
C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Cray Programming Environment
Hack-a-Thon

Luiz DeRose, Heidi Poxon, & John Levesque
Cray Inc.

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Legal Disclaimer
Information in this document is provided in connection with Cray Inc. products. No license, express or implied, to any
intellectual property rights is granted by this document.

Cray Inc. may make changes to specifications and product descriptions at any time, without notice.

All products, dates and figures specified are preliminary based on current expectations, and are subject to change without
notice.

Cray hardware and software products may contain design defects or errors known as errata, which may cause the product to
deviate from published specifications. Current characterized errata are available on request.

Cray uses codenames internally to identify products that are in development and not yet publically announced for release.
Customers and other third parties are not authorized by Cray Inc. to use codenames in advertising, promotion or marketing
and any use of Cray Inc. internal codenames is at the sole risk of the user.

Performance tests and ratings are measured using specific systems and/or components and reflect the approximate
performance of Cray Inc. products as measured by those tests. Any difference in system hardware or software design or
configuration may affect actual performance.

The following are trademarks of Cray Inc. and are registered in the United States and other countries: CRAY and design,
SONEXION, URIKA and YARCDATA. The following are trademarks of Cray Inc.: ACE, APPRENTICE2, CHAPEL, CLUSTER
CONNECT, CRAYPAT, CRAYPORT, ECOPHLEX, LIBSCI, NODEKARE, THREADSTORM. The following system family
marks, and trademarks of Cray Inc.: CS, CX, XC, XE, XK, XMT and XT. The registered trademark LINUX is used pursuant to
a sublicense from LMI, the exclusive licensee of Linus Torvalds, owner of the mark on a worldwide basis.

Other names and brands may be claimed as the property of others. Other product and service names mentioned herein are
the trademarks of their respective owners.

Copyright 2016 Cray Inc.

March 2016 Cray Inc. Proprietary © 2016 2

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Agenda (Tentative)

March 2016 Cray Inc. Proprietary © 2016 3

09:00 – 09:15 Introductions and goals

09:15 – 09:45 Update on Cori

09:45 – 10:45 Using CCE and Cray Performance Tools

10:45 – 11:00 Break

11:00 – 12:00 Using Reveal to add OpenMP and find vectorization opportunities

12:00 – 13:00 Lunch

13:00 – 13:15 Where to find documentation

13:15 – 16:15 Profiling and tuning with Cray software

16:15 – 16:30 PE Roadmap for KNL

16:30 – 17:00 Questions / Recap

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Compile

The Cray Programming Environment Mission
§  Focus on Performance and Programmability

•  It is the role of the Programming Environment to close the gap between observed
performance and achievable performance

§  Support the application
development life cycle by providing
a tightly coupled environment with
compilers, libraries, and tools that will
hide the complexity of the system

•  Address issues of scale and
complexity of HPC systems

•  Target ease of use with extended
functionality and increased
automation

•  Close interaction with users
Ø  For feedback targeting functionality

enhancements

application
information

Debug
information

Export/Import
Program
Analyses Performance

Analysis

Queries for
Application
Optimization

Compiler
information

Port

Application

Debug

Analyze

March 2016 Cray Inc. Proprietary © 2016 4

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

The Cray Compiling Environment
●  Cray technology focused on scientific applications

●  Takes advantage of automatic vectorization
●  Takes advantage of automatic shared memory parallelization

●  Automatic optimizations for Cray architectures to deliver performance of a new
target through simple recompile
●  Hide system complexity

●  PGAS languages (UPC & Fortran Coarrays) fully optimized and integrated into the
compiler
●  No preprocessor involved
●  Target the network appropriately
●  Full debugger support with Allinea’s DDT

●  Focus on standards for application portability and investment protection
●  Fortran 2008 standard compliant
●  C++11 compliant (working on C++14)
●  OpenMP 4.0 compliant (working on OpenMP 4.5)
●  OpenACC 2.0
●  UPC 1.3

March 2016 Cray Inc. Proprietary © 2016 5

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

CCE Highlights
●  Arguably the most complete vectorization capabilities in the industry

●  Fully automatic loop vectorization without the need of directives and source code modification
●  This includes automatic outer loop vectorization, which is unique in the industry

●  Focus on real applications, instead of just benchmarks

●  Compiler feedback with annotated listing of source code indicating important
optimizations

●  The Program Library (PL), an application wide repository
●  Allows whole application analysis
●  Allows exchange of information between tools and the compiler

●  Automatic shared memory parallelization with whole program analysis

●  Bit reproducibility while maintaining high performance is a key example; critical for
our climate modeling customers

●  Fully integrated heterogeneous optimization capability

March 2016 Cray Inc. Proprietary © 2016 6

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

CCE 8.3 Highlights (June 2014)

March 2016 Cray Inc. Proprietary © 2016 7

●  The new option –h develop selects compiler optimization levels to balance
compile time against application execution time.
●  This option is intended for use during application development, when quick turnaround

is desired.
●  It minimizes compile time at the cost of some execution time performance.

●  -h flex_mp=strict provides a level repeatability of between the
conservative and intolerant levels.
●  Other general improvements have also been made for -h flex_mp.

●  New UPC extensions
●  cray_upc_sheap_info() call provides symmetric heap usage information
●  cray_upc_shared_cast() call creates a pointer-to-shared from a pointer-to-local.

●  For Fortran applications, a string identifying MPI rank and OpenMP thread
ID begins each line written to stdout and stderr.

●  Performance….

