
1

Crash Course in
Supercomputing

Computing Sciences Summer Student
Program & NERSC/ALCF/OLCF User
Training 2022

Rebecca Hartman-Baker
User Engagement Group Lead

June 14, 2022

2

Course Outline
Parallelism & MPI (12:30 - 2:30 pm)
I. Parallelism

II. Supercomputer Architecture
III. Basic MPI

(Interlude 1: Computing Pi in parallel)

IV. MPI Collectives
(Interlude 2: Computing Pi using parallel collectives)

OpenMP & Hybrid Programming (3 - 5 pm)

3

Course Outline
Parallelism & MPI (12:30 - 2:30 pm)
OpenMP & Hybrid Programming (3 - 5 pm)
I. About OpenMP

II. OpenMP Directives
III. Data Scope
IV. Runtime Library Routines & Environment
V. Using OpenMP

(Interlude 3: Computing Pi with OpenMP)

VI. Hybrid Programming
(Interlude 4: Computing Pi with Hybrid Programming)

Parallelism & MPI

5

I. PARALLELISM
“Parallel Worlds” by aloshbennett from
http://www.flickr.com/photos/aloshbennett/3209564747/sizes/l/in/photostream/

http://www.flickr.com/photos/aloshbennett/3209564747/sizes/l/in/photostream/

6

I. Parallelism

● Concepts of parallelization
● Serial vs. parallel
● Parallelization strategies

7

Parallelization Concepts

● When performing task, some subtasks depend on one
another, while others do not

● Example: Preparing dinner
○ Salad prep independent of lasagna baking
○ Lasagna must be assembled before baking

● Likewise, in solving scientific problems, some tasks
independent of one another

8

Serial vs. Parallel

● Serial: tasks must be performed in sequence
● Parallel: tasks can be performed independently in any

order

9

Serial vs. Parallel: Example

● Preparing lasagna dinner
● Serial tasks: making sauce, assembling

lasagna, baking lasagna; washing lettuce,
cutting vegetables, assembling salad

● Parallel tasks: making lasagna, making salad,
setting table

10

Serial vs. Parallel: Graph

11

Serial vs. Parallel: Graph

Synchronization Points

12

Serial vs. Parallel: Graph

13

Serial vs. Parallel: Example

● Could have several chefs,
each performing one parallel
task

● This is concept behind parallel
computing

14

Discussion: Jigsaw Puzzle*

● Suppose we want to do a large,
N-piece jigsaw puzzle (e.g., N =
10,000 pieces)

● Time for one person to complete
puzzle: T hours

● How can we decrease walltime to
completion?

15

Discussion: Jigsaw Puzzle

● Impact of having multiple people at the table
○ Walltime to completion
○ Communication
○ Resource contention

● Let number of people = p
○ Think about what happens when p = 1, 2, 4, … 5000

16

Discussion: Jigsaw Puzzle

Alternate setup: p people, each at separate table with N/p
pieces each
● What is the impact on

○ Walltime to completion
○ Communication
○ Resource contention?

17

Discussion: Jigsaw Puzzle

Alternate setup: divide puzzle by features, each person
works on one, e.g., mountain, sky, stream, tree, meadow, etc.
● What is the impact on

○ Walltime to completion
○ Communication
○ Resource contention?

18

Parallel Algorithm Design: PCAM

● Partition: Decompose problem into fine-grained tasks to
maximize potential parallelism

● Communication: Determine communication pattern
among tasks

● Agglomeration: Combine into coarser-grained tasks, if
necessary, to reduce communication requirements or
other costs

● Mapping: Assign tasks to processors, subject to tradeoff
between communication cost and concurrency

(from Heath: Parallel Numerical Algorithms)

19

II. ARCHITECTURE
“Architecture” by marie-ll, http://www.flickr.com/photos/grrrl/324473920/sizes/l/in/photostream/

http://www.flickr.com/photos/grrrl/324473920/sizes/l/in/photostream/

20

II. Supercomputer Architecture
● What is a supercomputer?
● Conceptual overview of architecture

Cray 1
(1976)

IBM Blue
Gene
(2005)

Cray XT5
(2009)

HPE-Cray
Shasta

Architecture
(2021)

21

What Is a Supercomputer?

● “The biggest, fastest computer right this minute.”
– Henry Neeman

● Generally at least 100 times more powerful than PC
● This field of study known as supercomputing,

high-performance computing (HPC), or scientific
computing

● Scientists use really big computers to solve really hard
problems

22

SMP Architecture

● Massive memory, shared by multiple processors
● Any processor can work on any task, no matter its

location in memory
● Ideal for parallelization of sums, loops, etc.

23

Cluster Architecture

● CPUs on racks, do computations (fast)
● Communicate through networked connections (slow)
● Want to write programs that divide computations evenly

but minimize communication

24

State-of-the-Art Architectures

● Today, hybrid architectures very common
○ Multiple {16, 24, 32, 64, 68, 128}-core nodes, connected to other

nodes by (slow) interconnect
○ Cores in node share memory (like small SMP machines)
○ Machine appears to follow cluster architecture (with multi-core

nodes rather than single processors)
○ To take advantage of all parallelism, use MPI (cluster) and

OpenMP (SMP) hybrid programming

25

State-of-the-Art Architectures

● Hybrid CPU/GPGPU architectures also very common
○ Nodes consist of one (or more) multicore CPU + one (or more)

GPU
○ Heavy computations offloaded to GPGPUs
○ Separate memory for CPU and GPU
○ Complicated programming paradigm, outside the scope of

today’s training
■ Often use CUDA to directly program GPU offload portions of code
■ Alternatives: standards-based directives, OpenACC or OpenMP

offloading; programming environments such as Kokkos or Raja

26

III. BASIC MPI
“MPI Adventure” by Stefan Jürgensen, from
http://www.flickr.com/photos/94039982@N00/6177616380/sizes/l/in/photostream/

http://www.flickr.com/photos/94039982@N00/6177616380/sizes/l/in/photostream/

27

III. Basic MPI

● Introduction to MPI
● Parallel programming concepts
● The Six Necessary MPI Commands
● Example program

28

Introduction to MPI

● Stands for Message Passing Interface
● Industry standard for parallel programming (200+ page

document)
● MPI implemented by many vendors; open source

implementations available too
○ Cray, IBM, HPE vendor implementations
○ MPICH, LAM-MPI, OpenMPI (open source)

● MPI function library is used in writing C, C++, or Fortran
programs in HPC

29

Introduction to MPI

● MPI-1 vs. MPI-2: MPI-2 has additional advanced
functionality and C++ bindings, but everything learned in
this section applies to both standards

● MPI-3: Major revisions (e.g., nonblocking collectives,
extensions to one-sided operations), released September
2012, 800+ pages
○ MPI-3.1 released June 2015
○ MPI-3 additions to standard will not be covered today

