®
\
CR=RAY |
[Y \

\

Cray Programming Environment
Hack-a-Thon

Luiz DeRose, Heidi Poxon, & John Levesque
Cray Inc.

\
Legal Disclaimer ANy

(Y \

Information in this document is provided in connection with Cray Inc. products. No license, express or implied, to any o \ \
intellectual property rights is granted by this document.

Cray Inc. may make changes to specifications and product descriptions at any time, without notice.

All products, dates and figures specified are preliminary based on current expectations, and are subject to change without \
notice.

Cray hardware and software products may contain design defects or errors known as errata, which may cause the product to
deviate from published specifications. Current characterized errata are available on request.

Cray uses codenames internally to identify products that are in development and not yet publically announced for release.
Customers and other third parties are not authorized by Cray Inc. to use codenames in advertising, promotion or marketing
and any use of Cray Inc. internal codenames is at the sole risk of the user.

Performance tests and ratings are measured using specific systems and/or components and reflect the approximate
performance of Cray Inc. products as measured by those tests. Any difference in system hardware or software design or
configuration may affect actual performance.

The following are trademarks of Cray Inc. and are registered in the United States and other countries: CRAY and design,
SONEXION, URIKA and YARCDATA. The following are trademarks of Cray Inc.: ACE, APPRENTICE2, CHAPEL, CLUSTER
CONNECT, CRAYPAT, CRAYPORT, ECOPHLEX, LIBSCI, NODEKARE, THREADSTORM. The following system family
marks, and trademarks of Cray Inc.: CS, CX, XC, XE, XK, XMT and XT. The registered trademark LINUX is used pursuant to
a sublicense from LMI, the exclusive licensee of Linus Torvalds, owner of the mark on a worldwide basis.

Other names and brands may be claimed as the property of others. Other product and service names mentioned herein are
the trademarks of their respective owners.

Copyright 2016 Cray Inc.

COMPUTE | STORE | ANALYZE
March 2016 Cray Inc. Proprietary © 2016 @

Agenda (Tentative)

09:00 — 09:15 Introductions and goals

09:15 — 09:45 Update on Cori

09:45 — 10:45 Using CCE and Cray Performance Tools

10:45 - 11:00 Break

11:00 — 12:00 Using Reveal to add OpenMP and find vectorization opportunities
12:00 — 13:00 Lunch

13:00 — 13:15 Where to find documentation

13:15 — 16:15 Profiling and tuning with Cray software

16:15 — 16:30 PE Roadmap for KNL

16:30 — 17:00 Questions / Recap

\
The Cray Programming Environment Mission &R~AaSy,

[Y \

= Focus on Performance and Programmability MO,

* |t is the role of the Programming Environment to close the gap between observed
performance and achievable performance

= Support the application
development life cycle by providing
a tightly coupled environment with
compilers, libraries, and tools that will
hide the complexity of the system

Debug

e i : V V

information S
Debug
information

Export/Import

Program -

Analyses Performance

* Address issues of scale and
complexity of HPC systems

application CLElTEE
* Target ease of use with extended information | 4 '
functionality and increased ‘

automation

Queries for
Application
Optimization

* Close interaction with users

> For feedback targeting functionality
enhancements

Application
W v 3 - [— - EFE | =

=

The Cray Compiling Environment

e Cray technology focused on scientific applications
e [akes advantage of automatic vectorization
e Takes advantage of automatic shared memory parallelization

e Automatic optimizations for Cray architectures to deliver performance of a new
target through simple recompile
e Hide system complexity

e PGAS IIanguages (UPC & Fortran Coarrays) fully optimized and integrated into the
compiler
e No preprocessor involved
e Target the network appropriately
e Full debugger support with Allinea’s DDT

e Focus on standards for application portability and investment protection
Fortran 2008 standard compliant

C++11 compliant (working on C++14)

OpenMP 4.0 compliant (working on OpenMP 4.5)

OpenACC 2.0

UPC 1.3

CCE Highlights

e Arguably the most complete vectorization capabilities in the industry g
e Fully automatic loop vectorization without the need of directives and source code modification
e This includes automatic outer loop vectorization, which is unique in the industry

e Focus on real applications, instead of just benchmarks

e Compiler feedback with annotated listing of source code indicating important
optimizations

e The Program Library (PL), an application wide repository
o Allows whole application analysis
e Allows exchange of information between tools and the compiler

e Automatic shared memory parallelization with whole program analysis

e Bit reproducibility while maintaining high performance is a key example; critical for
our climate modeling customers

e Fully integrated heterogeneous optimization capability

CCE 8.3 Highlights (June 2014) cRasy

Q \

e The new option —h develop selects compiler optimization levels to balance '
compile time against application execution time.

o Th(ijs optign is intended for use during application development, when quick turnaround
is desired.

e It minimizes compile time at the cost of some execution time performance.

e -h flex_mp=strict provides a level repeatability of between the
conservative and intolerant levels.

e Other general improvements have also been made for -h flex_mp.
e New UPC extensions

e cray upc_sheap info() call provides symmetric heap usage information
e cray_upc_shared cast() call creates a pointer-to-shared from a pointer-to-local.

e For Fortran applications, a string identifyinqg MPI rank and OpenMP thread
ID begins each line written to stdout and stderr.

e Performance....

COMPUTE | STORE | ANALYZE
March 2016 Cray Inc. Proprietary © 2016 @

CCE 8.4 Highlights (September 2015) — Yo

e \
S \

e Support for the C++11 language standard \

e To enable C++11 features, use the -h std=c++11 command line option
e Support for the OpenMP 4.0 specification

e Support for the inline assembly ASM construct for x86
processor targets

e Support for GNU extensions by default (-h gnu option)
e Fortran option to initialize floating point arrays to NaNs

e Performance....

