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Course Outline
Parallelism & MPI (12:30 - 2:30 pm)
I. Parallelism

II. Supercomputer Architecture
III. Basic MPI

(Interlude 1: Computing Pi in parallel)

IV. MPI Collectives
(Interlude 2: Computing Pi using parallel collectives)

OpenMP & Hybrid Programming (3 - 5 pm)
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Course Outline
Parallelism & MPI (12:30 - 2:30 pm)
OpenMP & Hybrid Programming (3 - 5 pm)
I. About OpenMP

II. OpenMP Directives
III. Data Scope
IV. Runtime Library Routines & Environment
V. Using OpenMP

(Interlude 3: Computing Pi with OpenMP)

VI. Hybrid Programming
(Interlude 4: Computing Pi with Hybrid Programming)



Parallelism & MPI
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I. PARALLELISM
“Parallel Worlds” by aloshbennett from 
http://www.flickr.com/photos/aloshbennett/3209564747/sizes/l/in/photostream/

http://www.flickr.com/photos/aloshbennett/3209564747/sizes/l/in/photostream/
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I. Parallelism

● Concepts of parallelization
● Serial vs. parallel
● Parallelization strategies
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Parallelization Concepts 

● When performing task, some subtasks depend on one 
another, while others do not

● Example: Preparing dinner
○ Salad prep independent of lasagna baking
○ Lasagna must be assembled before baking

● Likewise, in solving scientific problems, some tasks 
independent of one another
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Serial vs. Parallel

● Serial: tasks must be performed in sequence
● Parallel: tasks can be performed independently in any 

order
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Serial vs. Parallel: Example

● Preparing lasagna dinner
● Serial tasks: making sauce, assembling 

lasagna, baking lasagna; washing lettuce, 
cutting vegetables, assembling salad

● Parallel tasks: making lasagna, making salad, 
setting table
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Serial vs. Parallel: Graph
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Serial vs. Parallel: Graph

Synchronization Points
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Serial vs. Parallel: Graph
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Serial vs. Parallel: Example

● Could have several chefs, 
each performing one parallel 
task

● This is concept behind parallel 
computing
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Discussion: Jigsaw Puzzle*

● Suppose we want to do a large, 
N-piece jigsaw puzzle (e.g., N = 
10,000 pieces)

● Time for one person to complete 
puzzle: T hours

● How can we decrease walltime to 
completion?
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Discussion: Jigsaw Puzzle

● Impact of having multiple people at the table
○ Walltime to completion
○ Communication
○ Resource contention

● Let number of people = p
○ Think about what happens when p = 1, 2, 4, … 5000
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Discussion: Jigsaw Puzzle

Alternate setup: p people, each at separate table with N/p 
pieces each
● What is the impact on

○ Walltime to completion
○ Communication
○ Resource contention?
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Discussion: Jigsaw Puzzle

Alternate setup: divide puzzle by features, each person 
works on one, e.g., mountain, sky, stream, tree, meadow, etc.
● What is the impact on

○ Walltime to completion
○ Communication
○ Resource contention?
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Parallel Algorithm Design: PCAM

● Partition: Decompose problem into fine-grained tasks to 
maximize potential parallelism

● Communication: Determine communication pattern 
among tasks

● Agglomeration: Combine into coarser-grained tasks, if 
necessary, to reduce communication requirements or 
other costs

● Mapping: Assign tasks to processors, subject to tradeoff 
between communication cost and concurrency

(from Heath: Parallel Numerical Algorithms)
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II. ARCHITECTURE
“Architecture” by marie-ll, http://www.flickr.com/photos/grrrl/324473920/sizes/l/in/photostream/

http://www.flickr.com/photos/grrrl/324473920/sizes/l/in/photostream/


20

II. Supercomputer Architecture
● What is a supercomputer?
● Conceptual overview of architecture

Cray 1 
(1976)

IBM Blue 
Gene 
(2005)

Cray XT5 
(2009)

HPE-Cray 
Shasta 

Architecture 
(2021)
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What Is a Supercomputer?

● “The biggest, fastest computer right this minute.”  
– Henry Neeman

● Generally at least 100 times more powerful than PC
● This field of study known as supercomputing, 

high-performance computing (HPC), or scientific 
computing

● Scientists use really big computers to solve really hard 
problems
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SMP Architecture

● Massive memory, shared by multiple processors
● Any processor can work on any task, no matter its 

location in memory
● Ideal for parallelization of sums, loops, etc.
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Cluster Architecture

● CPUs on racks, do computations (fast)
● Communicate through networked connections (slow)
● Want to write programs that divide computations evenly 

but minimize communication
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State-of-the-Art Architectures

● Today, hybrid architectures very common
○ Multiple {16, 24, 32, 64, 68, 128}-core nodes, connected to other 

nodes by (slow) interconnect
○ Cores in node share memory (like small SMP machines)
○ Machine appears to follow cluster architecture (with multi-core 

nodes rather than single processors)
○ To take advantage of all parallelism, use MPI (cluster) and 

OpenMP (SMP) hybrid programming
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State-of-the-Art Architectures

● Hybrid CPU/GPGPU architectures also very common
○ Nodes consist of one (or more) multicore CPU + one (or more) 

GPU
○ Heavy computations offloaded to GPGPUs
○ Separate memory for CPU and GPU
○ Complicated programming paradigm, outside the scope of 

today’s training
■ Often use CUDA to directly program GPU offload portions of code
■ Alternatives: standards-based directives, OpenACC or OpenMP 

offloading; programming environments such as Kokkos or Raja
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III. BASIC MPI
“MPI Adventure” by Stefan Jürgensen, from 
http://www.flickr.com/photos/94039982@N00/6177616380/sizes/l/in/photostream/

http://www.flickr.com/photos/94039982@N00/6177616380/sizes/l/in/photostream/
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III. Basic MPI

