks and solutions for small to large scale DL workloads
● Support for productive workflows (Jupyter, HPO)

Join the NERSC Users Slack

Time for questions, then setup for hands-on!

https://www.nersc.gov/users/NUG/nersc-users-slack/

44

Thank you

Hands-on exercises: background

46

Deep learning science example:

“N-body to Hydro” model for cosmology

Adapted from “Fast, high-fidelity Lyman-α forests with convolutional neural networks”,
https://arxiv.org/abs/2106.12662

https://arxiv.org/abs/2106.12662

47

Science problem: cosmological simulations

Dark matter is abundant, and essential to structure formation, but can’t see it!

Need to model “observables” from visible matter, e.g. luminous gas + galaxies

Large-scale-structure forms mostly
via dark matter:

Gas dynamics affected by small-scale
hydrodynamic interactions:

https://docs.google.com/file/d/1HcOkc-eQCNCAjIfZRLdTYuaSOT6TZnG7/preview

48

Modeling full system computationally demanding
● Multiphysics fluids solver on HPC systems

Simpler: N-body simulations (dark matter only)
● Quick to run, ignore hydrodynamics
● Still capture large-scale structure

Long-standing goal:

Reconstruct hydrodynamic fields from N-body

Hydrodynamic reconstruction from N-body simulations

N-body

Hydro

Observables

49

U-Net architecture:

● Convolution layers (down/up-sampling)
● Skip connections across scales

Hydrodynamic reconstruction from N-body simulations

U-Net

N-body

Hydro

50

Dataset: N-body + Hydro simulations

Volume of data in simulations presents a challenge:

● 4 input fields, 5 output fields (densities, temperatures, velocities)
● Spatial grid is very large (10243 - 20483)

○ Train with smaller crops, or sub-volumes

51

Dataset: N-body + Hydro simulations

Locality & symmetries as data
augmentations:

● For training, randomly crop
sub-volumes and apply rotations and
reflections

U-Net

loss

52

Today’s code
We will be using PyTorch today
● Pythonic, easy to integrate with other python code
● Good performance and distributed training with support for MPI and NCCL

The example code we’ll be using is in the github repository:
https://github.com/NERSC/ml-pm-training-2022
Readme has detailed instructions!

Access to Perlmutter is via NERSC JupyterHub:
https://jupyter.nersc.gov

https://github.com/NERSC/ml-pm-training-2022
https://jupyter.nersc.gov

