NESAP CESM MG2
Update

'NERsCA Helen He (and MG2 team)

YEARS

at the
FOREFRONT

Cray Quarterly Meeting
July 22, 2015

=2, U.S. DEPARTMENT OF : A
Office of p—1l

X ENERGY Science

CESM NESAP MG2 Team Members B (e

NCAR: John Dennis, Chris Kerr, Sean Santos
* Cray: Marcus Wagner

Intel: Nadezhda Plotnikova, Martyn Corden
NERSC Liaison: Helen He

Office of
Science

MG2 Kernel iR=c/

* MG2 is a kernel for CESM that represents its radiative
transfer workload. Typically consumes about 10% of CESM
run time.

— Brought to Dungeon Session in March

 Kernelis core bound
— Not bandwidth limited at all

— Shows very little vectorization
* Some loop bounds are short (e.g. 10)

— Heavy use of math instrinsics that do not vectorize
* pow(), gamma(), log10().
* Intel intrinsic gamma() is 2.6x slower than MG2 internal function

* Kernel has long complex loops with interleaved conditionals
and elemental function calls.
— Mixed conditionals and non-inlined functions inhibit vectorization
— Some send array sections to elemental functions

U.S. DEPARTMENT OF Ofﬂce Of

ENERGY Science "3- a;a\ltsma

N
A
rrrrrrr ""|

ST

/57 %)

% w 5
‘-‘un\m >

MG2 Vectorization Prototype E (e

* Use compiler report to check and make sure key functions are
vectorized (and all functions on the call stack are vectorized too)

— Elemental functions need to be inlined
— “-qopt-report=5" reports highest level of details.
— “-ipo” is needed if functions are in different source codes.

« Add !SOMP DECLARE SIMD and IDIRS ATTRIBUTE FORCEINLINE
when needed.

Example call stack for vectorization and inlining

IDIRS SIMD
do k=1,nlev
call funcA(a(:,k), b(:,k), ...)

1 | |

funcB pow 4w !DIRS ATTRBUTE FORCEINLINE funcC
elemental subroutine funcA (3, b ...,) l
ISOMP DECLARE SIMD funcA funcD

PAENT O

£ D)
& \
o (7]

)

U.S. DEPARTMENT OF Offlce Of

ENERGY Science “4- WE&B

<
A
rrrrrrr ""|

Q2
SO

Recommendations from Dungeon Session

LT

I B

o\ w 5/
RS

Divide major loops when possible and localize

vectorization: work to be done by MG2 developers.

Implement inlining as close to hotspot as possible;
or use vector functions on the low level

Follow up with MKL team on Gamma function
vectorization.

Work with compiler team for a flag to replace
FORCEINLINE, and portable options for other
compilers.

Office of
Science

ttttt
FFFFFFFFF

Changes Made to Improve Performance (1)

YEARS

FOREFRONT

e Remove ‘elemental’ attribute and move the
‘mgncol’ loop inside routine

Before change:

elemental function
wv_sat_svp to gsat(es, p)

result(qgs)

real (r8), intent(in) :: es !
SVP

real(r8), intent(in) :: p
real (r8) :: gs

! If pressure is less than SVP,
set gs to maximum of 1.

if ((p - es) <= 0._r8) then

gqgs = 1.0_r8
else
gs = epsilo*es / (p -
omeps*es)
end if

end function wv_sat svp to_gsat

Office of

i% U.S. DEPARTMENT OF
Y sci
. ENERG Science

-b-

After change:

function wv_sat svp to gsat(es, p,
mgncol) result(gs)
integer,
intent(in) :: mgncol
real (r8), dimension (mgncol),
intent(in) :: es ! SVP
real (r8), dimension (mgncol),
intent(in) :: p
real (r8), dimension(mgncol) :: gs
integer :: 1
do i=1,mgncol
if ((p(i) - es(i)) <= 0._r8) then
gs(i) = 1.0_r8
else
gs (i) = epsilo*es(i) / (p(i) -
omeps*es (i))
end if
enddo
end function wv_sat svp to gsat

BERKELEY LAB

Impact of Code Changes for Elemental -
Functions o,

* No changes to algorithm

* Algorithm gives same answers

* Code readability not effected

* Revised code looks almost identical to original
* Provide scalar and vector version of functions

* Overload function names to maintain single naming
convention

Office of
Science

Changes Made to Improve Performance (2) L.

e Structure routine: don’t use assumed-shaped
arrays:

Before change:
subroutine size dist param lig(gcic, ..,)
real, intent(in) :: gcic(:)
do 1=1,SIZE (gcic)

After change:
subroutine size dist param lig(gcic, .., mgncol)

real, dimension (mgncol), intent(in) :: gcic
do 1=1,mgncol

U.S. DEPARTMENT OF Ofﬂce Of

ENERGY Science -8-

ST
P 3 A
£ A
B 2
% @ 7
) Z
S5 i

N
A
rrrrrrr "“l

BERKELEY LAB

Changes Made to Improve Performance (3) L.

* Divide loop blocks into manageable sizes. Allows
compiler to vectorize loops. Can fuse loops during
optimization step.