● MPI-4: Standard released 1 year ago
○ MPI-4 additions to standard will also not be covered today

30

Parallelization Concepts

● Two primary programming paradigms:
○ SPMD (single program, multiple data)
○ MPMD (multiple programs, multiple data)

● MPI can be used for either paradigm

31

SPMD vs. MPMD

● SPMD: Write single program that will perform same
operation on multiple sets of data
○ Multiple chefs baking many lasagnas
○ Rendering different frames of movie

● MPMD: Write different programs to perform different
operations on multiple sets of data
○ Multiple chefs preparing four-course dinner
○ Rendering different parts of movie frame

● Can also write hybrid program in which some processes
perform same task

32

The Six Necessary MPI Commands

int MPI_Init(int *argc, char **argv)

int MPI_Finalize(void)

int MPI_Comm_size(MPI_Comm comm, int *size)

int MPI_Comm_rank(MPI_Comm comm, int *rank)

int MPI_Send(void *buf, int count, MPI_Datatype
datatype, int dest, int tag, MPI_Comm comm)

int MPI_Recv(void *buf, int count, MPI_Datatype
datatype, int source, int tag, MPI_Comm comm,
MPI_Status *status)

33

Initiation and Termination

● MPI_Init(int *argc, char **argv) initiates MPI
○ Place in body of code after variable declarations and before any

MPI commands
● MPI_Finalize(void) shuts down MPI

○ Place near end of code, after last MPI command

34

Environmental Inquiry

● MPI_Comm_size(MPI_Comm comm, int *size)
○ Find out number of processes
○ Allows flexibility in number of processes used in program

● MPI_Comm_rank(MPI_Comm comm, int *rank)
○ Find out identifier of current process
○ 0 ≤ rank ≤ size-1

35

Message Passing: Send

● MPI_Send(void *buf, int count,
MPI_Datatype datatype, int dest, int tag,
MPI_Comm comm)
○ Send message of length count items and datatype datatype

contained in buf with tag tag to process number dest in
communicator comm

○ E.g., MPI_Send(&x, 1, MPI_DOUBLE, manager, me,
MPI_COMM_WORLD)

36

Message Passing: Receive

● MPI_Recv(void *buf, int count,
MPI_Datatype datatype, int source, int
tag, MPI_Comm comm, MPI_Status *status)

● Receive message of length count items and datatype
datatype with tag tag in buffer buf from process
number source in communicator comm, and record
status status

● E.g. MPI_Recv(&x, 1, MPI_DOUBLE, source,
source, MPI_COMM_WORLD, &status)

37

Message Passing

● WARNING! Both standard send and receive functions are
blocking

● MPI_Recv returns only after receive buffer contains
requested message

● MPI_Send may or may not block until message received
(usually blocks)

● Must watch out for deadlock

38

Deadlocking Example (Always)
#include <mpi.h>
#include <stdio.h>
int main(int argc, char **argv) {
 int me, np, q, sendto;
 MPI_Status status;
 MPI_Init(&argc, &argv);
 MPI_Comm_size(MPI_COMM_WORLD, &np);
 MPI_Comm_rank(MPI_COMM_WORLD, &me);
 if (np%2==1) return 0;
 if (me%2==1) {sendto = me-1;}
 else {sendto = me+1;}
 MPI_Recv(&q, 1, MPI_INT, sendto, sendto, MPI_COMM_WORLD, &status);
 MPI_Send(&me, 1, MPI_INT, sendto, me, MPI_COMM_WORLD);
 printf(“Sent %d to proc %d, received %d from proc %d\n”, me, sendto, q,
sendto);
 MPI_Finalize();
 return 0;
}

39

Deadlocking Example (Sometimes)
#include <mpi.h>
#include <stdio.h>
int main(int argc, char **argv) {
 int me, np, q, sendto;
 MPI_Status status;
 MPI_Init(&argc, &argv);
 MPI_Comm_size(MPI_COMM_WORLD, &np);
 MPI_Comm_rank(MPI_COMM_WORLD, &me);
 if (np%2==1) return 0;
 if (me%2==1) {sendto = me-1;}
 else {sendto = me+1;}
 MPI_Send(&me, 1, MPI_INT, sendto, me, MPI_COMM_WORLD);
 MPI_Recv(&q, 1, MPI_INT, sendto, sendto, MPI_COMM_WORLD, &status);
 printf(“Sent %d to proc %d, received %d from proc %d\n”, me, sendto, q,
sendto);
 MPI_Finalize();
 return 0;
}

40

Deadlocking Example (Safe)
#include <mpi.h>
#include <stdio.h>
int main(int argc, char **argv) {
 int me, np, q, sendto;
 MPI_Status status;
 MPI_Init(&argc, &argv);
 MPI_Comm_size(MPI_COMM_WORLD, &np);
 MPI_Comm_rank(MPI_COMM_WORLD, &me);
 if (np%2==1) return 0;
 if (me%2==1) {sendto = me-1;}
 else {sendto = me+1;}
 if (me%2 == 0) {
 MPI_Send(&me, 1, MPI_INT, sendto, me, MPI_COMM_WORLD);
 MPI_Recv(&q, 1, MPI_INT, sendto, sendto, MPI_COMM_WORLD, &status);

} else {
 MPI_Recv(&q, 1, MPI_INT, sendto, sendto, MPI_COMM_WORLD, &status);
 MPI_Send(&me, 1, MPI_INT, sendto, me, MPI_COMM_WORLD);
 }
 printf(“Sent %d to proc %d, received %d from proc %d\n”, me, sendto, q, sendto);
 MPI_Finalize();
 return 0;
}

41

Explanation: Always Deadlocking Example

● Logically incorrect
● Deadlock caused by blocking MPI_Recvs
● All processes wait for corresponding MPI_Sends to

begin, which never happens

42

Explanation: Sometimes Deadlocking Example

● Logically correct
● Deadlock could be caused by MPI_Sends competing for

buffer space
● Unsafe because depends on system resources
● Solutions:

○ Reorder sends and receives, like safe example, having evens
send first and odds send second

○ Use non-blocking sends and receives or other advanced
functions from MPI library (see MPI standard for details)

43

INTERLUDE 1: COMPUTING PI IN PARALLEL
“Pi of Pi” by spellbee2, from
http://www.flickr.com/photos/49825386@N08/7253578340/sizes/l/in/photostream/

http://www.flickr.com/photos/49825386@N08/7253578340/sizes/l/in/photostream/

44

Interlude 1: Computing 𝝅 in Parallel

● Project Description
● Serial Code
● Parallelization Strategies
● Your Assignment

45

Project Description

● We want to compute 𝝅
● One method: method of

darts*
● Ratio of area of square to

area of inscribed circle
proportional to 𝝅

* This is a TERRIBLE way to compute pi! Don’t
do this in real life!!!! (See Appendix 1 for better
ways)

“Picycle” by Tang Yau Hoong, from
http://www.flickr.com/photos/tangyauhoong/5
609933651/sizes/o/in/photostream/

http://www.flickr.com/photos/tangyauhoong/5609933651/sizes/o/in/photostream/
http://www.flickr.com/photos/tangyauhoong/5609933651/sizes/o/in/photostream/

46

Method of Darts

● Imagine dartboard with
circle of radius R inscribed
in square

● Area of circle
● Area of square
● Area of circle

Area of square
“Dartboard” by AndyRobertsPhotos, from
http://www.flickr.com/photos/aroberts/290
7670014/sizes/o/in/photostream/

http://www.flickr.com/photos/aroberts/2907670014/sizes/o/in/photostream/
http://www.flickr.com/photos/aroberts/2907670014/sizes/o/in/photostream/

47

Method of Darts

● Ratio of areas proportional to 𝝅
● How to find areas?