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

CCE 8.4 Highlights (September 2015)

March 2016 Cray Inc. Proprietary © 2016 8

●  Support for the C++11 language standard
●  To enable C++11 features, use the -h std=c++11 command line option

●  Support for the OpenMP 4.0 specification

●  Support for the inline assembly ASM construct for x86
processor targets

●  Support for GNU extensions by default (-h gnu option)

●  Fortran option to initialize floating point arrays to NaNs

●  Performance….

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Production Quality

March 2016

●  Functional regression testing done nightly
●  Roughly 35,000 nightly regression tests run for Fortran (14,000), C (7,000), and C+

+ (14,000)
●  Default optimization, but for multiple targets (X86, X86+AVX+FMA, X2,

X86+NVIDIA), plus “debug” and “production” compiler versions
●  Additionally, cycle through “options testing” with the same test base

●  Fortran: -G0, -G1, -G2, -O0, -Oipa0, -Oipa5 -hpic, “-O3,fp3” –e0
●  C and C++: -Gn, -O0, -hipa0, -hipa5, -hpic, “-O3 –hfp3” -hzero
●  Additional tests and suites have been added for GPU testing
●  And some “stress test” option sets to create worse-case scenarios for the compiler
●  Other combinations as necessary and by request

●  Performance regression testing done weekly using important
applications and benchmarks

●  Automated tools quickly isolate a test change to a specific compiler or
library mod

Cray Inc. Proprietary © 2016 9

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Some Cray Compilation Environment Basics

March 2016

● CCE-specific features:
●  Optimization: -O2 is the default and you should usually use this

●  CCE only gives minimal information to stderr when compiling
●  To see more information, you should request a compiler listing file

●  flag -hlist=a
●  writes a file with extension .lst
●  contains annotated source listing, followed by explanatory messages

●  Each message is tagged with an identifier, e.g.: ftn-6430
●  to get more information on this, type: explain <identifier>

●  Cray Reveal can display all this information (and more)

Cray Inc. Proprietary © 2016 10

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

29. b-------< do i3=2,n3-1
30. b b-----< do i2=2,n2-1
31. b b Vr--< do i1=1,n1
32. b b Vr u1(i1) = u(i1,i2-1,i3) + u(i1,i2+1,i3)
33. b b Vr * + u(i1,i2,i3-1) + u(i1,i2,i3+1)
34. b b Vr u2(i1) = u(i1,i2-1,i3-1) + u(i1,i2+1,i3-1)
35. b b Vr * + u(i1,i2-1,i3+1) + u(i1,i2+1,i3+1)
36. b b Vr--> enddo
37. b b Vr--< do i1=2,n1-1
38. b b Vr r(i1,i2,i3) = v(i1,i2,i3)
39. b b Vr * - a(0) * u(i1,i2,i3)
40. b b Vr * - a(2) * (u2(i1) + u1(i1-1) + u1(i1+1))
41. b b Vr * - a(3) * (u2(i1-1) + u2(i1+1))
42. b b Vr--> enddo
43. b b-----> enddo
44. b-------> enddo

Example: Cray loopmark Messages
●  –hlist=m …

March 2016 Cray Inc. Proprietary © 2016 11

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Example: Cray loopmark messages (cont)

 ftn-6289 ftn: VECTOR File = resid.f, Line = 29
 A loop starting at line 29 was not vectorized because a recurrence was found on "U1" between
lines 32 and 38.
ftn-6049 ftn: SCALAR File = resid.f, Line = 29
 A loop starting at line 29 was blocked with block size 4.
ftn-6289 ftn: VECTOR File = resid.f, Line = 30
 A loop starting at line 30 was not vectorized because a recurrence was found on "U1" between
lines 32 and 38.
ftn-6049 ftn: SCALAR File = resid.f, Line = 30
 A loop starting at line 30 was blocked with block size 4.
ftn-6005 ftn: SCALAR File = resid.f, Line = 31
 A loop starting at line 31 was unrolled 4 times.
ftn-6204 ftn: VECTOR File = resid.f, Line = 31
 A loop starting at line 31 was vectorized.
ftn-6005 ftn: SCALAR File = resid.f, Line = 37
 A loop starting at line 37 was unrolled 4 times.
ftn-6204 ftn: VECTOR File = resid.f, Line = 37
 A loop starting at line 37 was vectorized.

March 2016 Cray Inc. Proprietary © 2016 12

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Example of Explain Utility

users/ldr> explain ftn-6289

VECTOR: A loop starting at line %s was not vectorized because a recurrence

was found on "var" between lines num and num.

Scalar code was generated for the loop because it contains a linear
recurrence. The following loop would cause this message to be issued:

 DO I = 2,100
 B(I) = A(I-1)
 A(I) = B(I)
 ENDDO

March 2016 Cray Inc. Proprietary © 2016 13

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Recommended CCE Compilation Options

March 2016

●  Use default optimization levels
●  It’s the equivalent of most other compilers –O3 or –fast
●  It is also our most thoroughly tested configuration

●  Using –O3,fp3 (or –O3 –hfp3, or some variation)
●  -O3 only gives you slightly more than –O2
●  We also test this thoroughly
●  -hfp3 gives you a lot more floating point optimization, esp. 32-bit
●  Higher numbers are not always correlated with better performance

●  Optimizing for compile time rather than execution time

●  Compile time can sometimes be improved by disabling certain features/
optimizations
●  Some common things to try: -hnodwarf, -hipa0, -hunroll0

Cray Inc. Proprietary © 2016 14

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

OpenMP

March 2016

● OpenMP is ON by default
●  Optimizations controlled by –hthread#

● Autothreading is NOT on by default;
●  -hautothread to turn on
●  Modernized version of Cray X1 streaming capability
●  Interacts with OpenMP directives

●  If you do not want to use OpenMP and have OMP
directives in the code, make sure to shut off OpenMP at
compile time
●  To shut off use –hthread0 or –xomp or –hnoomp

Cray Inc. Proprietary © 2016 15

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

 Cray Performance Measurement
and Analysis Tools

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Cray Performance Tools Strengths

March 2016 © Cray Inc. Proprietary 17

●  Whole program analysis across many nodes

●  New and advanced user interfaces

●  Support for MPI, SHMEM, OpenMP, UPC, CAF, OpenACC, CUDA

●  Load Imbalance detection

●  HW counter derived metrics

●  Performance statistics for libraries called by program (BLAS, LAPACK, PETSc, NetCDF, HDF5,
etc.)