● Introduction to MPI
● Parallel programming concepts
● The Six Necessary MPI Commands
● Example program



28

Introduction to MPI

● Stands for Message Passing Interface
● Industry standard for parallel programming (200+ page 

document)
● MPI implemented by many vendors; open source 

implementations available too
○ Cray, IBM, HPE vendor implementations
○ MPICH, LAM-MPI, OpenMPI (open source)

● MPI function library is used in writing C, C++, or Fortran 
programs in HPC
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Introduction to MPI

● MPI-1 vs. MPI-2: MPI-2 has additional advanced 
functionality and C++ bindings, but everything learned in 
this section applies to both standards

● MPI-3: Major revisions (e.g., nonblocking collectives, 
extensions to one-sided operations), released September 
2012, 800+ pages
○ MPI-3.1 released June 2015 
○ MPI-3 additions to standard will not be covered today

● MPI-4: Standard released 1 year ago
○ MPI-4 additions to standard will also not be covered today
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Parallelization Concepts

● Two primary programming paradigms:
○ SPMD (single program, multiple data)
○ MPMD (multiple programs, multiple data)

● MPI can be used for either paradigm
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SPMD vs. MPMD

● SPMD: Write single program that will perform same 
operation on multiple sets of data
○ Multiple chefs baking many lasagnas
○ Rendering different frames of movie

● MPMD: Write different programs to perform different 
operations on multiple sets of data
○ Multiple chefs preparing four-course dinner
○ Rendering different parts of movie frame

● Can also write hybrid program in which some processes 
perform same task
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The Six Necessary MPI Commands

int MPI_Init(int *argc, char **argv)

int MPI_Finalize(void)

int MPI_Comm_size(MPI_Comm comm, int *size)

int MPI_Comm_rank(MPI_Comm comm, int *rank)

int MPI_Send(void *buf, int count, MPI_Datatype 
datatype, int dest, int tag, MPI_Comm comm)

int MPI_Recv(void *buf, int count, MPI_Datatype 
datatype, int source, int tag, MPI_Comm comm, 
MPI_Status *status)
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Initiation and Termination

● MPI_Init(int *argc, char **argv) initiates MPI
○ Place in body of code after variable declarations and before any 

MPI commands
● MPI_Finalize(void) shuts down MPI

○ Place near end of code, after last MPI command
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Environmental Inquiry

● MPI_Comm_size(MPI_Comm comm, int *size) 
○ Find out number of processes
○ Allows flexibility in number of processes used in program

● MPI_Comm_rank(MPI_Comm comm, int *rank) 
○ Find out identifier of current process
○ 0 ≤ rank ≤ size-1
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Message Passing: Send

● MPI_Send(void *buf, int count, 
MPI_Datatype datatype, int dest, int tag, 
MPI_Comm comm)
○ Send message of length count items and datatype datatype 

contained in buf with tag tag to process number dest in 
communicator comm

○ E.g., MPI_Send(&x, 1, MPI_DOUBLE, manager, me, 
MPI_COMM_WORLD)
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Message Passing: Receive

● MPI_Recv(void *buf, int count, 
MPI_Datatype datatype, int source, int 
tag, MPI_Comm comm, MPI_Status *status)

● Receive message of length count items and datatype 
datatype with tag tag in buffer buf from process 
number source in communicator comm, and record 
status status

● E.g. MPI_Recv(&x, 1, MPI_DOUBLE, source, 
source, MPI_COMM_WORLD, &status)
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Message Passing

● WARNING! Both standard send and receive functions are 
blocking

● MPI_Recv returns only after receive buffer contains 
requested message

● MPI_Send may or may not block until message received 
(usually blocks)

● Must watch out for deadlock
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Deadlocking Example (Always)
#include <mpi.h>
#include <stdio.h>
int main(int argc, char **argv) {
    int me, np, q, sendto;
    MPI_Status status;
    MPI_Init(&argc, &argv);
    MPI_Comm_size(MPI_COMM_WORLD, &np);
    MPI_Comm_rank(MPI_COMM_WORLD, &me);
    if (np%2==1) return 0;
    if (me%2==1) {sendto = me-1;}
    else {sendto = me+1;}
    MPI_Recv(&q, 1, MPI_INT, sendto, sendto, MPI_COMM_WORLD, &status);
    MPI_Send(&me, 1, MPI_INT, sendto, me, MPI_COMM_WORLD);
    printf(“Sent %d to proc %d, received %d from proc %d\n”, me, sendto, q, 
sendto);
    MPI_Finalize();
    return 0;
}



39

Deadlocking Example (Sometimes)
#include <mpi.h>
#include <stdio.h>
int main(int argc, char **argv) {
    int me, np, q, sendto;
    MPI_Status status;
    MPI_Init(&argc, &argv);
    MPI_Comm_size(MPI_COMM_WORLD, &np);
    MPI_Comm_rank(MPI_COMM_WORLD, &me);
    if (np%2==1) return 0;
    if (me%2==1) {sendto = me-1;}
    else {sendto = me+1;}
    MPI_Send(&me, 1, MPI_INT, sendto, me, MPI_COMM_WORLD);
    MPI_Recv(&q, 1, MPI_INT, sendto, sendto, MPI_COMM_WORLD, &status);
    printf(“Sent %d to proc %d, received %d from proc %d\n”, me, sendto, q, 
sendto);
    MPI_Finalize();
    return 0;
}
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Deadlocking Example (Safe)
#include <mpi.h>
#include <stdio.h>
int main(int argc, char **argv) {
    int me, np, q, sendto;
    MPI_Status status;
    MPI_Init(&argc, &argv);
    MPI_Comm_size(MPI_COMM_WORLD, &np);
    MPI_Comm_rank(MPI_COMM_WORLD, &me);
    if (np%2==1) return 0;
    if (me%2==1) {sendto = me-1;}
    else {sendto = me+1;}
    if (me%2 == 0) {
        MPI_Send(&me, 1, MPI_INT, sendto, me, MPI_COMM_WORLD);
        MPI_Recv(&q, 1, MPI_INT, sendto, sendto, MPI_COMM_WORLD, &status);