○ Suppose we threw darts (completely
randomly) at dartboard

○ Count # darts landing in circle & total # darts
landing in square

○ Ratio of these numbers gives approximation to ratio of areas
○ Quality of approximation increases with # darts thrown

48

Method of Darts

𝝅 = 4 × # darts inside circle
 # darts thrown

Method of Darts cake in celebration of Pi
Day 2009, Rebecca Hartman-Baker

49

Method of Darts

● Okay, Rebecca, but how in the world do we simulate this
experiment on a computer?

● Decide on length R
● Generate pairs of random numbers (x, y) s.t.

 -R ≤ (x, y) ≤ R
● If (x, y) within circle (i.e., if (x2+y2) ≤ R2) add one to tally for

inside circle
● Lastly, find ratio

50

Serial Code (darts.c)
#include "lcgenerator.h"
static long num_trials = 1000000;

int main() {
 long i;
 long Ncirc = 0;
 double pi, x, y;
 double r = 1.0; // radius of circle
 double r2 = r*r;

 for (i = 0; i < num_trials; i++) {
 x = r*lcgrandom();
 y = r*lcgrandom();
 if ((x*x + y*y) <= r2)
 Ncirc++;
 }

 pi = 4.0 * ((double)Ncirc)/((double)num_trials);
 printf("\n For %ld trials, pi = %f\n", num_trials, pi);

 return 0;
}

51

Serial Code (lcgenerator.h)
// Random number generator -- and not a very good one, either!

static long MULTIPLIER = 1366;
static long ADDEND = 150889;
static long PMOD = 714025;
long random_last = 0;

// This is not a thread-safe random number generator

double lcgrandom() {
 long random_next;
 random_next = (MULTIPLIER * random_last + ADDEND)%PMOD;
 random_last = random_next;

 return ((double)random_next/(double)PMOD);
}

52

Serial Code (darts.f) (1)
! First, the pseudorandom number generator

 real function lcgrandom()
 integer*8, parameter :: MULTIPLIER = 1366
 integer*8, parameter :: ADDEND = 150889
 integer*8, parameter :: PMOD = 714025
 integer*8, save :: random_last = 0

 integer*8 :: random_next = 0
 random_next = mod((MULTIPLIER * random_last + ADDEND), PMOD)
 random_last = random_next
 lcgrandom = (1.0*random_next)/PMOD
 return
 end

53

Serial Code (darts.f) (2)
! Now, we compute pi
 program darts
 implicit none
 integer*8 :: num_trials = 1000000, i = 0, Ncirc = 0
 real :: pi = 0.0, x = 0.0, y = 0.0, r = 1.0
 real :: r2 = 0.0
 real :: lcgrandom
 r2 = r*r

 do i = 1, num_trials
 x = r*lcgrandom()
 y = r*lcgrandom()
 if ((x*x + y*y) .le. r2) then
 Ncirc = Ncirc+1
 end if
 end do
 pi = 4.0*((1.0*Ncirc)/(1.0*num_trials))
 print*, ‘ For ‘, num_trials, ‘ trials, pi = ‘, pi

 end

54

Parallelization Strategies

● What tasks independent of each other?
● What tasks must be performed sequentially?
● Using PCAM parallel algorithm design strategy

55

Partition

● “Decompose problem into fine-grained tasks to maximize
potential parallelism”

● Finest grained task: throw of one dart
● Each throw independent of all others
● If we had huge computer, could assign one throw to each

processor

56

Communication

“Determine communication pattern among tasks”
● Each processor throws dart(s) then sends results back to

manager process

57

Agglomeration

“Combine into coarser-grained tasks, if necessary, to reduce
communication requirements or other costs”
● To get good value of π, must use millions of darts
● We don’t have millions of processors available
● Furthermore, communication between manager and

millions of worker processors would be very expensive
● Solution: divide up number of dart throws evenly between

processors, so each processor does a share of work

58

Mapping

“Assign tasks to processors, subject to tradeoff between
communication cost and concurrency”
● Assign role of “manager” to processor 0
● Processor 0 will receive tallies from all the other

processors, and will compute final value of π
● Every processor, including manager, will perform equal

share of dart throws

59

Your Assignment

● Clone the whole assignment (including answers!) to Cori from
the repository with: git clone
https://github.com/NERSC/crash-course-supercom
puting.git

● Copy darts.c/lcgenerator.h or darts.f (your choice)
from
crash-course-supercomputing/darts-suite/{c,for
tran}

● Parallelize the code using the 6 basic MPI commands
● Rename your new MPI code darts-mpi.c or darts-mpi.f

60

IV. MPI COLLECTIVES
“The First Tractor” by Vladimir Krikhatsky (socialist realist, 1877-1942). Source:
http://en.wikipedia.org/wiki/File:Wladimir_Gawriilowitsch_Krikhatzkij_-_The_First_Tractor.jpg

http://en.wikipedia.org/wiki/File:Wladimir_Gawriilowitsch_Krikhatzkij_-_The_First_Tractor.jpg

61

MPI Collectives

● Communication involving group of processes
● Collective operations

○ Broadcast
○ Gather
○ Scatter
○ Reduce
○ All-
○ Barrier

62

Broadcast

● Perhaps one message needs to be sent from manager to
all worker processes

● Could send individual messages
● Instead, use broadcast – more efficient, faster
● int MPI_Bcast(void* buffer, int count,

MPI_Datatype datatype, int root, MPI_Comm
comm)

63

Gather
● All processes need to send same (similar) message to manager
● Could implement with each process calling MPI_Send(…) and

manager looping through MPI_Recv(…)
● Instead, use gather operation – more efficient, faster
● Messages concatenated in rank order
● int MPI_Gather(void* sendbuf, int sendcount,

MPI_Datatype sendtype, void* recvbuf, int
recvcount, MPI_Datatype recvtype, int root,
MPI_Comm comm)