●  Observations of inefficient performance

●  Data correlation to user source (line number, function)

●  Energy consumption

●  Minimal program perturbation

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Two Interfaces to the Performance Tools

● Support traditional post-mortem performance
analysis
●  Indication of causes of problems
●  Suggestions of modifications for performance

improvement

● CrayPat-lite for first time users

● CrayPat for in-depth performance investigation
and tuning assistance

March 2016 © Cray Inc. Proprietary 18

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

New perftools-base and
Instrumentation Modules

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Access perftools Software

March 2016 © Cray Inc. Proprietary

●  Load perftools-base module and leave it loaded
●  Provides access to man pages, Reveal, Cray Apprentice2, and

the new instrumentation modules

●  Can keep loaded with no impact to applications

● Available starting in perftools/6.3.0 in September 2015

● Prior to perftools/6.3.0:
●  Load perftools module

20

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Program Instrumentation Modules

March 2016 © Cray Inc. Proprietary

Instrumentation modules available after
perftools-base is loaded:

● perftools
● perftools-lite
● perftools-lite-events
● perftools-lite-gpu
● perftools-lite-loops

21

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

What Do the Instrumentation Modules Do?

March 2016 © Cray Inc. Proprietary

perftools
●  Full access to CrayPat functionality
●  Use pat_build to instrument, pat_report to process data and

collect reports
●  Equivalent to loading perftools module in earlier releases

perftools-lite
●  Default CrayPat-lite profiling
●  Load before building and running program to get a basic

performance profile sent to stdout
●  Equivalent to loading perftools-lite module in earlier

releases

22

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Tips

March 2016 © Cray Inc. Proprietary 23

●  Loading perftools without loading perftools-base first will
continue to work as in pre-6.3.0 releases until perftools/6.4.0

●  Sites can consider loading the default perftools-base for all
users. Cray will look at automatically loading this module in a
future release.

●  Instrumentation modules can be loaded and unloaded for
different performance experiments

●  Use the ‘module list’ command to easily see which type of
instrumentation is currently active

●  Unload the instrumentation module after performance
analysis experiments are complete

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

 CrayPat-lite

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

How to Use CrayPat-lite

March 2016 © Cray Inc. Proprietary 25

Access performance tools software & instrumentation module

Build program

Run program (no modification to batch script)

a.out (instrumented program) > make

Condensed report to stdout
a.out*.rpt (same as stdout)

a.out*.ap2
files

aprun a.out

> module load perftools-lite Assumes default
perftools-base is

loaded in .login and
kept loaded

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Example CrayPat-lite Output

March 2016 © Cray Inc. Proprietary 26

CrayPat/X: Version 6.1.4.12457 Revision 12457 (xf 12277) 02/26/14 13:58:24
Experiment: lite lite/sample_profile
Number of PEs (MPI ranks): 8164
Numbers of PEs per Node: 16 PEs on each of 510 Nodes
 4 PEs on 1 Node
Numbers of Threads per PE: 1
Number of Cores per Socket: 8
Execution start time: Fri Feb 28 23:06:31 2014
System name and speed: hera2 2100 MHz

Wall Clock Time: 999.595275 secs
High Memory: 475.52 MBytes
MFLOPS (aggregate): 806112.33 M/sec
I/O Read Rate: 33.57 MBytes/Sec
I/O Write Rate: 215.40 MBytes/Sec

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Example CrayPat-lite Output (2)

March 2016 © Cray Inc. Proprietary 27

Table	1:		Profile	by	Function	Group	and	Function	(top	7	functions	shown)	
	Time%		|						Time		|				Imb.		|		Imb.		|				Calls		|Group	
								|												|				Time		|	Time%		|											|	Function	
								|												|										|								|											|		PE=HIDE	
	
	100.0%	|	101.961423	|							--	|					--	|	5315211.9	|Total	
|---	
|		92.5%	|		94.267451	|							--	|					--	|	5272245.9	|USER	
||--	
||		75.8%	|		77.248585	|	2.356249	|			3.0%	|				1001.0	|LAMMPS_NS::PairLJCut::compute	
||			6.5%	|			6.644545	|	0.105246	|			1.6%	|						51.0	|LAMMPS_NS::Neighbor::half_bin_newton	
||			4.1%	|			4.131842	|	0.634032	|		13.5%	|							1.0	|LAMMPS_NS::Verlet::run	
||			3.8%	|			3.841349	|	1.241434	|		24.8%	|	5262868.9	|LAMMPS_NS::Pair::ev_tally	
||			1.3%	|			1.288463	|	0.181268	|		12.5%	|				1000.0	|LAMMPS_NS::FixNVE::final_integrate	
||==	
|			7.0%	|			7.110931	|							--	|					--	|			42637.0	|MPI	
||--	
||			4.8%	|			4.851309	|	3.371093	|		41.6%	|			12267.0	|MPI_Send	
||			1.5%	|			1.536106	|	2.592504	|		63.8%	|			12267.0	|MPI_Wait	
|===	