} else {
        MPI_Recv(&q, 1, MPI_INT, sendto, sendto, MPI_COMM_WORLD, &status);
        MPI_Send(&me, 1, MPI_INT, sendto, me, MPI_COMM_WORLD);
    }
    printf(“Sent %d to proc %d, received %d from proc %d\n”, me, sendto, q, sendto);
    MPI_Finalize();
    return 0;
}
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Explanation: Always Deadlocking Example

● Logically incorrect
● Deadlock caused by blocking MPI_Recvs
● All processes wait for corresponding MPI_Sends to 

begin, which never happens
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Explanation: Sometimes Deadlocking Example

● Logically correct
● Deadlock could be caused by MPI_Sends competing for 

buffer space
● Unsafe because depends on system resources
● Solutions:

○ Reorder sends and receives, like safe example, having evens 
send first and odds send second

○ Use non-blocking sends and receives or other advanced 
functions from MPI library (see MPI standard for details)
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INTERLUDE 1: COMPUTING PI IN PARALLEL
“Pi of Pi” by spellbee2, from 
http://www.flickr.com/photos/49825386@N08/7253578340/sizes/l/in/photostream/

http://www.flickr.com/photos/49825386@N08/7253578340/sizes/l/in/photostream/
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Interlude 1: Computing 𝝅 in Parallel

● Project Description
● Serial Code
● Parallelization Strategies
● Your Assignment
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Project Description

● We want to compute 𝝅
● One method: method of 

darts*
● Ratio of area of square to 

area of inscribed circle 
proportional to 𝝅

* This is a TERRIBLE way to compute pi! Don’t 
do this in real life!!!! (See Appendix 1 for better 
ways)

“Picycle” by Tang Yau Hoong, from 
http://www.flickr.com/photos/tangyauhoong/5
609933651/sizes/o/in/photostream/

http://www.flickr.com/photos/tangyauhoong/5609933651/sizes/o/in/photostream/
http://www.flickr.com/photos/tangyauhoong/5609933651/sizes/o/in/photostream/
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Method of Darts

● Imagine dartboard with 
circle of radius R inscribed 
in square

● Area of circle
● Area of square
●  Area of circle                

Area of square
“Dartboard” by AndyRobertsPhotos, from 
http://www.flickr.com/photos/aroberts/290
7670014/sizes/o/in/photostream/

http://www.flickr.com/photos/aroberts/2907670014/sizes/o/in/photostream/
http://www.flickr.com/photos/aroberts/2907670014/sizes/o/in/photostream/
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Method of Darts

● Ratio of areas proportional to 𝝅
● How to find areas?

○ Suppose we threw darts (completely 
randomly) at dartboard

○ Count # darts landing in circle & total # darts 
landing in square

○ Ratio of these numbers gives approximation to ratio of areas
○ Quality of approximation increases with # darts thrown
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Method of Darts

𝝅 = 4 ×  # darts inside circle
                 # darts thrown

Method of Darts cake in celebration of Pi 
Day 2009, Rebecca Hartman-Baker
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Method of Darts

● Okay, Rebecca, but how in the world do we simulate this 
experiment on a computer?

● Decide on length R
● Generate pairs of random numbers (x, y) s.t. 

    -R ≤ (x, y) ≤ R
● If (x, y) within circle (i.e., if (x2+y2) ≤ R2) add one to tally for 

inside circle
● Lastly, find ratio
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Serial Code (darts.c)
#include "lcgenerator.h"
static long num_trials = 1000000;

int main() {
  long i;
  long Ncirc = 0;
  double pi, x, y;
  double r = 1.0; // radius of circle
  double r2 = r*r;

  for (i = 0; i < num_trials; i++) {
    x = r*lcgrandom();
    y = r*lcgrandom();
    if ((x*x + y*y) <= r2)
      Ncirc++;
  }

  pi = 4.0 * ((double)Ncirc)/((double)num_trials);
  printf("\n For %ld trials, pi = %f\n", num_trials, pi);

  return 0;
}
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Serial Code (lcgenerator.h)
// Random number generator -- and not a very good one, either!

static long MULTIPLIER = 1366;
static long ADDEND = 150889;
static long PMOD = 714025;
long random_last = 0;

// This is not a thread-safe random number generator

double lcgrandom() {
  long random_next;
  random_next = (MULTIPLIER * random_last + ADDEND)%PMOD;
  random_last = random_next;

  return ((double)random_next/(double)PMOD);
}
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Serial Code (darts.f) (1)
! First, the pseudorandom number generator

  real function lcgrandom()
    integer*8, parameter :: MULTIPLIER = 1366
    integer*8, parameter :: ADDEND = 150889
    integer*8, parameter :: PMOD = 714025
    integer*8, save :: random_last = 0

    integer*8 :: random_next = 0
    random_next = mod((MULTIPLIER * random_last + ADDEND), PMOD)
    random_last = random_next
    lcgrandom = (1.0*random_next)/PMOD
    return
  end
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Serial Code (darts.f) (2)
! Now, we compute pi
  program darts
    implicit none
    integer*8 :: num_trials = 1000000, i = 0, Ncirc = 0
    real :: pi = 0.0, x = 0.0, y = 0.0, r = 1.0
    real :: r2 = 0.0
    real :: lcgrandom
    r2 = r*r
 

    do i = 1, num_trials
      x = r*lcgrandom()
      y = r*lcgrandom()
      if ((x*x + y*y) .le. r2) then
        Ncirc = Ncirc+1
      end if
    end do
    pi = 4.0*((1.0*Ncirc)/(1.0*num_trials))
    print*, ‘ For ‘, num_trials, ‘ trials, pi = ‘, pi

  end



54

Parallelization Strategies

● What tasks independent of each other?
● What tasks must be performed sequentially?
● Using PCAM parallel algorithm design strategy
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Partition