● Note: recvcount = # items received from each process, not total

64

Gather
● Maybe some processes need to send longer messages than

others
● Allow varying data count from each process with

MPI_Gatherv(…)
● int MPI_Gatherv(void* sendbuf, int sendcount,

MPI_Datatype sendtype, void* recvbuf, int
*recvcounts, int *displs, MPI_Datatype
recvtype, int root, MPI_Comm comm)

● recvcounts is array; entry i in displs array specifies
displacement relative to recvbuf[0] at which to place data
from corresponding process number

65

Scatter
● Inverse of gather: split message into NP equal pieces, with ith

segment sent to ith process in group
● int MPI_Scatter(void* sendbuf, int sendcount,

MPI_Datatype sendtype, void* recvbuf, int
recvcount, MPI_Datatype recvtype, int root,
MPI_Comm comm)

● Send messages of varying sizes across processes in group:
MPI_Scatterv(…)

● int MPI_Scatterv(void* sendbuf, int *sendcounts,
int *displs, MPI_datatype sendtype, void*
recvbuf, int recvcount, MPI_Datatype recvtype,
int root, MPI_Comm comm)

66

Reduce

● Perhaps we need to do sum of many subsums owned by
all processors

● Perhaps we need to find maximum value of variable
across all processors

● Perform global reduce operation across all group
members

● int MPI_Reduce(void* sendbuf, void*
recvbuf, int count, MPI_Datatype datatype,
MPI_Op op, int root, MPI_Comm comm)

67

Reduce: Predefined Operations
MPI_Op Meaning Allowed Types
MPI_MAX Maximum Integer, floating point

MPI_MIN Minimum Integer, floating point

MPI_SUM Sum Integer, floating point, complex

MPI_PROD Product Integer, floating point, complex

MPI_LAND Logical and Integer, logical

MPI_BAND Bitwise and Integer, logical

MPI_LOR Logical or Integer, logical

MPI_BOR Bitwise or Integer, logical

MPI_LXOR Logical xor Integer, logical

MPI_BXOR Bitwise xor Integer, logical

MPI_MAXLOC Maximum value & location *

MPI_MINLOC Minimum value & location *

68

Reduce: Operations

● MPI_MAXLOC and MPI_MINLOC
○ Returns {max, min} and rank of first process with that value
○ Use with special MPI pair datatype arguments:

■ MPI_FLOAT_INT (float and int)
■ MPI_DOUBLE_INT (double and int)
■ MPI_LONG_INT (long and int)
■ MPI_2INT (pair of int)

○ See MPI standard for more details
● User-defined operations

○ Use MPI_Op_create(…) to create new operations
○ See MPI standard for more details

69

All- Operations

● Sometimes, may want to have result of gather, scatter, or
reduce on all processes

● Gather operations
○ int MPI_Allgather(void* sendbuf, int sendcount,

MPI_Datatype sendtype, void* recvbuf, int
recvcount, MPI_Datatype recvtype, MPI_Comm comm)

○ int MPI_Allgatherv(void* sendbuf, int sendcount,
MPI_Datatype sendtype, void* recvbuf, int
*recvcounts, int *displs, MPI_Datatype recvtype,
MPI_Comm comm)

70

All-to-All Scatter/Gather

● Extension of Allgather in which each process sends
distinct data to each receiver

● Block j from process i is received by process j into ith
block of recvbuf

● int MPI_Alltoall(void* sendbuf, int
sendcount, MPI_Datatype sendtype, void*
recvbuf, int recvcount, MPI_Datatype
recvtype, MPI_Comm comm)

● Corresponding MPI_Alltoallv function also available

71

All-Reduce

● Same as MPI_Reduce except result appears on all
processes

● int MPI_Allreduce(void* sendbuf, void*
recvbuf, int count, MPI_Datatype datatype,
MPI_Op op, MPI_Comm comm)

72

Barrier

● In algorithm, may need to synchronize processes
● Barrier blocks until all group members have called it
● int MPI_Barrier(MPI_Comm comm)

73

Bibliography/Resources: MPI/MPI Collectives

● Snir, Marc, Steve W. Otto, Steven Huss-Lederman, David
W. Walker, and Jack Dongarra. (1996) MPI: The
Complete Reference. Cambridge, MA: MIT Press. (also
available at
http://www.netlib.org/utk/papers/mpi-book/mpi-book.html)

● MPICH Documentation
http://www.mpich.org/documentation/guides/

http://www.netlib.org/utk/papers/mpi-book/mpi-book.html
http://www.mpich.org/documentation/guides/

74

Bibliography/Resources: MPI/MPI Collectives

● Message Passing Interface (MPI) Tutorial
https://hpc-tutorials.llnl.gov/mpi/

● MPI Standard at MPI Forum:
https://www.mpi-forum.org/docs/
○ MPI 1.1:

http://www.mpi-forum.org/docs/mpi-11-html/mpi-report.html
○ MPI-2.2:

http://www.mpi-forum.org/docs/mpi22-report/mpi22-report.htm
○ MPI 3.1:

https://www.mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf
○ MPI 4.0:

https://www.mpi-forum.org/docs/mpi-4.0/mpi40-report.pdf

https://hpc-tutorials.llnl.gov/mpi/
https://www.mpi-forum.org/docs/
http://www.mpi-forum.org/docs/mpi-11-html/mpi-report.html
http://www.mpi-forum.org/docs/mpi22-report/mpi22-report.htm
https://www.mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf
https://www.mpi-forum.org/docs/mpi-4.0/mpi40-report.pdf

75

INTERLUDE 2: COMPUTING PI WITH MPI
COLLECTIVES
“Pi-Shaped Power Lines at Fermilab” by Michael Kappel from
http://www.flickr.com/photos/m-i-k-e/4781834200/sizes/l/in/photostream/

http://www.flickr.com/photos/m-i-k-e/4781834200/sizes/l/in/photostream/

76

Interlude 2: Computing 𝝅 with MPI Collectives

● In previous Interlude, you used the 6 basic MPI routines
to develop a parallel program using the Method of Darts
to compute 𝝅

● The communications in previous program could be made
more efficient by using collectives

● Your assignment: update your MPI code to use collective
communications

● Rename it darts-collective.c or
darts-collective.f

OpenMP & Hybrid Programming

78

Outline

I. About OpenMP
II. OpenMP Directives

III. Data Scope
IV. Runtime Library Routines and Environment Variables
V. Using OpenMP

VI. Hybrid Programming

79

I. ABOUT OPENMP

80

About OpenMP

● Industry-standard shared memory programming model
● Developed in 1997
● OpenMP Architecture Review Board (ARB) determines

additions and updates to standard
● Current standard: 5.2 (November 2021)
● Standard includes GPU offloading (since 4.5), not

discussed today

81

Advantages to OpenMP

● Parallelize small parts of application, one at a time
(beginning with most time-critical parts)