Production Quality cRas

)
S \

e Functional regression testing done nightly \
o BOHJZCIHE)IES 35,000 nightly regression tests run for Fortran (14,000), C (7,000), and C+

o Default o%tlmlzatlon but for multiple targets (X86, X86+AVX+FMA, X2, \
X86+NVI lus debug and productlon compiler versions

e Additionally, cycle through “options testing” with the same test base
e Fortran: -GO, -G1, -G2, -O0, -Oipa0, -Oipa5 -hpic, “-O3,fp3” —e0
e C and C++: -Gn, -0O0, -hipa0, -hipab, -hpic, “-O3 —hfp3” -hzero
e Additional tests and suites have been added for GPU testing
e And some “stress test” option sets to create worse-case scenarios for the compiler
e Other combinations as necessary and by request

o Performance re ressmn testmg done weekly using important
applications and benchmarks

e Automated tools quickly isolate a test change to a specific compiler or
library mod

COMPUTE | STORE | ANALYZE
March 2016 Cray Inc. Proprietary © 2016 @

\
Some Cray Compilation Environment Basics &RAaYy,

Q \
S \

e CCE-specific features: y
e Optimization: -0O2 is the default and you should usually use this

e CCE only gives minimal information to stderr when compiling
e To see more information, you should request a compiler listing file
o flag -hlist=a
e writes a file with extension .Ist
e contains annotated source listing, followed by explanatory messages
e Each message is tagged with an identifier, e.g.: ftn-6430
e to get more information on this, type: explain <identifier>
e Cray Reveal can display all this information (and more)

COMPUTE | STORE | ANALYZE
March 2016 Cray Inc. Proprietary © 2016

\

Example: Cray loopmark Messages S S

e —hlist=m ... 80N

29. b-——=-—-- < do i3=2,n3-1

30. b b----- < do i2=2,n2-1 ‘

31. b b Vr-—< do il=1,nl

32. b b Vr ul (il) = u(il,i2-1,i3) + u(il,i2+1,i3)

33. b b Vr + u(il,i2,i3-1) + u(il,i2,i3+1)

34. b b Vr u2(il) = u(il,i2-1,i3-1) + u(il,i2+1,i3-1)

35. b b Vr + u(il,i2-1,i3+1) + u(il,i2+1,i3+1)

36. b b Vr--> enddo

37. b b Vr--< do il=2,nl-1

38. b b Vr r(il,i2,i3) = wv(il,i2,i3)

39. b b Vr - a(0) * u(il,i2,i3)

40. b b Vr - a(2) * (u2(il) + ul(il-1) + ul(il+1l))

41. b b Vr - a(3) * (u2(il-1) + u2(il+l))

42. b b Vr--> enddo

43. b b----- > enddo

44. b------- >
March 2014 Cray Inc. Proprietary © 2016 @

Example: Cray loopmark messages (cont) =I=A:Yf

ftn-6289 ftn: VECTOR File = resid.f, Line = 29 l \
A loop starting at line 29 was not vectorized because a recurrence was found on "U1" between
lines 32 and 38.
ftn-6049 ftn: SCALAR File = resid.f, Line = 29 \
A loop starting at line 29 was blocked with block size 4.
ftn-6289 ftn: VECTOR File = resid.f, Line = 30
A loop starting at line 30 was not vectorized because a recurrence was found on "U1" between
lines 32 and 38.
ftn-6049 ftn: SCALAR File = resid.f, Line = 30
A loop starting at line 30 was blocked with block size 4.
ftn-6005 ftn: SCALAR File = resid.f, Line = 31
A loop starting at line 31 was unrolled 4 times.
ftn-6204 ftn: VECTOR File = resid.f, Line = 31
A loop starting at line 31 was vectorized.
ftn-6005 ftn: SCALAR File = resid.f, Line = 37
A loop starting at line 37 was unrolled 4 times.
ftn-6204 ftn: VECTOR File = resid.f, Line = 37
A loop starting at line 37 was vectorized.

March 2016 Cray Inc. Proprietary © 2016 @

Example of Explain Utility cRAaYyY

users/ldr> explain ftn-6289

VECTOR: A loop starting at line %s was not vectorized because a recurrence \
was found on "var" between lines hum and num.

Scalar code was generated for the loop because it contains a linear
recurrence. The following loop would cause this message to be issued:

DO | = 2,100
B(l) = A(I-1)
A(l) = B(1)

ENDDO

March 2016 Cray Inc. Proprietary © 2016 @

Recommended CCE Compilation Options o

e Use default optimization levels
e It's the equivalent of most other compilers —O3 or —fast
e Itis also our most thoroughly tested configuration

e Using —03,fp3 (or —O3 —hfp3, or some variation)
e -O3 only gives you slightly more than —O2
e We also test this thoroughly
e -hfp3 gives you a lot more floating point optimization, esp. 32-bit
e Higher numbers are not always correlated with better performance

e Optimizing for compile time rather than execution time
e Compile time can sometimes be improved by disabling certain features/
optimizations
e Some common things to try: -hnodwarf, -hipa0, -hunrollO

COMPUTE | STORE | ANALYZE
March 2016 Cray Inc. Proprietary © 2016

OpenMP c=Ras

e OpenMP is ON by default ‘
e Optimizations controlled by —hthread#

e Autothreading is NOT on by default;

e -hautothread to turn on
e Modernized version of Cray X1 streaming capability
o Interacts with OpenMP directives

e If you do not want to use OpenMP and have OMP
directives in the code, make sure to shut off OpenMP at
compile time

e To shut off use —hthread0 or —xomp or -hnoomp

Cray Performance Measurement
and Analysis Tools

§
Cray Performance Tools Strengths SRS
e Whole program analysis across many nodes : O

New and advanced user interfaces

Support for MPl, SHMEM, OpenMP, UPC, CAF, OpenACC, CUDA
Load Imbalance detection

HW counter derived metrics

ePtecrgormance statistics for libraries called by program (BLAS, LAPACK, PETSc, NetCDF, HDF5,

Observations of inefficient performance
Data correlation to user source (line number, function)
Energy consumption

Minimal program perturbation

\
Two Interfaces to the Performance Tools SRR

)
S \

e Support traditional post-mortem performance ‘
analysis
e Indication of causes of problems

e Suggestions of modifications for performance
Improvement

e CrayPat-lite for first time users

e CrayPat for in-depth performance investigation
and tuning assistance

]
CRAY

e \

New perftools-base and
Instrumentation Modules

Access perftools Software AN

e Load perftools-base module and leave it loaded

e Provides access to man pages, Reveal, Cray Apprentice2, and
the new instrumentation modules

e Can keep loaded with no impact to applications

e Available starting in perftools/6.3.0 in September 2015

e Prior to perftools/6.3.0:

e Load perftools module

COMPUTE | STORE | ANALYZE
March 2016 © Cray Inc. Proprietary

Program Instrumentation Modules

Instrumentation modules available after
perftools-base is loaded:

e perftools

e perftools-lite

e perftools-lite-events
e perftools-lite-gpu

e perftools-lite-loops

What Do the Instrumentation Modules Do? cRas

perftools
e Full access to CrayPat functionality

e Use pat_build to instrument, pat_report to process data and
collect reports

e Equivalent to loading perftools module in earlier releases

perftools-lite

e Default CrayPat-lite profiling

e Load before building and running program to get a basic
performance profile sent to stdout

e Equivalent to loading perftools-lite module in earlier
releases

®
\
Tips cRAaNY
[Y \

S \
\

e Loading perftools without loading perftools-base first will
continue to work as in pre-6.3.0 releases until perftools/6.4.0

e Sites can consider loading the default perftools-base for all
users. Cray will look at automatically loading this module in a
future release.