● “Decompose problem into fine-grained tasks to maximize 
potential parallelism”

● Finest grained task: throw of one dart
● Each throw independent of all others
● If we had huge computer, could assign one throw to each 

processor
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Communication

“Determine communication pattern among tasks”
● Each processor throws dart(s) then sends results back to 

manager process
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Agglomeration

“Combine into coarser-grained tasks, if necessary, to reduce 
communication requirements or other costs”
● To get good value of π, must use millions of darts
● We don’t have millions of processors available
● Furthermore, communication between manager and 

millions of worker processors would be very expensive
● Solution: divide up number of dart throws evenly between 

processors, so each processor does a share of work
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Mapping

“Assign tasks to processors, subject to tradeoff between 
communication cost and concurrency”
● Assign role of “manager” to processor 0
● Processor 0 will receive tallies from all the other 

processors, and will compute final value of π
● Every processor, including manager, will perform equal 

share of dart throws
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Your Assignment

● Clone the whole assignment (including answers!) to Cori from 
the repository with: git clone 
https://github.com/NERSC/crash-course-supercom
puting.git

● Copy darts.c/lcgenerator.h or darts.f (your choice) 
from 
crash-course-supercomputing/darts-suite/{c,for
tran}

● Parallelize the code using the 6 basic MPI commands
● Rename your new MPI code darts-mpi.c or darts-mpi.f
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IV. MPI COLLECTIVES
“The First Tractor” by Vladimir Krikhatsky (socialist realist, 1877-1942).  Source: 
http://en.wikipedia.org/wiki/File:Wladimir_Gawriilowitsch_Krikhatzkij_-_The_First_Tractor.jpg

http://en.wikipedia.org/wiki/File:Wladimir_Gawriilowitsch_Krikhatzkij_-_The_First_Tractor.jpg
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MPI Collectives

● Communication involving group of processes
● Collective operations

○ Broadcast
○ Gather
○ Scatter
○ Reduce
○ All-
○ Barrier
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Broadcast

● Perhaps one message needs to be sent from manager to 
all worker processes

● Could send individual messages
● Instead, use broadcast – more efficient, faster
● int MPI_Bcast(void* buffer, int count, 

MPI_Datatype datatype, int root, MPI_Comm 
comm)
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Gather
● All processes need to send same (similar) message to manager
● Could implement with each process calling MPI_Send(…) and 

manager looping through MPI_Recv(…)
● Instead, use gather operation – more efficient, faster
● Messages concatenated in rank order
● int MPI_Gather(void* sendbuf, int sendcount, 

MPI_Datatype sendtype, void* recvbuf, int 
recvcount, MPI_Datatype recvtype, int root, 
MPI_Comm comm)

● Note: recvcount = # items received from each process, not total
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Gather
● Maybe some processes need to send longer messages than 

others
● Allow varying data count from each process with 

MPI_Gatherv(…)
● int MPI_Gatherv(void* sendbuf, int sendcount, 

MPI_Datatype sendtype, void* recvbuf, int 
*recvcounts, int *displs, MPI_Datatype 
recvtype, int root, MPI_Comm comm)

● recvcounts is array; entry i in displs array specifies 
displacement relative to recvbuf[0] at which to place data 
from corresponding process number
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Scatter
● Inverse of gather: split message into NP equal pieces, with ith 

segment sent to ith process in group
● int MPI_Scatter(void* sendbuf, int sendcount, 

MPI_Datatype sendtype, void* recvbuf, int 
recvcount, MPI_Datatype recvtype, int root, 
MPI_Comm comm)

● Send messages of varying sizes across processes in group: 
MPI_Scatterv(…)

● int MPI_Scatterv(void* sendbuf, int *sendcounts, 
int *displs, MPI_datatype sendtype, void* 
recvbuf, int recvcount, MPI_Datatype recvtype, 
int root, MPI_Comm comm)
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Reduce

● Perhaps we need to do sum of many subsums owned by 
all processors

● Perhaps we need to find maximum value of variable 
across all processors

● Perform global reduce operation across all group 
members

● int MPI_Reduce(void* sendbuf, void* 
recvbuf, int count, MPI_Datatype datatype, 
MPI_Op op, int root, MPI_Comm comm)
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Reduce: Predefined Operations
MPI_Op Meaning Allowed Types
MPI_MAX Maximum Integer, floating point

MPI_MIN Minimum Integer, floating point

MPI_SUM Sum Integer, floating point, complex

MPI_PROD Product Integer, floating point, complex

MPI_LAND Logical and Integer, logical

MPI_BAND Bitwise and Integer, logical

MPI_LOR Logical or Integer, logical

MPI_BOR Bitwise or Integer, logical

MPI_LXOR Logical xor Integer, logical

MPI_BXOR Bitwise xor Integer, logical

MPI_MAXLOC Maximum value & location *

MPI_MINLOC Minimum value & location *
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Reduce: Operations

● MPI_MAXLOC and MPI_MINLOC
○ Returns {max, min} and rank of first process with that value
○ Use with special MPI pair datatype arguments:

■ MPI_FLOAT_INT (float and int)
■ MPI_DOUBLE_INT (double and int)
■ MPI_LONG_INT (long and int)
■ MPI_2INT (pair of int)

○ See MPI standard for more details
● User-defined operations

○ Use MPI_Op_create(…) to create new operations
○ See MPI standard for more details
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All- Operations