● Can express simple or complex algorithms
● Code size grows only modestly
● Expression of parallelism flows clearly, so code is easy to

read
● Single source code for OpenMP and non-OpenMP –

non-OpenMP compilers simply ignore OMP directives

82

OpenMP Programming Model

● Application Programmer Interface (API) is combination of
○ Directives
○ Runtime library routines
○ Environment variables

● API falls into three categories
○ Expression of parallelism (flow control)
○ Data sharing among threads (communication)
○ Synchronization (coordination or interaction)

83

Parallelism

● Shared memory, thread-based parallelism
● Explicit parallelism (parallel regions)
● Fork/join model

Source: https://hpc-tutorials.llnl.gov/openmp/

https://hpc-tutorials.llnl.gov/openmp/

84

II. OPENMP DIRECTIVES
Star Trek: Prime Directive by Judith and Garfield Reeves-Stevens, ISBN 0671744666

85

II. OpenMP Directives

● Syntax overview
● Parallel
● Loop
● Sections
● Synchronization
● Reduction

86

Syntax Overview: C/C++
● Basic format

○ #pragma omp directive-name [clause] newline
● All directives followed by newline
● Uses pragma construct (pragma = Greek for “thing done”)
● Case sensitive
● Directives follow standard rules for C/C++ compiler

directives
● Use curly braces (not on pragma line) to denote scope of

directive
● Long directive lines can be continued by escaping newline

character with \

87

Syntax Overview: Fortran
● Basic format:

○ sentinel directive-name [clause]
● Three accepted sentinels: !$omp *$omp c$omp
● Some directives paired with end clause
● Fixed-form code:

○ Any of three sentinels
beginning at column 1

○ Initial directive line has
space/zero in column 6

○ Continuation directive line has
non-space/zero in column 6

○ Standard rules for fixed-form
line length, spaces, etc. apply

● Free-form code:
○ !$omp only accepted sentinel
○ Sentinel can be in any column, but

must be preceded by only white
space and followed by a space

○ Line to be continued must end in &
and following line begins with sentinel

○ Standard rules for free-form line
length, spaces, etc. apply

88

OpenMP Directives: Parallel
● A block of code executed by multiple threads
● Syntax:

#pragma omp parallel private(list) shared(list)

{

 /* parallel section */

}

!$omp parallel private(list) &

!$omp shared(list)

! Parallel section

!$omp end parallel

89

Simple Example (C/C++)
#include <stdio.h>
#include <omp.h>
int main (int argc, char *argv[]) {

int tid;
printf(“Hello world from threads:\n”);
#pragma omp parallel private(tid)
{

tid = omp_get_thread_num();
printf(“<%d>\n”, tid);

}
printf(“I am sequential now\n”);
return 0;

}

90

Simple Example (Fortran)
 program hello
 integer tid, omp_get_thread_num
 write(*,*) ‘Hello world from threads:’
 !$omp parallel private(tid)
 tid = omp_get_thread_num()
 write(*,*) ‘<‘, tid, ‘>’
 !$omp end parallel
 write(*,*) ‘I am sequential now’
 end

91

Simple Example: Output
Output 1
Hello world from threads:

<0>

<1>

<2>

<3>

<4>

I am sequential now

Output 2
Hello world from threads:

<1>

<2>

<0>

<4>

<3>

I am sequential now

Order of execution is scheduled by OS!!!

92

OpenMP Directives: Loop

● Iterations of the loop following the directive are executed
in parallel

● Syntax (C):
#pragma omp for schedule(type [,chunk]) private(list)\
shared(list) nowait

 {

 /* for loop */

 }

93

OpenMP Directives: Loop

● Syntax (Fortran):
!$omp do schedule (type [,chunk]) &
!omp private(list) shared(list)

C do loop goes here

!$omp end do nowait
● type = {static, dynamic, guided, runtime}
● If nowait specified, threads do not synchronize at end of

loop
●
●

94

OpenMP Directives: Loop Scheduling
● Default scheduling determined by implementation
● Static

○ ID of thread performing particular iteration is function of iteration
number and number of threads

○ Statically assigned at beginning of loop
○ Best for known, predictable amount of work per iteration
○ Low overhead

● Dynamic
○ Assignment of threads determined at runtime (round robin)
○ Each thread gets more work after completing current work
○ Load balance is possible for variable work per iteration
○ Introduces extra overhead

95

OpenMP Directives: Loop Scheduling
Type Chunks

?
Chunk
Size

Chunks Overhead Description

static N N/P P Lowest Simple Static
static Y C N/C Low Interleaved
dynamic N N/P P Medium Simple dynamic
dynamic Y C N/C High Dynamic
guided N/A ≤ N/P ≤ N/C Highest Dynamic optimized
runtime Varies Varies Varies Varies Set by environment

variable

Note: N = size of loop, P = number of threads, C = chunk size

96

Which Loops are Parallelizable?
Parallelizable
● Number of iterations known

upon entry, and does not
change

● Each iteration independent of
all others

● No data dependence

Not Parallelizable
● Conditional loops (many while

loops)
● Iterator loops (e.g., iterating

over std:: list<…> in C++)
● Iterations dependent upon

each other
● Data dependence

Trick: If a loop can be run backwards and get the same results,
then it is almost always parallelizable!

97

Example: Parallelizable?
/* Gaussian Elimination (no pivoting): x = A\b */

for (int i = 0; i < N-1; i++) {
 for (int j = i; j < N; j++) {
 double ratio = A[j][i]/A[i][i];
 for (int k = i; k < N; k++) {
 A[j][k] -= (ratio*A[i][k]);
 b[j] -= (ratio*b[i]);
 }
 }
}

98

Example: Parallelizable?

99

Example: Parallelizable?

● Outermost Loop (i):
○ N-1 iterations
○ Iterations depend upon each other (values computed at step
i-1 used in step i)

● Inner loop (j):
○ N-i iterations (constant for given i)
○ Iterations can be performed in any order

● Innermost loop (k):
○ N-i iterations (constant for given i)
○ Iterations can be performed in any order

100

Example: Parallelizable?
/* Gaussian Elimination (no pivoting): x = A\b */

for (int i = 0; i < N-1; i++) {
#pragma omp parallel for
 for (int j = i; j < N; j++) {
 double ratio = A[j][i]/A[i][i];
 for (int k = i; k < N; k++) {
 A[j][k] -= (ratio*A[i][k]);
 b[j] -= (ratio*b[i]);
 }
 }
}

Note: can combine parallel and
for into single pragma

101

OpenMP Directives: Sections
● Non-iterative work-sharing construct
● Divide enclosed sections of code among threads
● Section directives nested within sections directive
● Syntax: C/C++ Fortran