e Instrumentation modules can be loaded and unloaded for
different performance experiments

e Use the ‘module list’ command to easily see which type of
instrumentation is currently active

e Unload the instrumentation module after performance
analysis experiments are complete

CrayPat-lite

How to Use CrayPat-lite cRa~

Access performance tools software & instrumentation module

Assumes default
perftools-base is
loaded in .login and
kept loaded

> module load perftools-lite

Build program
> make } —_— a.out (instrumented program) }

Run program (no modification to batch script)

) Condensed report to stdout
aprun a.out W a.out”.rpt (same as stdout)

a.out*.ap2
files

Example CrayPat-lite Output

CrayPat/X: Version 6.1.4.12457 Revision 12457 (xf 12277)

Experiment: lite
Number of PEs (MPI ranks): 8164
Numbers of PEs per Node: 16

4
Numbers of Threads per PE: 1
Number of Cores per Socket: 8

Execution start time: Fri Feb 28

lite/sample profile

PEs on each of 510 Nodes
PEs on 1 Node

23:06:31 2014

System name and speed: hera2 2100 MHz

Wall Clock Time:
High Memory:

999.595275 secs
475.52 MBytes

MFLOPS (aggregate): 806112.33 M/sec

I/O Read Rate:
I/O Write Rate:

33.57 MBytes/Sec
215.40 MBytes/Sec

02/26/14 13:58:24

Example CrayPat-lite Output (2)

Table 1: Profile by Function Group and Function (top 7 functions shown)
Time% | Time | Imb. | Imb. | Calls |Group

| | Time | Time% | | Function

| | | | | PE=HIDE
100.0% | 101.961423 | -- | -- | 5315211.9 |Total
g
| 92.5% | 94.267451 | -- -- | 5272245.9 |USER
|- oo e o o o
|| 75.8% | 77.248585 | 2.356249 | 3.0% | 1001.0 |LAMMPS_NS::PairLJ]Cut::compute
|| 6.5% | 6.644545 | ©0.105246 | 1.6% | 51.0 |LAMMPS_NS::Neighbor::half_bin_newton
|| 4.1% | 4.131842 | 0.634032 | 13.5% | 1.0 |LAMMPS_NS::Verlet::run
|| 3.8% | 3.841349 | 1.241434 | 24.8% | 5262868.9 |LAMMPS_NS::Pair::ev_tally
|| 1.3% | 1.288463 | ©.181268 | 12.5% | 1000.0 |LAMMPS_NS::FixNVE::final_integrate
||==
| 7.e% | 7.110931 | -- -- | 42637.0 |MPI
T e e e e C e L TP LT T TP LELELEEEPEEE
|| 4.8% | 4.851309 | 3.371093 | 41.6% | 12267.0 |MPI_Send
|| 1.5% | 1.536106 | 2.592504 | 63.8% | 12267.0 |MPI_Wait

\
Example CrayPat-lite Output (3) S SN
Table 2: File Input Stats by Filename
Read Time | Read MBytes | Read Rate | Reads | Bytes/ Call |File Name[max10]
| | MBytes/sec | | | PE=HIDE
387.432937 | 13006.522781 | 33.571030 | 41596900.0 | 327.87 |Total
| ..
| 331.691801 | 1395.829828 | 4.208213 | 13153931.0 | 111.27 |/proc/self/maps
| 13.129507 | 4075.682968 | 310.421627 | 868.0 | 4923575.28 |regional.grid.a
| 12.654338 | 2000.329418 | 158.074605 | 26892862.0 | 77.99 |./patch.input
| 3.924810 | 679.265625 | 173.069704 | 3.0 | 237420544.00 |./forcing.radflx.a

\
More Information from Same Profile cRANY

e You don’t need to run again for the following: ‘

For a complete report with expanded tables and notes, run:
pat_report /lus/scratch/heidi/lab/craypat-lite/run/sweep3d.mpi.ap2

For help identifying callers of particular functions:

pat_report -0 callers+src /lus/scratch/heidi/lab/craypat-lite/run/
sweep3d.mpi.ap2

To see the entire call tree:

pat_report -0 calltree+src /lus/scratch/heidi/lab/craypat-1lite/run/
sweep3d.mpi.ap2

Sampling with Line Number information cRas

BO0O :
Table 2: Profile by Group, Function, and Line =
Samp¥% | Samp | Imb. | Imb. | Group
| | Samp | Samp% | Function
| | | | Source
| | | | Line
| I | I PE=HIDE
100.0% | 8376.9 | -= 1 -- |Total
| o o o o
| 93.2% | 7804.0 | -= 1 -- IUSER
L
Il 51.7% | 4328.7 | -= 1 -- lcalc3_
31 | | | | heidi/DARPA/cache_util/calc3.do300-1ijswap.F
L I B B
4111 15.7% | 1314.4 | ©93.6 | 6.8% I1line.78
4111 13.9% | 1167.7 | 98.3 | 7.9% I1line.79
4111 14.5% | 1211.6 | 97.4 | 7.6% |l1line.80
4111 1.2% 1 103.1 1 26.9 | 21.2% I1line.93
4111 1.1% | 88.4 1 22.6 | 20.8% Iline.94
4111 1.0% | 84.5 1 17.5 | 17.6% Iline.95
4111 1.0% | 86.8 I 33.2 | 28.2% Iline.96
4111 1.3% | 105.0 1 23.0 1 18.4% |I1line.97
4111 1.4% | 116.5 1 24.5 | 17.7% |11line.98
| e e — — — — — — — = 4
144,1 38%

2016 © Cray Inc. Proprietary

CrayPat

The Cray Performance Analysis Framework cRas

e Supports traditional post-mortem performance analysis
e Indication of causes of problems
e Suggestions of modifications for performance improvement \

e pat build: provides automatic instrumentation
e CrayPat run-time library collects measurements (transparent to the user)

e pat_region API

e Provides mechanism to control collection of performance data within source code
e pat_report performs analysis and generates text reports
e pat_help: online help utility

e Cray Apprentice2: graphical visualization tool

Application Instrumentation with pat_build ==A‘~Y®' '

\
S \

e Supports two categories of experiments \

e asynchronous experiments (sampling) which capture values from the
call stack or the program counter at specified intervals or when a \
specified counter overflows

e Event-based experiments (tracing) which count some events such as
the number of times a specific system call is executed

e While tracin?t rovides most useful information, it can be

very heavy if the application runs on a large number of
cores for a long period of time

e Sampling can be useful as a starting point, to provide a
first overview of the work distribution

COMPUTE | STORE | ANALYZE
© Cray Inc. Proprietary @

March 2016

How to Use CrayPat —_— Y

e Make sure the following modules are loaded:
e PrgEnv-cray module
e perftools module (perftools-base is already loaded)

¢ Instrument binary for tracing user functions and MPI
e > pat build —u —g mpi my_program
e OpenMP is on by default when tracing is enabled

e Run application

e Create report with GPU statistics

COMPUTE | STORE | ANALYZE
March 2016 © Cray Inc. Proprietary

pat_report ‘='=AYf '

o gotmbines information from binary with raw performance
ata \

e Performs analysis on data
e Generates text report of performance results

e Generates customized instrumentation template for
automatic profiling analysis

e Formats data for input into Cray Apprentice?