● Sometimes, may want to have result of gather, scatter, or 
reduce on all processes

● Gather operations
○ int MPI_Allgather(void* sendbuf, int sendcount, 

MPI_Datatype sendtype, void* recvbuf, int 
recvcount, MPI_Datatype recvtype, MPI_Comm comm)

○ int MPI_Allgatherv(void* sendbuf, int sendcount, 
MPI_Datatype sendtype, void* recvbuf, int 
*recvcounts, int *displs, MPI_Datatype recvtype, 
MPI_Comm comm) 
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All-to-All Scatter/Gather

● Extension of Allgather in which each process sends 
distinct data to each receiver

● Block j from process i is received by process j into ith 
block of recvbuf

● int MPI_Alltoall(void* sendbuf, int 
sendcount, MPI_Datatype sendtype, void* 
recvbuf, int recvcount, MPI_Datatype 
recvtype, MPI_Comm comm)

● Corresponding MPI_Alltoallv function also available
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All-Reduce

● Same as MPI_Reduce except result appears on all 
processes

● int MPI_Allreduce(void* sendbuf, void* 
recvbuf, int count, MPI_Datatype datatype, 
MPI_Op op, MPI_Comm comm)
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Barrier

● In algorithm, may need to synchronize processes
● Barrier blocks until all group members have called it
● int MPI_Barrier(MPI_Comm comm)
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Bibliography/Resources: MPI/MPI Collectives

● Snir, Marc, Steve W. Otto, Steven Huss-Lederman, David 
W. Walker, and Jack Dongarra. (1996) MPI: The 
Complete Reference. Cambridge, MA: MIT Press. (also 
available at 
http://www.netlib.org/utk/papers/mpi-book/mpi-book.html)

● MPICH Documentation 
http://www.mpich.org/documentation/guides/

http://www.netlib.org/utk/papers/mpi-book/mpi-book.html
http://www.mpich.org/documentation/guides/
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Bibliography/Resources: MPI/MPI Collectives

● Message Passing Interface (MPI) Tutorial 
https://hpc-tutorials.llnl.gov/mpi/

● MPI Standard at MPI Forum: 
https://www.mpi-forum.org/docs/ 
○ MPI 1.1: 

http://www.mpi-forum.org/docs/mpi-11-html/mpi-report.html
○ MPI-2.2: 

http://www.mpi-forum.org/docs/mpi22-report/mpi22-report.htm
○ MPI 3.1: 

https://www.mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf
○ MPI 4.0: 

https://www.mpi-forum.org/docs/mpi-4.0/mpi40-report.pdf

https://hpc-tutorials.llnl.gov/mpi/
https://www.mpi-forum.org/docs/
http://www.mpi-forum.org/docs/mpi-11-html/mpi-report.html
http://www.mpi-forum.org/docs/mpi22-report/mpi22-report.htm
https://www.mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf
https://www.mpi-forum.org/docs/mpi-4.0/mpi40-report.pdf


75

INTERLUDE 2: COMPUTING PI WITH MPI 
COLLECTIVES
“Pi-Shaped Power Lines at Fermilab” by Michael Kappel from 
http://www.flickr.com/photos/m-i-k-e/4781834200/sizes/l/in/photostream/

http://www.flickr.com/photos/m-i-k-e/4781834200/sizes/l/in/photostream/
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Interlude 2: Computing 𝝅 with MPI Collectives

● In previous Interlude, you used the 6 basic MPI routines 
to develop a parallel program using the Method of Darts 
to compute 𝝅

● The communications in previous program could be made 
more efficient by using collectives

● Your assignment: update your MPI code to use collective 
communications

● Rename it darts-collective.c or 
darts-collective.f



OpenMP & Hybrid Programming
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Outline

I. About OpenMP
II. OpenMP Directives

III. Data Scope
IV. Runtime Library Routines and Environment Variables
V. Using OpenMP

VI. Hybrid Programming
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I. ABOUT OPENMP



80

About OpenMP

● Industry-standard shared memory programming model
● Developed in 1997
● OpenMP Architecture Review Board (ARB) determines 

additions and updates to standard
● Current standard: 5.2 (November 2021)
● Standard includes GPU offloading (since 4.5), not 

discussed today
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Advantages to OpenMP

● Parallelize small parts of application, one at a time 
(beginning with most time-critical parts)

● Can express simple or complex algorithms
● Code size grows only modestly
● Expression of parallelism flows clearly, so code is easy to 

read
● Single source code for OpenMP and non-OpenMP – 

non-OpenMP compilers simply ignore OMP directives
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OpenMP Programming Model

● Application Programmer Interface (API) is combination of
○ Directives
○ Runtime library routines
○ Environment variables

● API falls into three categories
○ Expression of parallelism (flow control)
○ Data sharing among threads (communication)
○ Synchronization (coordination or interaction)
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Parallelism

● Shared memory, thread-based parallelism
● Explicit parallelism (parallel regions)
● Fork/join model

Source: https://hpc-tutorials.llnl.gov/openmp/

https://hpc-tutorials.llnl.gov/openmp/
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II. OPENMP DIRECTIVES
Star Trek: Prime Directive by Judith and Garfield Reeves-Stevens, ISBN 0671744666 
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II. OpenMP Directives

● Syntax overview
● Parallel
● Loop
● Sections
● Synchronization
● Reduction
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Syntax Overview: C/C++
● Basic format

○ #pragma omp directive-name [clause] newline
● All directives followed by newline
● Uses pragma construct (pragma = Greek for “thing done”)
● Case sensitive
● Directives follow standard rules for C/C++ compiler 

directives
● Use curly braces (not on pragma line) to denote scope of 

directive
● Long directive lines can be continued by escaping newline 

character with \
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Syntax Overview: Fortran
● Basic format:

○ sentinel directive-name [clause]
● Three accepted sentinels: !$omp *$omp c$omp
● Some directives paired with end clause
● Fixed-form code:

○ Any of three sentinels 
beginning at column 1

○ Initial directive line has 
space/zero in column 6

○ Continuation directive line has 
non-space/zero in column 6

○ Standard rules for fixed-form 
line length, spaces, etc. apply

● Free-form code:
○ !$omp only accepted sentinel
○ Sentinel can be in any column, but 

must be preceded by only white 
space and followed by a space

○ Line to be continued must end in & 
and following line begins with sentinel

○ Standard rules for free-form line 
length, spaces, etc. apply
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OpenMP Directives: Parallel
● A block of code executed by multiple threads
● Syntax:

#pragma omp parallel private(list) shared(list)

{

   /* parallel section */

}

!$omp parallel private(list) &

!$omp shared(list)

! Parallel section

!$omp end parallel
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Simple Example (C/C++)
#include <stdio.h>
#include <omp.h>
int main (int argc, char *argv[]) {

int tid;
printf(“Hello world from threads:\n”);
#pragma omp parallel private(tid)
{

tid = omp_get_thread_num();
printf(“<%d>\n”, tid);

}
printf(“I am sequential now\n”);
return 0;

}
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Simple Example (Fortran)
 program hello
  integer tid, omp_get_thread_num
  write(*,*) ‘Hello world from threads:’
  !$omp parallel private(tid)
  tid = omp_get_thread_num()
  write(*,*) ‘<‘, tid, ‘>’
  !$omp end parallel
  write(*,*) ‘I am sequential now’
 end
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Simple Example: Output
Output 1
Hello world from threads: 

<0> 

<1> 

<2>

<3> 

<4> 

I am sequential now

Output 2
Hello world from threads: 

<1> 

<2>

<0> 

<4> 

<3> 

I am sequential now

Order of execution is scheduled by OS!!!
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OpenMP Directives: Loop

● Iterations of the loop following the directive are executed 
in parallel

● Syntax (C):
#pragma omp for schedule(type [,chunk]) private(list)\  
shared(list) nowait

 {

   /* for loop */

 }
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OpenMP Directives: Loop

● Syntax (Fortran):
!$omp do schedule (type [,chunk]) &
!omp private(list) shared(list)

C do loop goes here

!$omp end do nowait
● type = {static, dynamic, guided, runtime}
● If nowait specified, threads do not synchronize at end of 

loop
●
●
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OpenMP Directives: Loop Scheduling
● Default scheduling determined by implementation
● Static

○ ID of thread performing particular iteration is function of iteration 
number and number of threads

○ Statically assigned at beginning of loop
○ Best for known, predictable amount of work per iteration
○ Low overhead

● Dynamic
○ Assignment of threads determined at runtime (round robin)
○ Each thread gets more work after completing current work
○ Load balance is possible for variable work per iteration
○ Introduces extra overhead
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OpenMP Directives: Loop Scheduling
Type Chunks

?
Chunk 
Size

# Chunks Overhead Description

static N N/P P Lowest Simple Static
static Y C N/C Low Interleaved
dynamic N N/P P Medium Simple dynamic
dynamic Y C N/C High Dynamic
guided N/A ≤ N/P ≤ N/C Highest Dynamic optimized
runtime Varies Varies Varies Varies Set by environment 

variable

Note: N = size of loop, P = number of threads, C = chunk size
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Which Loops are Parallelizable?
Parallelizable
● Number of iterations known 

upon entry, and does not 
change

● Each iteration independent of 
all others

● No data dependence

Not Parallelizable
● Conditional loops (many while 

loops)
● Iterator loops (e.g., iterating 

over std:: list<…> in C++)
● Iterations dependent upon 

each other
● Data dependence

Trick: If a loop can be run backwards and get the same results, 
then it is almost always parallelizable!
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Example: Parallelizable?
/* Gaussian Elimination (no pivoting):   x = A\b   */

for (int i = 0; i < N-1; i++) {
  for (int j = i; j < N; j++) {
    double ratio = A[j][i]/A[i][i];
    for (int k = i; k < N; k++) {
      A[j][k] -= (ratio*A[i][k]);
      b[j] -= (ratio*b[i]);
    }
  }
}
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Example: Parallelizable?
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Example: Parallelizable?

● Outermost Loop (i):
○ N-1 iterations
○ Iterations depend upon each other (values computed at step 
i-1 used in step i)

● Inner loop (j):
○ N-i iterations (constant for given i)
○ Iterations can be performed in any order

● Innermost loop (k):
○ N-i iterations (constant for given i)
○ Iterations can be performed in any order
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Example: Parallelizable?
/* Gaussian Elimination (no pivoting):   x = A\b   */

for (int i = 0; i < N-1; i++) {
#pragma omp parallel for
  for (int j = i; j < N; j++) {
    double ratio = A[j][i]/A[i][i];
    for (int k = i; k < N; k++) {
      A[j][k] -= (ratio*A[i][k]);
      b[j] -= (ratio*b[i]);
    }
  }
}

Note: can combine parallel and 
for into single pragma
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OpenMP Directives: Sections
● Non-iterative work-sharing construct
● Divide enclosed sections of code among threads
● Section directives nested within sections directive
● Syntax: C/C++ Fortran

#pragma omp sections !$omp sections

{

  #pragma omp section !$omp section

  /* first section */ c First section

  #pragma omp section !$omp section

  /* next section */ c Second section

} !$omp end sections
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Example: Sections
#include <omp.h>
#define N     1000
int main () {
  int i;
  double a[N], b[N];
  double c[N], d[N];
  /* Some initializations */
  for (i=0; i < N; i++) {  
    a[i] = i * 1.5;  
    b[i] = i + 22.35;
  }