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Example CrayPat-lite Output (3)

March 2016 © Cray Inc. Proprietary 28

Table	2:		File	Input	Stats	by	Filename	
	
		Read	Time	|		Read	MBytes	|		Read	Rate	|						Reads	|		Bytes/	Call	|File	Name[max10]	
												|														|	MBytes/sec	|												|														|	PE=HIDE	
	
	387.432937	|	13006.522781	|		33.571030	|	41596900.0	|							327.87	|Total	
|--	
|	331.691801	|		1395.829828	|			4.208213	|	13153931.0	|							111.27	|/proc/self/maps	
|		13.129507	|		4075.682968	|	310.421627	|						868.0	|			4923575.28	|regional.grid.a	
|		12.654338	|		2000.329418	|	158.074605	|	26892862.0	|								77.99	|./patch.input	
|			3.924810	|			679.265625	|	173.069704	|								3.0	|	237420544.00	|./forcing.radflx.a	
.	.	.	

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

More Information from Same Profile

March 2016 © Cray Inc. Proprietary 29

● You don’t need to run again for the following:
	
	
For	a	complete	report	with	expanded	tables	and	notes,	run:	
		pat_report	/lus/scratch/heidi/lab/craypat-lite/run/sweep3d.mpi.ap2	
	
For	help	identifying	callers	of	particular	functions:	
		pat_report	-O	callers+src	/lus/scratch/heidi/lab/craypat-lite/run/
sweep3d.mpi.ap2	
	
To	see	the	entire	call	tree:	
		pat_report	-O	calltree+src	/lus/scratch/heidi/lab/craypat-lite/run/
sweep3d.mpi.ap2	

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Sampling with Line Number information

March 2016 © Cray Inc. Proprietary 30

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

 CrayPat

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

The Cray Performance Analysis Framework

March 2016 © Cray Inc. Proprietary 32

●  Supports traditional post-mortem performance analysis
●  Indication of causes of problems
●  Suggestions of modifications for performance improvement

●  pat_build: provides automatic instrumentation

●  CrayPat run-time library collects measurements (transparent to the user)

●  pat_region API
●  Provides mechanism to control collection of performance data within source code

●  pat_report performs analysis and generates text reports

●  pat_help: online help utility

●  Cray Apprentice2: graphical visualization tool

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Application Instrumentation with pat_build

March 2016 © Cray Inc. Proprietary 33

● Supports two categories of experiments
●  asynchronous experiments (sampling) which capture values from the

call stack or the program counter at specified intervals or when a
specified counter overflows

●  Event-based experiments (tracing) which count some events such as
the number of times a specific system call is executed

● While tracing provides most useful information, it can be
very heavy if the application runs on a large number of
cores for a long period of time

● Sampling can be useful as a starting point, to provide a
first overview of the work distribution

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

How to Use CrayPat

March 2016 © Cray Inc. Proprietary 34

● Make sure the following modules are loaded:
●  PrgEnv-cray module
●  perftools module (perftools-base is already loaded)

●  Instrument binary for tracing user functions and MPI
●  > pat_build –u –g mpi my_program
●  OpenMP is on by default when tracing is enabled

● Run application

● Create report with GPU statistics
●  > pat_report my_program.xf > my_report

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

pat_report

March 2016 © Cray Inc. Proprietary 35

●  Combines information from binary with raw performance
data

●  Performs analysis on data

●  Generates text report of performance results

●  Generates customized instrumentation template for
automatic profiling analysis

●  Formats data for input into Cray Apprentice2

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

MPI Messages By Caller

March 2016 © Cray Inc. Proprietary 36

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Collecting Performance Counter
Information

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

CrayPat Runtime Options

March 2016 © Cray Inc. Proprietary 38

● Runtime controlled through PAT_RT_XXX environment
variables

● See intro_craypat(1) man page

● Examples of control
●  Enable full trace
●  Change number of data files created
●  Enable collection of HW, network or power counter events
●  Enable tracing filters to control trace file size (max threads, max call

stack depth, etc.)

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Performance Counters

March 2016 © Cray Inc. Proprietary 39

●  Cray supports raw counters, derived metrics and thresholds for:
●  Processor (core and uncore)
●  Network
●  Accelerator
●  Power

●  Predefined groups
●  Groups together suggested counters for experiments

●  Single interface to access counters
●  PAT_RT_PERFCTR environment variable

●  See hwpc, nwpc, accpc, and rapl man pages

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

How to Get List of Events for a Processor

March 2016 © Cray Inc. Proprietary 40

● Run the following utilities on a compute node:
●  papi_avail
●  papi_native_avail

● Use pat_help on login node
●  > pat_help counters haswell

●  deriv
●  Groups
●  Native
●  papi

● Set PAT_RT_PERFCTR environment variable to list of
events or group prior to execution

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Performance Counters via PAPI

March 2016 © Cray Inc. Proprietary 41

● Common set of events deemed relevant and useful for
application performance tuning
●  Accesses to the memory hierarchy, cycle and instruction counts,

functional units, pipeline status, etc.
●  The “papi_avail” utility shows which predefined events are available on

the system – execute on compute node

● PAPI also provides access to native events
●  The “papi_native_avail” utility lists all native events available on the

system – execute on compute node

● PAPI uses perf_events Linux subsystem

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Example Performance Counter Groups - SNB

March 2016 © Cray Inc. Proprietary 42

> pat_help counters sandybridge groups

There are 14 predefined hardware performance counter event groups that can be specified by
setting PAT_RT_PERFCTR to the group id. Some groups contain the keyword "mpx" to enable
multiplexing.