\
MPI Messages By Caller CRAaNy |
[\
S OO heidi@limited: /h/heidi — ssh — 81x26 - . \ \
Table 4: MPI Message Stats by Caller -
MPI Msg | MPI | MsgSz | 4KB<= |Function
Bytes | Msg I <16B | MsgSz | Caller
| Count | Count | <64KB | PE=[mmm] \
| | | Count |
140166953.8 | 8890.6 | 339.8 | 8550.8 I[Total
| o o o o
| 140166833.8 | 8875.6 | 324.8 | 8550.8 IMPI_ISEND
[e
Il 78272400.0 | 4850.0 | 75.0 | 4775.0 lcalc2_
31 | | | | shalow_
I I B
4111 78700800.0 | 7200.0 | 2400.0 | 4800.0 |Ipe.O
4111 78681600.0 | 4800.0 | 0.0 | 4800.0 lIpe.1
4111 59020800.0 | 4800.0 | 1200.0 | 3600.0 |pe.47
I I B e
Il 59421800.0 | 3725.0 | 100.0 | 3625.0 lcalcl_
31 | | shalow_
I B B
4111 78700800.0 | 7200.0 | 2400.0 | 4800.0 |pe.O
4111 59011200.0 | 3600.0 | 0.0 | 3600.0 Ipe.1
4111 59011200.0 | 3600.0 | 0.0 | 3600.0 Ipe.224
Il R e 4
624,3 79%
016 © Cray Inc. Proprietary O

Collecting Performance Counter
Information

CrayPat Runtime Options =o'

e Runtime controlled through PAT_RT_XXX environment
variables ~

e See intro_craypat(1) man page

e Examples of control

Enable full trace
Change number of data files created
Enable collection of HW, network or power counter events

Enable tracing filters to control trace file size (max threads, max call
stack depth, etc.)

Performance Counters el — P

(Y \
S \
\

\
e\

Processor (core and uncore)
Network
Accelerator

e Cray supports raw counters, derived metrics and thresholds for:
e Power

e Predefined groups
e Groups together suggested counters for experiments

e Single interface to access counters
e PAT_RT_PERFCTR environment variable

e See hwpc, nwpc, accpc, and rapl man pages

COMPUTE | STORE | ANALYZE

March 2014 © Cray Inc. Proprietary

How to Get List of Events for a Processor cRas

e Run the following utilities on a compute node: \
e papi_avall
e papi_native avall \

e Use pat_help on login node
e > pat help counters haswell
e deriv
Groups
Native

papi

e Set PAT_RT_PERFCTR environment variable to list of
events or group prior to execution

\
Performance Counters via PAPI =l _P_N

(Y \
S \

e Common set of events deemed relevant and useful for \
application performance tuning \

e Accesses to the memory hierarchy, cycle and instruction counts,
functional units, pipeline status, etc.

e The “papi_avail” utility shows which predefined events are available on
the system — execute on compute node

e PAPI also provides access to native events

e The “papi_native avail” utility lists all native events available on the
system — execute on compute node

e PAPI uses perf_events Linux subsystem

COMPUTE | STORE | ANALYZE

March 2014 © Cray Inc. Proprietary

Example Performance Counter Groups - SNB ‘='=*A;Yf

S \
\

> pat_help counters sandybridge groups

There are 14 Eredefined hardware performance counter event groups that can be specified by
seEEin? PAT RT PERFCTR to the group id. Some groups contain the keyword "mpx" to enable \
multiplexing.

Additional topics:

0: D1 with instruction counts

1l: Summary -- FP and cache metrics

2: D1, D2, L3 Metrics

6: Micro-op queue stalls

7: Back end stalls

8: Instructions and branches

9: Instruction cache

10: Cache Hierarchy

11: Floating point operations dispatched

12: AVX floating point operations

13: SSE and AVX floating point operations SP
14: SSE and AVX floating point operations DP
23: FP and cache metrics (same as 1)
default: group 1

Example: HW counter data and Derived Metrics ='='A‘Yf?

\

PAPI_TLB DM Data translation lookaside buffer misses \

PAPI L1 DCA Level 1 data cache accesses

PAPI_FP OPS Floating point operations

DC MISS Data Cache Miss —

User_Cycles Virtual Cycles PAT_RT_PERFCTR_1
USER Flat profile data

Time$ 98.3% Raw counts

Time 4.434402 secs = H

o ime DC Sees Derived metrics

Imb.Time$% ==

Calls 0.001M/sec 4500.0 calls

PAPI_L1 DCM 14.820M/sec 65712197 misses

PAPI_TLB DM 0.902M/sec 3998928 misses

PAPI L1 DCA 333.331M/sec 1477996162 refs

PAPI_FP_OPS 445 .571M/sec 1975672594 ops

User time (approx) 4.434 secs 11971868993 cycles 100.0%Time

Average Time per Call 0.000985 sec

CrayPat Overhead : Time 0.1%

HW FP Ops / User time 445.571M/sec 1975672594 ops 4.1%peak (DP)

HW FP Ops / WCT 445.533M/sec

Computational intensity 0.17 ops/cycle 1.34 ops/ref

MFLOPS (aggregate) 1782.28M/sec

TLB utilization 369.60 refs/miss 0.722 avg uses

D1 cache hit,miss ratios 95.6% hits 4.4% misses

D1 cache utilization (misses) 22.49 refs/miss 2.811 avg hits

]
CRAY

e \

Maximize On-node
Communication by Reordering
MPI ranks

When Is Rank Re-ordering Useful? <=|=eAYj’ '

)
S \

e Maximize on-node communication between MPI ranks ‘
e Physical system topology agnostic

e Grid detection and rank re-ordering is helpful for
programs with significant point-to-point communication

e Relieve on-node shared resource contention by pairing
threads or processes that perform different work (for
example computation with off-node communication) on
the same node

MPI Rank Reorder — Two Interfaces Available an:Y@' '