#pragma omp parallel shared(a,b,c,d) 
private(i)  
  {  
    #pragma omp sections nowait    
    {    
      #pragma omp section
        for (i=0; i < N; i++)      
          c[i] = a[i] + b[i];    
      #pragma omp section    
        for (i=0; i < N; i++)

      d[i] = a[i] * b[i];   
     }  /* end of sections */ 
   }  /* end of parallel section */
return 0;
}
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OpenMP Directives: Synchronization

● Sometimes, need to make sure threads execute regions 
of code in proper order
○ Maybe one part depends on another part being completed
○ Maybe only one thread need execute a section of code

● Synchronization directives
○ Critical
○ Barrier
○ Single
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OpenMP Directives: Synchronization

● Critical
○ Specifies section of code that must be executed by only one 

thread at a time
○ Syntax: C/C++

#pragma omp critical (name)

○ Fortran
!$omp critical (name)

!$omp end critical

○ Names are global identifiers – critical regions with same name 
are treated as same region
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OpenMP Directives: Synchronization

● Single
○ Enclosed code is to be executed by only one thread
○ Useful for thread-unsafe sections of code (e.g., I/O)
○ Syntax: C/C++ Fortran

#pragma omp single    !$omp single

!$omp end single
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OpenMP Directives: Synchronization

● Barrier
○ Synchronizes all threads: thread reaches barrier and waits until 

all other threads have reached barrier, then resumes executing 
code following barrier

○ Syntax: C/C++ Fortran
#pragma omp barrier !$OMP barrier

○ Sequence of work-sharing and barrier regions encountered must 
be the same for every thread
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OpenMP Directives: Reduction

● Reduces list of variables into one, using operator (e.g., 
max, sum, product, etc.)

● Syntax
#pragma omp reduction(op : list)
!$omp reduction(op : list)

○ where list is list of variables and op is one of following:
■ C/C++: +, -, *,  &, ^, |, &&, ||, max, min
■ Fortran: +, -, *, .and., .or., .eqv., .neqv., max, 

min, iand, ior, ieor

●
●
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III. VARIABLE SCOPE
“M119A2 Scope” by Georgia National Guard, source: 
http://www.flickr.com/photos/ganatlguard/5934238668/sizes/l/in/photostream/

http://www.flickr.com/photos/ganatlguard/5934238668/sizes/l/in/photostream/
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III. Variable Scope

● About variable scope
● Scoping clauses
● Common mistakes
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About Variable Scope

● Variables can be shared or private within a parallel region
● Shared: one copy, shared between all threads

○ Single common memory location, accessible by all threads
● Private: each thread makes its own copy

○ Private variables exist only in parallel region



111

About Variable Scope

● By default, all variables shared except
○ Index values of parallel region loop – private by default
○ Local variables and value parameters within subroutines called 

within parallel region – private
○ Variables declared within lexical extent of parallel region – 

private
● Variable scope is the most common source of errors in 

OpenMP codes
○ Correctly determining variable scope is key to correctness and 

performance of your code
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Variable Scoping Clauses: Shared

● Shared variables: shared (list)
○ By default, all variables shared unless otherwise specified
○ All threads access this variable in same location in memory
○ Race conditions can occur if access is not carefully controlled
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Variable Scoping Clauses: Private

● Private: private (list)
○ Variable exists only within parallel region
○ Value undefined at start and after end of parallel region

● Private starting with defined values: firstprivate 
(list)
○ Private variables initialized to be the value held immediately 

before entry into parallel region
● Private ending with defined value: lastprivate(list)

○ At end of loop, set variable to value set by final iteration of loop



114

Common Mistakes

● A variable that should be private is public
○ Something unexpectedly gets overwritten
○ Solution: explicitly declare all variable scope

● Nondeterministic execution
○ Different results from different executions

● Race condition
○ Sometimes you get the wrong answer
○ Solutions: 

■ Look for overwriting of shared variable
■ Use a tool such as Cray Reveal or Codee to rescope your loop

●
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Find the Mistake(s)!
/* Gaussian Elimination (no pivoting):   x = A\b   */
int i, j, k;
double ratio;
for (i = 0; i < N-1; i++) {
#pragma omp parallel for
  for (j = i; j < N; j++) {
    ratio = A[j][i]/A[i][i];
    for (k = i; k < N; k++) {
      A[j][k] -= (ratio*A[i][k]);
      b[j] -= (ratio*b[i]);
    }
  }
}

k & ratio are shared 
variables by default. 
Depending on compiler, k 
may be optimized out & 
therefore not impact 
correctness, but ratio will 
always lead to errors! 
Depending how loop is 
scheduled, you will see 
different answers.
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Fix the Mistake(s)!
/* Gaussian Elimination (no pivoting):   x = A\b   */
int i, j, k;
double ratio;
for (i = 0; i < N-1; i++) {
#pragma omp parallel for private (j, k, ratio) \
shared (A, b, N) default none
  for (j = i; j < N; j++) {
    ratio = A[j][i]/A[i][i];
    for (k = i; k < N; k++) {
      A[j][k] -= (ratio*A[i][k]);
      b[j] -= (ratio*b[i]);
    }
  }
}

By setting default none, 
compiler will catch any 
variables not explicitly 
scoped
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IV. RUNTIME LIBRARY ROUTINES & 
ENVIRONMENT VARIABLES

Panorama with snow-capped Mt. McKinley in Denali National Park, Alaska, USA, May 2011, by Rebecca Hartman-Baker.
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OpenMP Runtime Library Routines

● void omp_set_num_threads(int num_threads)
○ Sets number of threads used in next parallel region
○ Must be called from serial portion of code