 Additional topics:

 0: D1 with instruction counts
 1: Summary -- FP and cache metrics
 2: D1, D2, L3 Metrics
 6: Micro-op queue stalls
 7: Back end stalls
 8: Instructions and branches
 9: Instruction cache
 10: Cache Hierarchy
 11: Floating point operations dispatched
 12: AVX floating point operations
 13: SSE and AVX floating point operations SP
 14: SSE and AVX floating point operations DP
 23: FP and cache metrics (same as 1)
 default: group 1

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

 PAPI_TLB_DM Data translation lookaside buffer misses
 PAPI_L1_DCA Level 1 data cache accesses
 PAPI_FP_OPS Floating point operations
 DC_MISS Data Cache Miss
 User_Cycles Virtual Cycles
==
USER
--
 Time% 98.3%
 Time 4.434402 secs
 Imb.Time -- secs
 Imb.Time% --
 Calls 0.001M/sec 4500.0 calls
 PAPI_L1_DCM 14.820M/sec 65712197 misses
 PAPI_TLB_DM 0.902M/sec 3998928 misses
 PAPI_L1_DCA 333.331M/sec 1477996162 refs
 PAPI_FP_OPS 445.571M/sec 1975672594 ops
 User time (approx) 4.434 secs 11971868993 cycles 100.0%Time
 Average Time per Call 0.000985 sec
 CrayPat Overhead : Time 0.1%
 HW FP Ops / User time 445.571M/sec 1975672594 ops 4.1%peak(DP)
 HW FP Ops / WCT 445.533M/sec
 Computational intensity 0.17 ops/cycle 1.34 ops/ref
 MFLOPS (aggregate) 1782.28M/sec
 TLB utilization 369.60 refs/miss 0.722 avg uses
 D1 cache hit,miss ratios 95.6% hits 4.4% misses
 D1 cache utilization (misses) 22.49 refs/miss 2.811 avg hits
==

Example: HW counter data and Derived Metrics

March 2016 © Cray Inc. Proprietary 43

PAT_RT_PERFCTR=1
 Flat profile data
 Raw counts
 Derived metrics

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Maximize On-node
Communication by Reordering

MPI ranks

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

When Is Rank Re-ordering Useful?

March 2016 © Cray Inc. Proprietary 45

● Maximize on-node communication between MPI ranks

● Physical system topology agnostic

● Grid detection and rank re-ordering is helpful for
programs with significant point-to-point communication

● Relieve on-node shared resource contention by pairing

threads or processes that perform different work (for
example computation with off-node communication) on
the same node

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

MPI Rank Reorder – Two Interfaces Available

March 2016 © Cray Inc. Proprietary 46

● CrayPat
●  Include –g mpi when instrumenting program
●  Run program and let CrayPat determine if communication is dominant,

detect communication pattern and suggest MPI rank order if
applicable

●  grid_order utility
●  User knows communication pattern in application and wants to quickly

create a new MPI rank placement file
●  Available when perftools module is loaded

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Automatic Communication Grid Detection

March 2016 © Cray Inc. Proprietary 47

● Cray performance tools produce a custom rank order if it’s
beneficial based on grid size, grid order and cost metric

● Summarized findings in report

● Available with sampling or tracing

● Describe how to re-run with custom rank order

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E
March 2016 © Cray Inc. Proprietary

Table 1: Profile by Function Group and Function

 Time% | Time | Imb. | Imb. | Calls |Group
 | | Time | Time% | | Function
 | | | | | PE=HIDE

 100.0% | 463.147240 | -- | -- | 21621.0 |Total
|--
| 52.0% | 240.974379 | -- | -- | 21523.0 |MPI
||---
|| 47.7% | 221.142266 | 36.214468 | 14.1% | 10740.0 |mpi_recv
|| 4.3% | 19.829001 | 25.849906 | 56.7% | 10740.0 |MPI_SEND
||===
| 43.3% | 200.474690 | -- | -- | 32.0 |USER
||---
|| 41.0% | 189.897060 | 58.716197 | 23.6% | 12.0 |sweep_
|| 1.6% | 7.579876 | 1.899097 | 20.1% | 12.0 |source_
||===
| 4.7% | 21.698147 | -- | -- | 39.0 |MPI_SYNC
||---
| 4.3% | 20.091165 | 20.005424 | 99.6% | 32.0 | mpi_allreduce_(sync)
||===
| 0.0% | 0.000024 | -- | -- | 27.0 |SYSCALL
|==

48

MPI Rank Order Observations

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

MPI Grid Detection:

 There appears to be point-to-point MPI communication in a 96 X 8
 grid pattern. The 52% of the total execution time spent in MPI
 functions might be reduced with a rank order that maximizes
 communication between ranks on the same node. The effect of several
 rank orders is estimated below.

 A file named MPICH_RANK_ORDER.Grid was generated along with this
 report and contains usage instructions and the Custom rank order
 from the following table.