\
S \

e CrayPat y

e Include —g mpi when instrumenting program

e Run program and let CrayPat determine if communication is dominant,
detect communication pattern and suggest MPI rank order if
applicable

e grid_order utility
e User knows communication pattern in application and wants to quickly
create a new MPI rank placement file
e Available when perftools module is loaded

COMPUTE | STORE | ANALYZE
March 2014 © Cray Inc. Proprietary

Automatic Communication Grid Detection <=I=AYf '

)
S \
\

e Cray performance tools produce a custom rank order if it’s
beneficial based on grid size, grid order and cost metric :

e Summarized findings in report
e Available with sampling or tracing

e Describe how to re-run with custom rank order

MPI Rank Order Observations

Table 1: Profile by Function Group and Function

Time% | Time | Imb. | Imb. | cCalls |Group

| | Time | Time% | | Function

| | | | | PE=HIDE
100.0% | 463.147240 | -] -- | 21621.0 |Total
| __
| 52.0% | 240.974379 | -] -- | 21523.0 |MPI
e
|| 47.7% | 221.142266 | 36.214468 | 14.1% | 10740.0 |mpi_recv
|| 4.3% | 19.829001 | 25.849906 | 56.7% | 10740.0 |MPI_SEND
| |
| 43.3% | 200.474690 | -] -] 32.0 |USER
e
|| 41.0% | 189.897060 | 58.716197 | 23.6% | 12.0 |sweep_
|| 1.6% | 7.579876 | 1.899097 | 20.1% | 12.0 |source_
| |
| 4.7% | 21.698147 | - | -— | 39.0 |MPI_SYNC
I e
| 4.3% | 20.091165 | 20.005424 | 99.6% | 32.0 | mpi_allreduce_(sync)
| |
| 0.0% | 0.000024 | -] -] 27.0 |SYSCALL
|

MPI Rank Order Observations (2)

MPI Grid Detection:

There appears to be point-to-point MPI communication in a 96 X 8
grid pattern. The 52% of the total execution time spent in MPI
functions might be reduced with a rank order that maximizes
communication between ranks on the same node. The effect of several
rank orders is estimated below.

A file named MPICH_RANK ORDER.Grid was generated along with this
report and contains usage instructions and the Custom rank order
from the following table.

Rank
Order

Custom

SMP

Fold
RoundRobin

On-Node
Bytes/PE

2.385e+09
1.880e+09
1.373e+06
0.000e+00

On-Node
Bytes/PE%
of Total
Bytes/PE

95.55%
75.30%
0.06%
0.00%

MPICH_RANK REORDER METHOD

ONREFW

Auto-Generated MPI Rank Order File

-
]
CRAY

[\

The 'USER_Time_hybrid'
rank order in this file
targets nodes with multi-
core

processors, based on Sent
Msg Total Bytes collected
for:

#

Program: /lus/
nid00023/malice/craypat/
WORKSHOP/bh20o-demo/Rank/
sweep3d/src/sweep3d

Ap2 File:
sweep3d.gmpi-u.ap2
Number PEs: 768
Max PEs/Node: 16
#

To use this file, make a
copy named MPICH_RANK ORDER,
and set the

environment variable
MPICH_RANK_REORDER_METHOD to
3 prior to

executing the program.

#

,596,72,524,40,604,24,588

12

,467,25,499,105,507,41,475

73,395,81,427,57,459,17,419,53,399,85,431,21,463,61,391,19,392,75,424,59,456,83,384,337,609,369,577,377,617,329, \
113,491,49,387,89,451,121,48109,423,93,455,117,495,125,4107,416,91,488,115,448,123,4513,529

3 87

4 10

80 545,297

433,236,465,204,473,244,393,569,561
188,497 256,373

385,172,417,180,449,148,489,277,365

129,563,193,531,161,571,225,135,315,167,339,199,347,259, 220,481 352,301

185,555 247,299

153,587,169,627,137,635,201,175,363,159,323,143, 355,255,
619,177,515,145,579,209,547,291,207,275,183,283,151,267,251,590,211,630,179,638,139,370,766,306,710,378,742,330,

217,611 215,223

526,235,574,203,598,243,558, 336,344
187,606 258,338

622,155,550,171,518,219,582, 678,362

7,405,71,469,39,437,103,413,133,406,197,438,165,470,229, 147,614 646,298

111,397,63,461,55,429,87,421253,398

,23,493,119,389,95,453,127,4157,510,189,462,173,430,205,
85 390,149,422,213,454,181,494,729,732,681,756,721,716,764,351,286,319,278,342,287,350,

134,402,198,434,166,410,230, 221,486

692,673,700,641,684,713,644,694,654
753,724 262,375

676,697,748,689,657,740,665,279,374

442,238,466,174,506,158,394,130,316,260,340,194,372,162, 649,708 294,318

190,498,254,426,142,458,150, 239,300

520,672,568,712,592,752,552, 302,334

386,182,418,206,490,214,450,202,364,186,324,154,356,138, 640,600 765,661

128,533,192,541,160,565,232,268,146

216,613 15

1,403,65,435,33,411,97,443,95,439,37,407,69,447,101,415,3,440,35,432,67,400,99, 408,
13,471,45,503,29,479,77,511 1,464,43,496,27,472,51,504

632,688,616,664,544,608,656,679,703

0,532,64,564,32,572,96,540,8525,224,573,240,597,184,557, 4,535,36,543,68,567,100,527, 648,576 677,727
248,605 12,599,44,575,28,559,76,607 762,659,738,651,706,667,746,687,757,685,733,725,719,735,
104,556,16,628,80,636,56,620168,589,200,517,152,629,136,52,591,20,631,60,639,84,519,643,714,691,674,699,754,683, 645,759
,48,516,112,580,88,548,120,6549,176,637,144,621,208,581,108,623,92,551,116,583,124,6 /30,723

722,731,763,658,642,755,739,

1675,707,650,682,715,698,666,

690,747
257,345,265,313,281,305,273,

,633,361,625,321,585,
6,436,102,468,70,404,38,412,2,530,34,562,66,538,98,522,1132,401,196,441,164,409,228,537,601,289,553,353,593,521,
14,444 ,46,476,110,508,78,5000,570,42,554,26,594,50,602

86,396,30,428,62,460,54,492,18,514,74,586,58,626,82,546,
118,420,22,452,94,388,126,48106,634,90,578,114,618,122,6252,505,140,425,212,457,156,317,272,381,269,309,285,333,

,261,341,264,349,280,

,320,325,288,357,328,
539,241,595,233,523,249,603,307,231,371,239,379,191,331,131,534,195,542,163,566,227,304,360,312,376,293,296,368,