#pragma omp sections !$omp sections

{

 #pragma omp section !$omp section

 /* first section */ c First section

 #pragma omp section !$omp section

 /* next section */ c Second section

} !$omp end sections

102

Example: Sections
#include <omp.h>
#define N 1000
int main () {
 int i;
 double a[N], b[N];
 double c[N], d[N];
 /* Some initializations */
 for (i=0; i < N; i++) {
 a[i] = i * 1.5;
 b[i] = i + 22.35;
 }

#pragma omp parallel shared(a,b,c,d)
private(i)
 {
 #pragma omp sections nowait
 {
 #pragma omp section
 for (i=0; i < N; i++)
 c[i] = a[i] + b[i];
 #pragma omp section
 for (i=0; i < N; i++)

 d[i] = a[i] * b[i];
 } /* end of sections */
 } /* end of parallel section */
return 0;
}

103

OpenMP Directives: Synchronization

● Sometimes, need to make sure threads execute regions
of code in proper order
○ Maybe one part depends on another part being completed
○ Maybe only one thread need execute a section of code

● Synchronization directives
○ Critical
○ Barrier
○ Single

104

OpenMP Directives: Synchronization

● Critical
○ Specifies section of code that must be executed by only one

thread at a time
○ Syntax: C/C++

#pragma omp critical (name)

○ Fortran
!$omp critical (name)

!$omp end critical

○ Names are global identifiers – critical regions with same name
are treated as same region

105

OpenMP Directives: Synchronization

● Single
○ Enclosed code is to be executed by only one thread
○ Useful for thread-unsafe sections of code (e.g., I/O)
○ Syntax: C/C++ Fortran

#pragma omp single !$omp single

!$omp end single

106

OpenMP Directives: Synchronization

● Barrier
○ Synchronizes all threads: thread reaches barrier and waits until

all other threads have reached barrier, then resumes executing
code following barrier

○ Syntax: C/C++ Fortran
#pragma omp barrier !$OMP barrier

○ Sequence of work-sharing and barrier regions encountered must
be the same for every thread

107

OpenMP Directives: Reduction

● Reduces list of variables into one, using operator (e.g.,
max, sum, product, etc.)

● Syntax
#pragma omp reduction(op : list)
!$omp reduction(op : list)

○ where list is list of variables and op is one of following:
■ C/C++: +, -, *, &, ^, |, &&, ||, max, min
■ Fortran: +, -, *, .and., .or., .eqv., .neqv., max,

min, iand, ior, ieor

●
●

108

III. VARIABLE SCOPE
“M119A2 Scope” by Georgia National Guard, source:
http://www.flickr.com/photos/ganatlguard/5934238668/sizes/l/in/photostream/

http://www.flickr.com/photos/ganatlguard/5934238668/sizes/l/in/photostream/

109

III. Variable Scope

● About variable scope
● Scoping clauses
● Common mistakes

110

About Variable Scope

● Variables can be shared or private within a parallel region
● Shared: one copy, shared between all threads

○ Single common memory location, accessible by all threads
● Private: each thread makes its own copy

○ Private variables exist only in parallel region

111

About Variable Scope

● By default, all variables shared except
○ Index values of parallel region loop – private by default
○ Local variables and value parameters within subroutines called

within parallel region – private
○ Variables declared within lexical extent of parallel region –

private
● Variable scope is the most common source of errors in

OpenMP codes
○ Correctly determining variable scope is key to correctness and

performance of your code

112

Variable Scoping Clauses: Shared

● Shared variables: shared (list)
○ By default, all variables shared unless otherwise specified
○ All threads access this variable in same location in memory
○ Race conditions can occur if access is not carefully controlled

113

Variable Scoping Clauses: Private

● Private: private (list)
○ Variable exists only within parallel region
○ Value undefined at start and after end of parallel region

● Private starting with defined values: firstprivate
(list)
○ Private variables initialized to be the value held immediately

before entry into parallel region
● Private ending with defined value: lastprivate(list)

○ At end of loop, set variable to value set by final iteration of loop

114

Common Mistakes

● A variable that should be private is public
○ Something unexpectedly gets overwritten
○ Solution: explicitly declare all variable scope

● Nondeterministic execution
○ Different results from different executions

● Race condition
○ Sometimes you get the wrong answer
○ Solutions:

■ Look for overwriting of shared variable
■ Use a tool such as Cray Reveal or Codee to rescope your loop

●

115

Find the Mistake(s)!
/* Gaussian Elimination (no pivoting): x = A\b */
int i, j, k;
double ratio;
for (i = 0; i < N-1; i++) {
#pragma omp parallel for
 for (j = i; j < N; j++) {
 ratio = A[j][i]/A[i][i];
 for (k = i; k < N; k++) {
 A[j][k] -= (ratio*A[i][k]);
 b[j] -= (ratio*b[i]);
 }
 }
}

k & ratio are shared
variables by default.
Depending on compiler, k
may be optimized out &
therefore not impact
correctness, but ratio will
always lead to errors!
Depending how loop is
scheduled, you will see
different answers.

116

Fix the Mistake(s)!
/* Gaussian Elimination (no pivoting): x = A\b */
int i, j, k;
double ratio;
for (i = 0; i < N-1; i++) {
#pragma omp parallel for private (j, k, ratio) \
shared (A, b, N) default none
 for (j = i; j < N; j++) {
 ratio = A[j][i]/A[i][i];
 for (k = i; k < N; k++) {
 A[j][k] -= (ratio*A[i][k]);
 b[j] -= (ratio*b[i]);
 }
 }
}

By setting default none,
compiler will catch any
variables not explicitly
scoped

117

IV. RUNTIME LIBRARY ROUTINES &
ENVIRONMENT VARIABLES

Panorama with snow-capped Mt. McKinley in Denali National Park, Alaska, USA, May 2011, by Rebecca Hartman-Baker.

118

OpenMP Runtime Library Routines

● void omp_set_num_threads(int num_threads)
○ Sets number of threads used in next parallel region
○ Must be called from serial portion of code

● int omp_get_num_threads()
○ Returns number of threads currently in team executing parallel

region from which it is called
● int omp_get_thread_num()

○ Returns rank of thread
○ 0 ≤ omp_get_thread_num() < omp_get_num_threads()

119

OpenMP Environment Variables

● Set environment variables to control execution of parallel
code

● OMP_SCHEDULE
○ Determines how iterations of loops are scheduled
○ E.g., export OMP_SCHEDULE=”dynamic, 4”

● OMP_NUM_THREADS
○ Sets maximum number of threads
○ E.g., export OMP_NUM_THREADS=4

120

V. USING OPENMP

121

Conditional Compilation

● Can write single source code for use with or without
OpenMP
○ Pragmas are ignored if OpenMP disabled

● What about OpenMP runtime library routines?
○ _OPENMP macro is defined if OpenMP available: can use this to

conditionally include omp.h header file, else redefine runtime
library routines

122

Conditional Compilation
#ifdef _OPENMP
 #include <omp.h>
#else
 #define omp_get_thread_num() 0
#endif
…
int me = omp_get_thread_num();
…