 Rank On-Node On-Node MPICH_RANK_REORDER_METHOD
 Order Bytes/PE Bytes/PE%
 of Total
 Bytes/PE

 Custom 2.385e+09 95.55% 3
 SMP 1.880e+09 75.30% 1
 Fold 1.373e+06 0.06% 2
 RoundRobin 0.000e+00 0.00% 0

MPI Rank Order Observations (2)

March 2016 © Cray Inc. Proprietary 49

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Auto-Generated MPI Rank Order File

March 2016 © Cray Inc. Proprietary

The 'USER_Time_hybrid'
rank order in this file
targets nodes with multi-
core
processors, based on Sent
Msg Total Bytes collected
for:
#
Program: /lus/
nid00023/malice/craypat/
WORKSHOP/bh2o-demo/Rank/
sweep3d/src/sweep3d
Ap2 File:
sweep3d.gmpi-u.ap2
Number PEs: 768
Max PEs/Node: 16

#
To use this file, make a
copy named MPICH_RANK_ORDER,
and set the
environment variable
MPICH_RANK_REORDER_METHOD to
3 prior to
executing the program.
#
0,532,64,564,32,572,96,540,8
,596,72,524,40,604,24,588
104,556,16,628,80,636,56,620
,48,516,112,580,88,548,120,6
12
1,403,65,435,33,411,97,443,9
,467,25,499,105,507,41,475

73,395,81,427,57,459,17,419,
113,491,49,387,89,451,121,48
3
6,436,102,468,70,404,38,412,
14,444,46,476,110,508,78,500
86,396,30,428,62,460,54,492,
118,420,22,452,94,388,126,48
4
129,563,193,531,161,571,225,
539,241,595,233,523,249,603,
185,555
153,587,169,627,137,635,201,
619,177,515,145,579,209,547,
217,611
7,405,71,469,39,437,103,413,
47,445,15,509,79,477,31,501
111,397,63,461,55,429,87,421
,23,493,119,389,95,453,127,4
85
134,402,198,434,166,410,230,
442,238,466,174,506,158,394,
246,474
190,498,254,426,142,458,150,
386,182,418,206,490,214,450,
222,482
128,533,192,541,160,565,232,
525,224,573,240,597,184,557,
248,605
168,589,200,517,152,629,136,
549,176,637,144,621,208,581,
216,613
5,439,37,407,69,447,101,415,
13,471,45,503,29,479,77,511

53,399,85,431,21,463,61,391,
109,423,93,455,117,495,125,4
87
2,530,34,562,66,538,98,522,1
0,570,42,554,26,594,50,602
18,514,74,586,58,626,82,546,
106,634,90,578,114,618,122,6
10
135,315,167,339,199,347,259,
307,231,371,239,379,191,331,
247,299
175,363,159,323,143,355,255,
291,207,275,183,283,151,267,
215,223
133,406,197,438,165,470,229,
414,245,446,141,478,237,502,
253,398
157,510,189,462,173,430,205,
390,149,422,213,454,181,494,
221,486
130,316,260,340,194,372,162,
348,226,308,234,380,242,332,
250,300
202,364,186,324,154,356,138,
292,170,276,178,284,210,218,
268,146
4,535,36,543,68,567,100,527,
12,599,44,575,28,559,76,607
52,591,20,631,60,639,84,519,
108,623,92,551,116,583,124,6
15
3,440,35,432,67,400,99,408,1
1,464,43,496,27,472,51,504

19,392,75,424,59,456,83,384,
107,416,91,488,115,448,123,4
80
132,401,196,441,164,409,228,
433,236,465,204,473,244,393,
188,497
252,505,140,425,212,457,156,
385,172,417,180,449,148,489,
220,481
131,534,195,542,163,566,227,
526,235,574,203,598,243,558,
187,606
251,590,211,630,179,638,139,
622,155,550,171,518,219,582,
147,614
761,660,737,652,705,668,745,
692,673,700,641,684,713,644,
753,724
729,732,681,756,721,716,764,
676,697,748,689,657,740,665,
649,708
760,528,736,536,704,560,744,
520,672,568,712,592,752,552,
640,600
728,584,680,624,720,512,696,
632,688,616,664,544,608,656,
648,576
762,659,738,651,706,667,746,
643,714,691,674,699,754,683,
730,723
722,731,763,658,642,755,739,
675,707,650,682,715,698,666,
690,747
257,345,265,313,281,305,273,

337,609,369,577,377,617,329,
513,529
545,297,633,361,625,321,585,
537,601,289,553,353,593,521,
569,561
256,373,261,341,264,349,280,
317,272,381,269,309,285,333,
277,365
352,301,320,325,288,357,328,
304,360,312,376,293,296,368,
336,344
258,338,266,346,282,314,274,
370,766,306,710,378,742,330,
678,362
646,298,750,322,718,354,758,
290,734,662,686,670,726,702,
694,654
262,375,263,343,270,311,271,
351,286,319,278,342,287,350,
279,374
294,318,358,383,359,310,295,
382,326,303,327,367,366,335,
302,334
765,661,709,663,741,653,711,
669,767,655,743,671,749,695,
679,703
677,727,751,693,647,701,717,
687,757,685,733,725,719,735,
645,759

50

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Using New Rank Order

March 2016 © Cray Inc. Proprietary 51

● Save grid_order output to file called
MPICH_RANK_ORDER

● Export MPICH_RANK_REORDER_METHOD=3

● Run non-instrumented binary with and without new rank
order to check overall wallclock time for performance
improvements

● Can be used for all subsequent executions of same job
size

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Visualizing Performance of Your
Application Through

Cray Apprentice2

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Cray Apprentice2

Call Graph Profile

Communication
& I/O Activity
View

Load balance
views

Function Profile

Time Line
& I/O Views

Pair-wise
Communication
View

Source code
mapping

Program
Overview

March 2016 © Cray Inc. Proprietary

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Installing Apprentice2 on Laptop

March 2016 © Cray Inc. Proprietary 54

From a Cray login node

●  >	module	load	perftools	

● Go to:
●  $CRAYPAT_ROOT/share/desktop_installers/

● Download .dmg or .exe installer to laptop

● Double click on installer and follow directions to install

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Apprentice2 Overview with GPU Data

March 2016 © Cray Inc. Proprietary 55

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Call Tree View

March 2016 © Cray Inc. Proprietary 56

Function
List

Load balance overview:
Height ó Max time
Upper bar ó Average time
Lower bar ó Min time
Yellow represents
imbalance time

Zoom
Provides hints for
performance
tuning

Filtered
node or
sub tree

Green colored
nodes are not
traced.