,1266,346,282,314,274,

,750,322,718,354,758,
47,445,15,509,79,477,31,501 414,245,446,141,478,237,502,761,660,737,652,705,668,745,290,734,662,686,670,726,702,

,263,343,270,311,271,

,358,383,359,310,295,
246,474 348,226,308,234,380,242,332,760,528,736,536,704,560,744,382,326,303,327,367,366,335,

,709,663,741,653,711,
222,482 292,170,276,178,284,210,218,728,584,680,624,720,512,696,669,767,655,743,671,749,695,

,751,693,647,701,717,

Using New Rank Order :l:Ay:’ '

e Save grid_order output to file called
MPICH_RANK ORDER :

e Export MPICH_RANK_REORDER_METHOD=3

e Run non-instrumented binary with and without new rank
order to check overall wallclock time for performance
improvements

e Can be used for all subsequent executions of same job
size

®
\
CR=RAY |
[\

Visualizing Performance of Your
Application Through
Cray Apprentice2

-

\
JProgram CRAY" |
HOVGWieV‘! _Functlon Proflle

Cray Apprentice?

Qov@suuééa.f

™ e ttan, o
. |
|
)) - iiejwéjilf :élg <O H oM E S DX :’
= Pair-wise
"""" Communication
View

Source code

mapping .OQV\S&IG!%f A

= | - Communication

— _—: — Time Line
S = 8 1/0 Views

& 1/0 Activity
View

O

Installing Apprentice2 on Laptop c=oav

From a Cray login node ‘
e > module load perftools |

e Go to:
o SCRAYPAT ROOT/share/desktop installers/

e Download .dmg or .exe installer to laptop

e Double click on installer and follow directions to install

Apprentice2 Overview with GPU Data

NSNS \| Apprentice2 6.0.0

Eile Help
(] w himeno.cray-xk7.interlagos.mork.PE-4.1.32.cray-8.1.2.104.libsci12.0.00.7.mpic h2-5.6.0.5.geminidyi

GOSIn

[w Overview € l

Profile

CPU

Memory Utilization

Process FiMem (MBytes) 215.832

10011 | __ (10011
10101 10101

Data Movement

Function/Region Profile

23.3% =jacodi_ ACC,_KERNEI@E 309
1£9% = jacodi_ ACC,_ DATA_REGIONRE 227
£0% = jacodi_ ACC, KERNEL@E 334

Load Imbalanc e- Prognmming, Model -

ACC_COFY
0.0% =jacodi_ ACC_KERNEL@E 309 _ 16.2%
15X =jacodi_ ACC_DATA_REGIONRE 277 :fgw:‘ (MByees) J){;“-fo
0063 =jacodi_ ACC,_KERNEI@E 334 <« Copy Onz (MByees)

Wallclock time: 83.615158s

himeno.cray-xk7.interlagos.mork.PE-4.1.32.cray-8.1.2.104 .libsci-12. .. |)

Call Tree View y

\
:.,,:::.z Functlon o e | ==AY

Filtered
node or

- About Apprenticez W~ W Llst
S b
:‘gun-u B~ Calt Tree :l/

sub tree
. . o o _J_N_Lﬁ drrver_ [0]

Node width < inclusive time = conor 1} /
Node height & exclusive time | _— -m_To_ (o1 Green colored

et | = nodes are not

] e Sheeea e traced.
sk—_rm_ 13 sweep_ [0] global_int_susm_ ('3':"{"_!#.)
otouo /\ /
0.0001 rov_real_ snd_real_ mpi ali(reduce#s?nc 0]
f Load balance overview: SR, P /
1 g 01 Inner_auto_ | MPL SEND
Height <& Max time o lahe) .
. 00 MPI_ALLR | Function ‘sweep ' has the highest ~
Upper bar <> Average time |72 I S ST Df‘lta dﬁSPlay.ed
. . TO! exsmination for performance optimization.

Lower bar <> Min time e when hovering

Yellow represents the mouse over

< TAPL ALLREDI | Hame : sweep {® of 166} [1] 9
Tinc : 124.832683 (13 29
o O 20000 MFPI_BARRIEF | Calls : 12 nOdeS Or °
Klmbalance time S il S e ‘
Max : 160.182709
0.0000 mpi_barrier_

Ixbalance: 22.31393%
Txdr Time : 35.730027s

Provides hints for
performance
tuning

0.0000 mpi_bcast_(s|

0.0000 MPI_BARRIEF

0.0000 mpi_int
T =]
%l 'vmi Imb %% |M Time
<< I Seuch:l

Go |

Walldock time: 338.265076s
)sneepmmmpt.xc)mkay.PESZZQa.ccea)l mpich701.1ibsci1300. 20141007 0at620-gmpi-user1 200, 1 12pe-N28.4x28.3x11.2...

call stack:
Bar represents CPU

8 0O 0 |%| Apprentice2 . .
Eile Help function or region: Hover
~ About Apprentice2 &) ~ cPZh.CRAY-AESOP-cce-.. pe-N8.001.xtap2) | over bar to get function
"] S <D bk Y X = Shows wait nam an i
~ overview @~ Time Line @ —~ ____ time -
Stack: e 3
19 P F
20
7 I :F?(/ﬁl [l
22 [1] [1 |
23
24
25
25
27
28
29
= - ¢ Hover to see what
I . -
|112.644r58 112.64841 112.65214 112.615588 11265961 112.66334 \dlfferent fllters do
Magnifiy: | ik 119798 .5 Time:| 112.6558771| Func: ‘ /
I I w ‘ mm TS
MJ LMI l th IJ Hove to instances of the specified function.
Each instance is colored yellow.
@ Wait . jlin } | \'7]
PE|E| =] // n |
TH|E| |0.00 31.35 7 [/ 94.05 i 125.41 156.76 188.11 219.46

Zoom: [F 10

: s . ~

|
0.00 rog ram 10873 219.45
histog ram e826. mpichE&31.libsci1220. w3304 . craypez2111.2014Apr1 5. pats!

showing wait Program

cp2k. CRANY-A|

wallclock time
line

]
CRAY

[\

What’s New?