123

Enabling OpenMP

● Most standard compilers support OpenMP directives
● Enable using compiler flags

Compiler Intel GNU PGI/Nvidia Cray
Flag -qopenmp -fopenmp -mp -h omp

124

Running Programs with OpenMP Directives

● Set OpenMP environment variables in batch scripts (e.g.,
include definition of OMP_NUM_THREADS in script)

● Example: to run a code with 8 MPI processes and 4
threads/MPI process on Cori:
○ export OMP_NUM_THREADS=4
○ export OMP_PLACES=threads
○ export OMP_PROC_BIND=spread
○ srun -n 8 -c 8 --cpu_bind=cores ./myprog

● Use the NERSC jobscript generator for best results:
https://my.nersc.gov/script_generator.php

https://my.nersc.gov/script_generator.php

125

INTERLUDE 3: COMPUTING PI WITH
OPENMP
“Happy Pi Day (to the 69th digit)!” by Mykl Roventine from
http://www.flickr.com/photos/myklroventine/3355106480/sizes/l/in/photostream/

http://www.flickr.com/photos/myklroventine/3355106480/sizes/l/in/photostream/

126

Interlude 3: Computing 𝝅 with OpenMP

● Think about the original darts program you downloaded
(darts.c/lcgenerator.h or darts.f)

● How could we exploit shared-memory parallelism to
compute 𝝅 with the method of darts?

● What possible pitfalls could we encounter?
● Your assignment: parallelize the original darts program

using OpenMP
● Rename it darts-omp.c or darts-omp.f

127

VI. HYBRID PROGRAMMING

128

VI. Hybrid Programming

● Motivation
● Considerations
● MPI threading support
● Designing hybrid algorithms
● Examples

129

Motivation

● Multicore architectures are here to stay
○ Macro scale: distributed memory architecture, suitable for MPI
○ Micro scale: each node contains multiple cores and shared

memory, suitable for OpenMP
● Obvious solution: use MPI between nodes, and OpenMP

within nodes
● Hybrid programming model

130

Considerations

● Sounds great, Rebecca, but is hybrid programming
always better?
○ No, not always
○ Especially if poorly programmed ☺
○ Depends also on suitability of architecture

● Think of accelerator model
○ in omp parallel region, use power of multicores; in serial region,

use only 1 processor
○ If your code can exploit threaded parallelism “a lot”, then try

hybrid programming

131

Considerations

● Hybrid parallel programming model
○ Are communication and computation discrete phases of

algorithm?
○ Can/do communication and computation overlap?

● Communication between threads
○ Communicate only outside of parallel regions
○ Assign a manager thread responsible for inter-process

communication
○ Let some threads perform inter-process communication
○ Let all threads communicate with other processes

132

MPI Threading Support

● MPI-2 standard defines four threading support levels
○ (0) MPI_THREAD_SINGLE only one thread allowed
○ (1) MPI_THREAD_FUNNELED master thread is only thread

permitted to make MPI calls
○ (2) MPI_THREAD_SERIALIZED all threads can make MPI calls,

but only one at a time
○ (3) MPI_THREAD_MULTIPLE no restrictions
○ (0.5) MPI calls not permitted inside parallel regions (returns

MPI_THREAD_SINGLE) – this is MPI-1

133

What Threading Model Does My Machine Support?
#include <mpi.h>
#include <stdio.h>

int main(int argc, char **argv) {
int provided;

MPI_Init_thread(&argc, &argv, MPI_THREAD_MULTIPLE, &provided);

printf("Supports level %d of %d %d %d %d\n", provided,
 MPI_THREAD_SINGLE, MPI_THREAD_FUNNELED,
 MPI_THREAD_SERIALIZED, MPI_THREAD_MULTIPLE);

MPI_Finalize();
return 0;
}

134

What Threading Model Does My Machine Support?

rjhb@cori03:~/test> cc -o threadmodel threadmodel.c

rjhb@cori03:~/test> salloc -C haswell -q interactive

salloc: Granted job allocation 22559071

salloc: Waiting for resource configuration

salloc: Nodes nid00189 are ready for job

rjhb@nid00189:~/test> srun -n 1 ./threadmodel

Supports level 2 of 0 1 2 3

135

MPI_Init_thread

● MPI_Init_thread(int required, int
*supported)

○ Use this instead of MPI_Init(…)
○ required: the level of thread support you want
○ supported: the level of thread support provided by implementation

(ideally = required, but if not available, returns
lowest level > required; failing that, largest level < required)

○ Using MPI_Init(…) is equivalent to required =
MPI_THREAD_SINGLE

● MPI_Finalize() should be called by same thread that
called MPI_Init_thread(…)

136

Other Useful MPI Functions

● MPI_Is_thread_main(int *flag)
○ Thread calls this to determine whether it is main thread

● MPI_Query_thread(int *provided)
○ Thread calls to query level of thread support

137

Supported Threading Models: Single
● Use single pragma
#pragma omp parallel

{

 #pragma omp barrier

 #pragma omp single

 {

 MPI_Xyz(…);

 }

 #pragma omp barrier

}

138

Supported Threading Models: Funneled
● Cray & Intel MPI implementations support funneling
● Use master pragma
#pragma omp parallel

{

 #pragma omp barrier

 #pragma omp master

 {

 MPI_Xyz(…);

 }

 #pragma omp barrier

}

139

Supported Threading Models: Serialized
● Cray & Intel MPI implementations support serialized
● Use single pragma
#pragma omp parallel

{

 #pragma omp barrier

 #pragma omp single

 {

 MPI_Xyz(…);

 }

 //Don't need omp barrier

}

140

Supported Threading Models: Multiple
● Intel MPI implementation supports multiple!

○ (Cray MPI can turn on multiple support with env variables, but
performance is sub-optimal)

● No need for pragmas to protect MPI calls
● Constraints:

○ Ordering of MPI calls maintained within each thread but not
across MPI process -- user is responsible for preventing race
conditions

○ Blocking MPI calls block only the calling thread
● Multiple is rarely required; most algorithms can be written

without it

141

Which Threading Model Should I Use?

Depends on the application!
Model Advantages Disadvantages
Single Portable: every MPI

implementation supports this
Limited flexibility

Funneled Simpler to program Manager thread could get
overloaded

Serial Freedom to communicate Risk of too much
cross-communication

Multiple Completely thread safe Limited availability; sub-optimal
performance

142

Designing Hybrid Algorithms

● Just because you can communicate thread-to-thread,
doesn’t mean you should

● Tradeoff between lumping messages together and
sending individual messages
○ Lumping messages together: one big message, one overhead
○ Sending individual messages: less wait time (?)

● Programmability: performance will be great, when you
finally get it working!