Data displayed
when hovering
the mouse over
nodes or “?”.

Node width ó inclusive time
Node height ó exclusive time

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

CPU Program Timeline: 36GB CP2K Full Trace

March 2016 © Cray Inc. Proprietary 57

Shows wait
time

Hover to see what
different filters do

CPU call stack:
Bar represents CPU

function or region: Hover
over bar to get function

name, start and end time

Program
histogram

showing wait
time

Program
wallclock time

line

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

What’s New?

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Recent Enhancements

March 2016 © Cray Inc. Proprietary

●  Improved ease of use:
●  perftools-base module, pat_info utility

● Profile comparison in Cray Apprentice2
●  Useful for comparing MPI vs MPI+OpenMP, scaling bottlenecks, etc.

●  2D communication heat map (Cray Apprentice2 Mosaic) in
summarized mode

● Visualize sampling data over time with associated call
stack

59

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Apprentice2 Comparison

March 2016 © Cray Inc. Proprietary 60

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Sampling Over Time
●  Available in perftools/6.2.3 (available in April 2015)

●  Intended for collecting higher overhead performance data

●  Sampling experiment in non-summary mode
●  PAT_RT_SUMMARY=0	
●  PAT_RT_SAMPLING_DATA=cray_pm	

●  Records data every 100 Program Counter addresses by default (user

can adjust)

●  Examples:
●  Heap, shared heap
●  Perfctr (selected performance counters)
●  Rusage (resource usage (getrusage)
●  Cray PM, RAPL

March 2016 © Cray Inc. Proprietary 61

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Visualize Samples Over Time
●  Plots show activity over time

●  pat_report generates gnuplot files
●  > pat_report [-r] -f plot $some.xf
●  > pat_report [-r] -f plot $some.ap2

●  Visualize (pat_report launches gnuplot)
●  > pat_report $some.plot
●  > pat_report $some.plot/himem.gp

●  > pat_report -s pe=N
●  plot data only for pe N

●  > pat_report -s filter_input='pe<10’
●  specify a subset of pe values for which to plot data

●  Run “pat_help plots” or see craypat(1) man page for more info

March 2016 © Cray Inc. Proprietary 62

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Memory High Water Mark with Gnuplot

March 2016 © Cray Inc. Proprietary 63

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Energy Consumption Over Time in Apprentice2

March 2016 © Cray Inc. Proprietary 64

Call stack:
Bar represents function
or region: Hover over

bar to get function
name, start and end time

Plots of energy consumed by
the socket and by the cores

within a socket over time. Can
also show memory high water

mark, etc.

●  Associates counter data
with program call stack

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Performance Tools Documentation
and Tips

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Cray PE Documentation Available

March 2016 © Cray Inc. Proprietary 66

● Release Notes
●  > module help product/product_version

● User Guides
●  http://docs.cray.com

● Man pages, for example:
●  cc
●  crayftn
●  intro_directives
●  Intro_openacc

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

How to Access Perftools

March 2016 © Cray Inc. Proprietary 67

●  > module load perftools-base (can go in .login)

●  Then:
●  To do light profile: > module load perftools-lite

●  To get loop statistics: > module load perftools-lite-loops

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Perftools Documentation Available
● Release Notes

●  > module help perftools/version_number

● User manual “Using the Cray Performance Measurement
and Analysis Tools” available at http://docs.cray.com

●  pat_help – interactive help utility on the Cray Performance

toolset

● Man pages

March 2016 © Cray Inc. Proprietary 68

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Man pages

March 2016 © Cray Inc. Proprietary 69

●  intro_craypat(1)
●  Introduces the craypat performance tool
●  Runtime environment variables (enable full trace, etc.)

●  pat_build(1)
●  Instrument a program for performance analysis

●  pat_help(1)
●  Interactive online help utility

●  pat_report(1)
●  Generate performance report in both text and for use with GUI

●  app2 (1)
●  Describes how to launch Cray Apprentice2 to visualize performance data

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Man pages (2)

March 2016 © Cray Inc. Proprietary 70

●  hwpc(5)
●  describes predefined hardware performance counter groups

●  nwpc(5)
●  Describes predefined network performance counter groups

●  accpc(5) / accpc_k20(5), etc.
●  Describes predefined GPU performance counter groups

●  intro_papi(3)
●  Lists PAPI event counters
●  Use papi_avail or papi_native_avail utilities to get list of events when

running on a specific architecture

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Reveal Help

March 2016 © Cray Inc. Proprietary 71

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Reveal Usage Recipe

March 2016 © Cray Inc. Proprietary 72

● Access Cray compiler
●  > module load PrgEnv-cray

● Access perftools
●  > module load perftools-base

● Enable loop work estimates program instrumentation
●  > module load perftools-lite-loops

● Build program (make)

● Run program to get loop work estimates in file with .ap2
suffix

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Reveal Usage Recipe (2)

March 2016 © Cray Inc. Proprietary 73

● Disable loop work estimates program instrumentation so
we can get fully optimized program now
●  > module unload perftools-lite-loops

● Create program library with CCE:

●  Add –h pl=/full_path/my_program.pl to program’s Makefile

● Rebuild application with full optimization
●  > make clean
●  > make

●  Launch Reveal
●  > reveal /full_path/my_program.pl loop_work_estimates.ap2

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

How to Install Apprentice2 on Your Laptop

March 2016 © Cray Inc. Proprietary 74

●  > module load perftools

● Go to:
●  $CRAYPAT_ROOT/share/desktop_installers/

● Download .dmg or .exe installer

● Double click on installer and follow directions to install

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Apprentice2 Help

March 2016 © Cray Inc. Proprietary 75

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Why Should I generate a “.ap2” file?