\
Recent Enhancements =l — P

e Improved ease of use: y
e perftools-base module, pat_info utility

e Profile comparison in Cray Apprentice2
e Useful for comparing MPI vs MPI+OpenMP, scaling bottlenecks, etc.

e 2D communication heat map (Cray Apprentice2 Mosaic) in
summarized mode

¢ Visualize sampling data over time with associated call
stack

Apprentice2 Comparison

[NON] X! Comparison
Eile Compare Help

~ About Apprentice2 i ~ Comparison X |

@

mg.C.4.cceB4. lite-loops.ap2 mg.C.16.cce84. lite-loops.ap2

w Profile 8' w Profile 8'

1
1

104.34
secs

Hresid_ Hrpri3_ Hready_ Hresid_ Hrpri3_ Hoive3_
Bpsinv_ [Hinterp_ Boive3_ Mpsinv_ [Hinterp_ Bready_

‘Wallclock: 104.3411s / 26.3343s

mg. C.16.cceB4. lite-loops.ap2 (2,770,455 events in 0.069s)

March 2016

© Cray Inc. Proprietary

\
Sampling Over Time CRANY
e Available in perftools/6.2.3 (available in April 2015) RN,
e Intended for collecting higher overhead performance data

e Sampling experiment in non-summary mode
e PAT_RT_SUMMARY=0
o PAT_RT_SAMPLING_DATA=cray_pm

e Records data every 100 Program Counter addresses by default (user
can adjust)

e Examples:
Heap, shared heap
Perfctr (selected performance counters)

Rusage (resource usage (getrusage)
Cray PM, RAPL

Visualize Samples Over Time

e Plots show activity over time

e pat_report generates
e > pat_report [-r] -f plot $some.xf
e > pat report [-r] -f plot $some.ap2

e Visualize (pat_report launches gnuplot)

> pat_report $some.plot

nuplot files

> pat_report $some.plot/himem.gp

> pat_report -s pe=N
e plot data only for pe N

> pat_report -s filter_input="pe<10’
e specify a subset of pe values for which to plot data

e Run “pat_help plots” or see craypat(1) man page for more info

March 2016

COMPUTE

STORE
© Cray Inc. Proprietary

ANALYZE

Memory High Water Mark with Gnuplot e

awim, stepl, coe, mpl, Dapa, plot himem

7. 115e+08

T
oooooooTo o
[E3 Eoea 3 gy B3 e Ea EJ e

7. 11le+08 i

=
fg.lﬂ5e+08 i

7. letds

7. 095e+08

. a .. letll Zet+ll 3e+ll det+11 bet+ll
Press °q key to dlismiss Time (cycles)

Energy Consumption Over Time in Apprentice2 ‘='=A:Yf

e O O Apprentice2 ‘ \

e Associates counter data
with program call stack

Call stack:
Bar represents function
or region: Hover over
bar to get function
name, start and end time

Plots of energy consumed by
the socket and by the cores
within a socket over time. Can
also show memory high water
mark, etc.

File Compare View Help

~w About Apprentice2 Jf W swim.cray_rapl.step1.cce.mpi.Ospa.ap2 XI

~ Overview 37w Plots 3¢ |

|

Call Stack Levels (3 Levels)

1]
2 [T I W T QM T Jm T T JTJT 1T WT T 1T T fl] T
3 I 1T 1T 1T 1 I

L —

e
d PACKAGE_ENERGY - (nJ/sec)
5.950406

[[

5.830406

PPO_ENERGY - (nJ/sec)

2958 344 " 3.89 434 479

61 Time:| 3.661091 Func:l(alc3_ Prev| Next

‘Walliclock tme: 182.381667s

Z |

swim.cray_rapl.stepl.cce.mpi.Oapa.ap2 (765,593 events in 0.039s)

\

Performance Tools Documentation
and Tips

Cray PE Documentation Available

e Release Notes
e > module help product/product version

e User Guides
e http://docs.cray.com

e Man pages, for example:
e CC

crayftn

intro_directives

Intro_openacc

COMPUTE | STORE | ANALYZE
March 2016 © Cray Inc. Proprietary

How to Access Perftools

e > module load perftools-base (can go in .login)

e Then:

e To do light profile: > module load perftools-lite

e To get loop statistics: > module load perftools-lite-loops

COMPUTE | STORE | ANALYZE
March 2016 © Cray Inc. Proprietary

Perftools Documentation Available — Yo

e Release Notes ‘
e > module help perftools/version number

e User manual “Using the Cray Performance Measurement
and Analysis Tools” available at http://docs.cray.com

e pat_help — interactive help utility on the Cray Performance
toolset

e Man pages

\
Man pages cCcRAaY

e intro_craypat(1)
o Infroduces the craypat performance tool
e Runtime environment variables (enable full trace, etc.)

e pat_build(1)

e [nstrument a program for performance analysis

e pat_help(1)

e Interactive online help utility

e pat _report(1)
o Generate performance report in both text and for use with GUI

e app2 (1)

e Describes how to launch Cray Apprentice2 to visualize performance data

COMPUTE | STORE | ANALYZE
March 2016 © Cray Inc. Proprietary

Man pages (2) cRas

e hwpc(5)

e describes predefined hardware performance counter groups

e nwpc(5)

e Describes predefined network performance counter groups

e accpc(5) / accpc_k20(5), etc.

e Describes predefined GPU performance counter groups

e intro_papi(3)
e Lists PAPI event counters

o Use papi_avail or papi_native_avail utilities to get list of events when
running on a specific architecture

COMPUTE | STORE | ANALYZE
March 2016 © Cray Inc. Proprietary

Reveal Help

LN N S - : . ’ - S— ’ x| Reveal
File Edit Wiew Help

w vhone,

00628 EVOLVE@70
0.0600 REMAP@111
0.05296 STATES @64 ~Info - Line 28
0.0557 SWEEPY@77 @ A loop starting atline 28 was notvectorized because it contains a call to subroutine "ppmIr” on line 55.
005132 PARABOLA@129
0.0512 SWEEPY@37

>
finc oo)

~ 1V, ».;, tio - ~Source - /lus/scratch/heidifdemoirevealisweepx2 20 - -

. | Loop Performance o] 1 £+] Uy H ¥ Down H £
I 7.0469 VHONE @204 @ 26 ~
L’ 12;:2 :ziizgg;: 27 ! Now Loop over each row...

I 1.9427 SWEEPZ @48 @ N .

b 19427 SWEEPZ@49 @ — LS 29 do j =1, js

b 09735 RIEMANN@63 - 30

ElL ! Put state variables into 1D arrays, padding with & ghost zones
I 09666 SWEEPX2@29 @ — FL 32 do m = 1, npey

b 09634 SWEEPX1 @28 @ FLr8 33 do i =1, isy

b 09633 SWEEPX1@29 @ 34 no— i+ isy*(n-1) + 6
b 03056 RIEMANN@G4 35 rin) = recv2(l.k,i.j.m)
l; g:‘lzgg :EA::?’(;;‘Q@GT 36 pin) = recv2(2,k,]i.,j,m)
b 01752 PARABOLA@30 37 uln) = recv2(3,k,},]_,m)
b 01610 PARABOLA@75 38 vin) = recv2(4,k.l_.,]_,m)
b 01493 PARABOLA@44 39 win) = recv2(5.k.1,j.m)
b 00908 PARABOLA@S3 40 f(n) = recv2(6,k.,i.j.m)
b 00868 PARABOLA@S4 i enddo

b 00857 RIEMANN@44 42 enddo

P 00791 PARABOLA@117 a3

P 00745 PARABOLA@36 44 do 1 = 1,imax

P 00647 PARABOLA@24 45 n=1+26

4

4

3

4

4

3

~

|vhone.pl loaded. vhone_loops.ap2 loaded.