143

Example: Mesh Partitioning

● Regular mesh of finite elements
● When we partition mesh, need to communicate

information about (domain) adjacent cells to
(computationally) remote neighbors

144

Example: Mesh Partitioning

145

Example: Mesh Partitioning

146

INTERLUDE 4: COMPUTING PI WITH
HYBRID PROGRAMMING
“pi” by Travis Morgan from http://www.flickr.com/photos/morgantj/5575500301/sizes/l/in/photostream/

http://www.flickr.com/photos/morgantj/5575500301/sizes/l/in/photostream/

147

Interlude 4: Computing π with Hybrid Programming
● Putting it all together:

○ How can we combine inter-node and intra-node parallelism to
create a hybrid program that computes π using the method of
darts?

○ What potential pitfalls do you see?
● Your assignment: create a code, darts-hybrid.c or

darts-hybrid.f, developed from
darts-collective.c/darts-collective.f and
darts-omp.c/darts-omp.f, that uses OpenMP to
exploit parallelism within the node, and MPI for parallelism
between nodes

148

Bibliography/Resources: OpenMP

● Mattson, Timothy, Yun (Helen) He, Alice Koniges (2019) The OpenMP
Common Core, Cambridge, MA: MIT Press

● Chapman, Barbara, Gabrielle Jost, and Ruud van der Pas. (2008) Using
OpenMP, Cambridge, MA: MIT Press.

● LLNL OpenMP Tutorial, https://computing.llnl.gov/tutorials/openMP/
● Mattson, Tim, and Larry Meadows (2008) SC08 OpenMP “Hands-On”

Tutorial,
https://www.openmp.org/wp-content/uploads/omp-hands-on-SC08.pdf

● Bull, Mark (2018) OpenMP Tips, Tricks and Gotchas,
http://www.archer.ac.uk/training/course-material/2018/09/openmp-imp/Sli
des/L10-TipsTricksGotchas.pdf

https://computing.llnl.gov/tutorials/openMP/
https://www.openmp.org/wp-content/uploads/omp-hands-on-SC08.pdf

149

Bibliography/Resources: OpenMP

● Logan, Tom, The OpenMP Crash Course (How to Parallelize
your Code with Ease and Inefficiency),
http://ffden-2.phys.uaf.edu/608_lectures/OmpCrash.pdf

● OpenMP.org: https://www.openmp.org/
● OpenMP Standard: https://www.openmp.org/specifications/

○ 5.2 Specification:
https://www.openmp.org/wp-content/uploads/OpenMP-API-Specifica
tion-5-2.pdf

○ 5.2 code examples:
https://www.openmp.org/wp-content/uploads/openmp-examples-5-2.
pdf

http://ffden-2.phys.uaf.edu/608_lectures/OmpCrash.pdf
https://www.openmp.org/
https://www.openmp.org/specifications/
https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5-2.pdf
https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5-2.pdf
https://www.openmp.org/wp-content/uploads/openmp-examples-5-2.pdf
https://www.openmp.org/wp-content/uploads/openmp-examples-5-2.pdf

150

Bibliography/Resources: Hybrid Programming

● Cuma, Martin (2015) Hybrid MPI/OpenMP Programming,
https://www.chpc.utah.edu/presentations/images-and-pdfs/MPI
-OMP15.pdf

● INTERTWinE (2017) Best Practice Guide to Hybrid MPI +
OpenMP Programming,
http://www.intertwine-project.eu/sites/default/files/images/INTE
RTWinE_Best_Practice_Guide_MPI%2BOpenMP_1.1.pdf

● Rabenseifner, Rolf, Georg Hager, Gabriele Jost (2013) SC13
Hybrid MPI and OpenMP Parallel Programming Tutorial,
https://openmp.org/wp-content/uploads/HybridPP_Slides.pdf

https://www.chpc.utah.edu/presentations/images-and-pdfs/MPI-OMP15.pdf
https://www.chpc.utah.edu/presentations/images-and-pdfs/MPI-OMP15.pdf
http://www.intertwine-project.eu/sites/default/files/images/INTERTWinE_Best_Practice_Guide_MPI%2BOpenMP_1.1.pdf
http://www.intertwine-project.eu/sites/default/files/images/INTERTWinE_Best_Practice_Guide_MPI%2BOpenMP_1.1.pdf
https://openmp.org/wp-content/uploads/HybridPP_Slides.pdf

151

APPENDIX 1: COMPUTING PI
“Pi” by Gregory Bastien, from
http://www.flickr.com/photos/gregory_bastien/2741729411/sizes/z/in/photostream/

http://www.flickr.com/photos/gregory_bastien/2741729411/sizes/z/in/photostream/

152

Computing 𝝅
● Method of Darts is a TERRIBLE way to compute 𝝅

○ Accuracy proportional to square root of number of darts
○ For one decimal point increase in accuracy, need 100 times more

darts!
● Instead,

○ Look it up on the internet, e.g.,
http://www.geom.uiuc.edu/~huberty/math5337/groupe/digits.html

○ Compute using BBP (Bailey-Borwein-Plouffe) formula:

○ For less accurate computations, try your programming
language’s constant, or quadrature or power series expansions

http://www.geom.uiuc.edu/~huberty/math5337/groupe/digits.html

153

APPENDIX 2: ABOUT RANDOM NUMBER
GENERATION
“Random Number Generator insides” by mercuryvapour, from
http://www.flickr.com/photos/mercuryvapour/2743393057/sizes/l/in/photostream/

http://www.flickr.com/photos/mercuryvapour/2743393057/sizes/l/in/photostream/

154

About Random Number Generation

● No such thing as random number generation – proper
term is pseudorandom number generator (PRNG)

● Generate long sequence of numbers that seems
“random”

● Properties of good PRNG:
○ Very long period
○ Uniformly distributed
○ Reproducible
○ Quick and easy to compute

155

Pseudorandom Number Generator

Correlation of RANDU LCG (source:
http://upload.wikimedia.org/wikipedia/common
s/3/38/Randu.png)

● Generator from
lcgenerator.h is a Linear
Congruential Generator (LCG)
○ Short period (= PMOD, 714025)
○ Not uniformly distributed –

known to have correlations
○ Reproducible
○ Quick and easy to compute
○ Poor quality (don’t do this at

home)

http://upload.wikimedia.org/wikipedia/commons/3/38/Randu.png
http://upload.wikimedia.org/wikipedia/commons/3/38/Randu.png

156

Good PRNGs

● For serial codes
○ Mersenne twister
○ GSL (GNU Scientific Library), many generators available

(including Mersenne twister) http://www.gnu.org/software/gsl/
○ Also available in Intel MKL

● For parallel codes
○ SPRNG, regarded as leading parallel pseudorandom number

generator http://sprng.cs.fsu.edu/

http://www.gnu.org/software/gsl/
http://sprng.cs.fsu.edu/