●  The “.ap2” file is a self contained compressed

performance file

● Normally it is about 5 times smaller than the “.xf” file

● Contains the information needed from the application
binary
●  Can be reused, even if the application binary is no longer available or

if it was rebuilt

●  It is the only input format accepted by Cray Apprentice2

March 2016 © Cray Inc. Proprietary 76

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Files Generated and the Naming Convention
File Suffix Description

a.out+pat Program instrumented for data collection

a.out…s.xf

Raw data for sampling experiment, available after application execution

a.out…t.xf Raw data for trace (summarized or full) experiment, available after
application execution

a.out…st.ap2 Processed data, generated by pat_report, contains application symbol
information

a.out…s.apa Automatic profiling pnalysis template, generated by pat_report (based
on pat_build –O apa experiment)

a.out+apa Program instrumented using .apa file
MPICH_RANK_ORDER.Custom Rank reorder file generated by pat_report from automatic grid detection

an reorder suggestions

March 2016 © Cray Inc. Proprietary 77

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

More on pat_report Data

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Data from pat_report

March 2016 © Cray Inc. Proprietary 79

● Default reports are intended to be useful for most
applications

● Don’t need to rerun program to get more detailed data

● Different aggregations, or levels of information available

●  Get fined-grained thread-imbalance information for OpenMP program

● Get list of tables available:
●  > pat_report –O –h

● Other formats available (txt, html, csv, xml)

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

A Useful Tip. . .

March 2016 © Cray Inc. Proprietary 80

If you don’t see the function you are looking for in a report:

● Disable pruning: “pat_report –P . . .”

●  Pruning hides path from sample or event to user source so data is
better correlated to user source code

●  For example, hides low level ugni network protocol calls and instead
points to MPI call in user source

● Disable thresholding: “pat_report –T . . .”
●  Adds back in functions that took insignificant amount of time

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Questions About the Data?

March 2016 © Cray Inc. Proprietary 81

● See Job summary information at top of report

● See Details section at bottom of report (may include
warnings from CrayPat)

● Check pat_help

● Check man pages

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Notes Section

March 2016 © Cray Inc. Proprietary 82

● Check the Notes before each table in the text report

Notes	for	table	5:	
			
		The	Total	value	for	Process	HiMem	(MBytes),	Process	Time	is	the	avg		
		for	the	PE	values.	
					
		The	value	shown	for	Process	HiMem	is	calculated	from	information	in	
		the	/proc/self/numa_maps	files	captured	near	the	end	of	the	program.	
		It	is	the	total	size	of	all	pages,	including	huge	pages,	that	were	
		actually	mapped	into	physical	memory	from	both	private	and	shared	
		memory	segments.	
	
		This	table	shows	only	the	maximum,	median,	minimum	PE	entries,	
				sorted	by	Process	Time.	

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Pat_help

March 2016 © Cray Inc. Proprietary 83

●  > pat_help environment . . . 	
	
	
pat_help	environment	(.=quit	,=back	^=up	/=top	~=search)	
=>	PAT_RT_SAMPLING_DATA	
	
				Specifies	additional	data	to	collect	during	a	sampling	
				experiment.	The	valid	values	are	shown	below.	
	
				The	value	may	be	followed	by	'@ratio'	which	indicates	the	
				frequency	at	which	the	data	is	sampled.	By	default	the	data	is	
				sampled	once	for	every	100	sampled	program	counter	addresses.	For	
				example,	if	'ratio'	is	'1',	the	additional	data	requested	would	
				be	collected	each	time	the	program	counter	is	sampled.	
				If	the	'ratio'	is	'1000',	the	additional	data	requested	would	
				be	collected	once	every	1000	program	counter	samples.	
	
				Collecting	additional	data	during	sampling	is	only	supported	in	
				full-trace	mode	(see	PAT_RT_SUMMARY).	
	
		Additional	topics	that	may	follow	"PAT_RT_SAMPLING_DATA":	
	
				cray_pm						perfctr	
				cray_rapl				rusage	
				heap									sheap	
				memory	

C O M P U T E 	 	 	 	 	 |	 	 	 	 	 S T O R E 	 	 	 	 	 |	 	 	 	 	 A N A L Y Z E

Pat_help (2)

March 2016 © Cray Inc. Proprietary 84

●  > pat_help environment PAT_RT_SAMPLING_DATA memory

	
	
pat_help	environment	PAT_RT_SAMPLING_DATA	
(.=quit	,=back	^=up	/=top	~=search)	=>	memory	
	
				memory				collect	data	about	the	current	state	of	memory	
	
						himem								-		memory	high	water	mark	
						rss										-		resident	set	size	
						peak									-		maximum	virtual	memory	used	
						priv									-		private	resident	memory	
						shared							-		shared	resident	memory	
						proportional	-		proportional	resident	memory	