COMPUTE | STORE | ANALYZE
March 2016 © Cray Inc. Proprietary

\
Reveal Usage Recipe CRAaY

e Access Cray compiler \
e > module load PrgEnv-cray

e Access perftools
e > module load perftools-base

e Enable loop work estimates program instrumentation
e > module load perftools-lite-loops

e Build program (make)

o Rufrfl_ program to get loop work estimates in file with .ap2
suffix

Reveal Usage Recipe (2) A~

Q \
\

u u u u S
e Disable loop work estimates program instrumentation so
we can get fully optimized program now
e > module unload perftools-lite-loops \

e Create program library with CCE:
e Add —h pl=/full_path/my_ program.pl to program’s Makefile

e Rebuild application with full optimization
e > make clean
e > make

e Launch Reveal
e > reveal /full_path/my_program.pl loop work_estimates.ap2

COMPUTE | STORE | ANALYZE
March 2014 © Cray Inc. Proprietary @

How to Install Apprentice2 on Your Laptop cRas

e > module load perftools ‘

e Go to:
e SCRAYPAT ROOT/share/desktop installers/

e Download .dmg or .exe installer

e Double click on installer and follow directions to install

Apprentice2 Help

File Help

¥ About

s
e a

gmpi-u.ap2 ¥ |

~ overview
Info—
Imb Time |Name —

79.3979 sweep_

36.4938 MPI_SEND
24.7572 mpi_recv
11.9767 mpi_allreduce_(sy
0.6167 source_

0.0808 mpi_bcast_(sync)
0.0332 flux_err_

0.0271 inner_

0.0242 mpi_allreduce_(sy
0.0172 mpi_barrier_(sync|_|
0.0167 initxs_
0.0026 task_init_
0.0011 exit
0.0007 read_input_

AR

0.0003 inner_auto_
0.0002 MPL_ALLREDUCE [
0.0002 MPI_ALLREDUCE [
0.0001 mpi_barrier_(sync
0.0000 mpi_bcast [2]
0.0000 mpi_finalize
0.0000 initsnc_
0.0000 mpi_bcast_(sync) |~
>

% | Time Imb%llanme

@555

(e2685T58%)

o PNy
LA R

)

i‘ Search:l

Wallclock time: 325.788086s

|sweep3d.gmpi-u.ap2 (jd events in 0.218s)

L1

Why Should | generate a “.ap2” file? <=|=A~.r:’ '

e The “.ap2” file is a self contained compressed
performance file

e Normally it is about 5 times smaller than the “.xf” file

o g_ontains the information needed from the application
Inary
e Can be reused, even if the application binary is no longer available or
if it was rebuilt

e It is the only input format accepted by Cray Apprentice?

Files Generated and the Naming Convention cRa~

[\
!
File Suffix Description \
a.out+pat Program instrumented for data collection
a.out...s.xf Raw data for sampling experiment, available after application execution ‘
a.out...t.xf Raw data for trace (summarized or full) experiment, available after
application execution
a.out...st.ap2 Processed data, generated by pat_report, contains application symbol
information
a.out...s.apa Automatic profiling pnalysis template, generated by pat_report (based
on pat_build —O apa experiment)
a.out+apa Program instrumented using .apa file
MPICH_RANK_ORDER.Custom Rank reorder file generated by pat_report from automatic grid detection
an reorder suggestions

More on pat_report Data

Data from pat_report cRac

Q \
S \

e Default reports are intended to be useful for most ~
applications

e Don’t need to rerun program to get more detailed data

e Different aggregations, or levels of information available
e Get fined-grained thread-imbalance information for OpenMP program

e Get list of tables available:
e > pat _report —O —h

e Other formats available (txt, html, csv, xml)

A Useful Tip. . . cRas,

(Y \
S \

If you don’t see the function you are looking for in a report: :

e Disable pruning: “pat_report-P...”
e Pruning hides path from sample or event to user source so data is
better correlated to user source code

e For example, hides low level ugni network protocol calls and instead
points to MPI call in user source

e Disable thresholding: “pat_report-T...”

e Adds back in functions that took insignificant amount of time

COMPUTE | STORE | ANALYZE
March 2014 © Cray Inc. Proprietary

Questions About the Data? <=|=eAYj’ '

e See Job summary information at top of report ‘

e See Details section at bottom of report (may include
warnings from CrayPat)

e Check pat_help

e Check man pages

\
Notes Section (] — Y-S

[\
\

e Check the Notes before each table in the text report ‘

Notes for table 5:

The Total value for Process HiMem (MBytes), Process Time is the avg
for the PE values.

The value shown for Process HiMem is calculated from information in
the /proc/self/numa_maps files captured near the end of the program.
It is the total size of all pages, including huge pages, that were
actually mapped into physical memory from both private and shared
memory segments.

This table shows only the maximum, median, minimum PE entries,
sorted by Process Time.

Pat_help

e > pat_help environment. ..

pat_help environment (.=quit ,=back ~=up /=top ~=search)
=> PAT_RT_SAMPLING_DATA

Specifies additional data to collect during a sampling
experiment. The valid values are shown below.

The value may be followed by '@ratio' which indicates the
frequency at which the data is sampled. By default the data is
sampled once for every 100 sampled program counter addresses. For
example, if 'ratio' is '1', the additional data requested would
be collected each time the program counter is sampled.

If the 'ratio’' is '1000', the additional data requested would

be collected once every 1000 program counter samples.

Collecting additional data during sampling is only supported in
full-trace mode (see PAT_RT_SUMMARY).

Additional topics that may follow "PAT_RT_SAMPLING_DATA":

cray_pm perfctr
cray_rapl rusage
heap sheap

memory

\

Pat_help (2) S SN
— [\
e > pat_help environment PAT_RT_SAMPLING_DATA memory v

pat_help environment PAT_RT_SAMPLING_DATA
(.=quit ,=back ~=up /=top ~=search) => memory

memory collect data about the current state of memory
himem - memory high water mark
rss - resident set size
peak - maximum virtual memory used
priv - private resident memory
shared - shared resident memory

proportional - proportional resident memory