 Remove array syntax: plev(:,:) and replace with
loops

* Replace divides: 1.0/plev(i,k) with *plev_inv(i,k)

* Remove initialization of variables that are over
written

Office of
Science

Changes Made to Improve Performance (4)

* Rearrange loop order to allow for data alignment

Before change: After change:
do i1i=1,mgncol Do k=1,nlev
do k=1,nlev do i1=1,mgncol
plev(i,k) = .. plev(i,k) = ..

 Use more aggressive compiler options
— -03 -xAVX -fp-model fast=2 -no-prec-div -no-prec-sqrt
-ip -fimf-precision=low -override-limits -qopt-report=5
-no-inline-max-total-size -inline-factor=200
e Use Profile-guided Optimization (PGO) to improve
code performance
* Compare performance of code with different

vendors compilers

U.S. DEPARTMENT OF Ofﬂce Of

ENERGY Science -10-

ST

/57 %)

% w 5
‘-‘un\m >

aaaaa
FOREFRONT

N
A
rrrrrrr ""|

BERKELEY LAB

Changes Made to Improve Performance (5) L.

* Align data on specific byte boundaries; directive based approach

with OMP directive:
— Portable solution:
ISOMP SIMD ALIGNED
(gc,qcn,nc,ncn,qi,qin,ni,nin,gr,gqrn,nr,nrn,gs,qsn,ns,nsn)
« Tells the compiler that the arrays are aligned
* Asserts that there are no dependencies

* Requires to use PRIVATE or REDUCTION clauses to ensure correctness
* Forces the compiler to vectorize, whether or not it thinks if it is a good idea or not

— As compared to:
IDIR$ VECTOR ALIGNED

« Tells the compiler that the arrays are aligned
 Intel compiler specific, not portable

« ISOMP SIMD ALIGNED is independent of vendor, however it can be
overly intrusive in code

8% improvement in overall performance

U.S. DEPARTMENT OF Ofﬂce Of

ENERGY Science -1l- E.;Eﬂ\‘%“?

T
£ 0\
B 2
% @ 5
», 4
S5 iy

1$OMP SIMD ALIGNED E (e

 The “ALIGNED” attribute is important for performance

 However, providing the list of variables for the aligned list is tedious and error-
prone, and often times impossible in large real applications.

— ISOMP SIMD ALIGNED added in 48 loops in MG2 kernel, many with list of 10+ variables

* Working with Intel compiler team to find a more manageable solution: How can
compilers know better which arrays are aligned?

* Desired for other compilers too.

ISOMP Idir$S -align -openmp | Time per
SIMD VECTOR array64byte iteration
ALIGNED ALIGNED (usec) on
Edison

X X X 444

X X 446

X X X 484

X X 482

X X 452

X 456

:@‘"\'ﬁ,,t .S. DEPAI 473 /—\‘
Y ENERGY | science EEEEELE

Srinath Vadlamani’s testSIMD Suite e/

* Python test script to see which of the SIMD options are able to get close to AVX performance.
* “aligned” is essential

* Tests ran on Edison. Use “ifort” native compiler (15.0.1.133), default “-02” optimization:
not completely —no-vec

Compiler and language options

None 4.0509
-XavXx 3.2940
ISomp declare simd(init) 40.0168
ISomp declare simd(init) uniform(n) 40.0029
ISomp declare simd(init) simdlen(4) uniform(n) 37.8277
ISomp declare simd(init) simdlen(4) 37.7145
ISomp declare simd(init) aligned(a:32) 4.2609
ISomp declare simd(init) aligned(a:32) uniform(n) 4.2955
ISomp declare simd(init) simdlen(4) aligned(a:32) 4.2598

ISomp declare simd(init) simdlen(4) aligned(a:32) uniform(n) 4.2779

U.S. DEPARTMENT OF Office of

ENERGY Science -13- WE&B

DAENTO,

N
¢ @)

)

<
A
rrrrrrr ""|

Q2
SO

Performance Gomparisons on Different iisc)

Compilers and Hardware
Hardware Compiler Performance
[usec per iteration]
Sandy-Bridge Intel-15.0.2 541
Sandy-Bridge PGI-15.5 600
lvy-Bridge Intel-15.0.1 407
lvy-Bridge Cray-8.3.11 347

* Fastest run on Edison: 407 sec (not easily reproducible
when run again with same executable)

* Original performance on Sandy-Bridge
with Intel/15.0.2 is 1035 usec

* Cray compiler is fastest

s "fa,-‘,‘ U.S. DEPARTMENT OF Ofﬂce Of

ENERGY Science - 14- E_;a\lLE.,Y.H\B

N
A
rrrrrrr ""|

Summary

* Directives and flags can be helpful, however not a
replacement for programmers work on code modifications.

* Break up loops and push loops into functions where
vectorization can be dealt with directly and can expose logic
to compiler.

* Incremental improvements not necessary a BIG win from
any one thing. Accumulative results matter.

* Performance and portability is a major goal: use !1SOMP
SIMD proves to be beneficial but very hard to use regarding
the need of providing the aligned list.

Office of

__w‘-‘"*«a% U.S. DEPARTMENT OF
ENERGY science -15-

YEARS

at the
FOREFRONT

Thank you.

FA‘ U.S. DEPARTMENT OF Office of
(&)

ENERGY Science -16-