● int omp_get_num_threads()
○ Returns number of threads currently in team executing parallel 

region from which it is called
● int omp_get_thread_num()

○ Returns rank of thread 
○ 0 ≤ omp_get_thread_num() < omp_get_num_threads()
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OpenMP Environment Variables

● Set environment variables to control execution of parallel 
code

● OMP_SCHEDULE
○ Determines how iterations of loops are scheduled
○ E.g., export OMP_SCHEDULE=”dynamic, 4”

● OMP_NUM_THREADS
○ Sets maximum number of threads
○ E.g., export OMP_NUM_THREADS=4
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V. USING OPENMP
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Conditional Compilation

● Can write single source code for use with or without 
OpenMP
○ Pragmas are ignored if OpenMP disabled

● What about OpenMP runtime library routines?
○ _OPENMP macro is defined if OpenMP available: can use this to 

conditionally include omp.h header file, else redefine runtime 
library routines
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Conditional Compilation
#ifdef _OPENMP
  #include <omp.h>
#else
  #define omp_get_thread_num() 0
#endif
…
int me = omp_get_thread_num();
…
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Enabling OpenMP

● Most standard compilers support OpenMP directives
● Enable using compiler flags

Compiler Intel GNU PGI/Nvidia Cray
Flag -qopenmp -fopenmp -mp -h omp
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Running Programs with OpenMP Directives

● Set OpenMP environment variables in batch scripts (e.g., 
include definition of OMP_NUM_THREADS in script)

● Example: to run a code with 8 MPI processes and 4 
threads/MPI process on Cori:
○ export OMP_NUM_THREADS=4
○ export OMP_PLACES=threads
○ export OMP_PROC_BIND=spread
○ srun -n 8 -c 8 --cpu_bind=cores ./myprog 

● Use the NERSC jobscript generator for best results: 
https://my.nersc.gov/script_generator.php

https://my.nersc.gov/script_generator.php
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INTERLUDE 3: COMPUTING PI WITH 
OPENMP
“Happy Pi Day (to the 69th digit)!” by Mykl Roventine from 
http://www.flickr.com/photos/myklroventine/3355106480/sizes/l/in/photostream/

http://www.flickr.com/photos/myklroventine/3355106480/sizes/l/in/photostream/
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Interlude 3: Computing 𝝅 with OpenMP

● Think about the original darts program you downloaded 
(darts.c/lcgenerator.h or darts.f)

● How could we exploit shared-memory parallelism to 
compute 𝝅 with the method of darts?

● What possible pitfalls could we encounter?
● Your assignment: parallelize the original darts program 

using OpenMP
● Rename it darts-omp.c or darts-omp.f
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VI. HYBRID PROGRAMMING
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VI. Hybrid Programming

● Motivation
● Considerations
● MPI threading support
● Designing hybrid algorithms
● Examples



129

Motivation

● Multicore architectures are here to stay
○ Macro scale: distributed memory architecture, suitable for MPI
○ Micro scale: each node contains multiple cores and shared 

memory, suitable for OpenMP
● Obvious solution: use MPI between nodes, and OpenMP 

within nodes
● Hybrid programming model
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Considerations

● Sounds great, Rebecca, but is hybrid programming 
always better?
○ No, not always
○ Especially if poorly programmed ☺
○ Depends also on suitability of architecture

● Think of accelerator model 
○ in omp parallel region, use power of multicores; in serial region, 

use only 1 processor
○ If your code can exploit threaded parallelism “a lot”, then try 

hybrid programming
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Considerations

● Hybrid parallel programming model
○ Are communication and computation discrete phases of 

algorithm?
○ Can/do communication and computation overlap?

● Communication between threads
○ Communicate only outside of parallel regions
○ Assign a manager thread responsible for inter-process 

communication
○ Let some threads perform inter-process communication
○ Let all threads communicate with other processes



132

MPI Threading Support

● MPI-2 standard defines four threading support levels
○ (0) MPI_THREAD_SINGLE   only one thread allowed
○ (1) MPI_THREAD_FUNNELED   master thread is only thread 

permitted to make MPI calls
○ (2) MPI_THREAD_SERIALIZED   all threads can make MPI calls, 

but only one at a time
○ (3) MPI_THREAD_MULTIPLE   no restrictions
○ (0.5) MPI calls not permitted inside parallel regions (returns 

MPI_THREAD_SINGLE) – this is MPI-1 
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What Threading Model Does My Machine Support?
#include <mpi.h>
#include <stdio.h>

int main(int argc, char **argv) {
int provided;

MPI_Init_thread(&argc, &argv, MPI_THREAD_MULTIPLE, &provided);

printf("Supports level %d of %d %d %d %d\n", provided,
  MPI_THREAD_SINGLE, MPI_THREAD_FUNNELED,
  MPI_THREAD_SERIALIZED, MPI_THREAD_MULTIPLE);

MPI_Finalize();
return 0;
}



134

What Threading Model Does My Machine Support?

rjhb@cori03:~/test> cc -o threadmodel threadmodel.c

rjhb@cori03:~/test> salloc -C haswell -q interactive

salloc: Granted job allocation 22559071

salloc: Waiting for resource configuration

salloc: Nodes nid00189 are ready for job

rjhb@nid00189:~/test> srun -n 1 ./threadmodel

Supports level 2 of 0 1 2 3
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MPI_Init_thread

● MPI_Init_thread(int required, int 
*supported) 

○ Use this instead of MPI_Init(…)
○ required: the level of thread support you want
○ supported: the level of thread support provided by implementation 

(ideally = required, but if not available, returns 
lowest level > required; failing that, largest level < required)

○ Using MPI_Init(…) is equivalent to required = 
MPI_THREAD_SINGLE

● MPI_Finalize() should be called by same thread that 
called MPI_Init_thread(…)
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Other Useful MPI Functions

● MPI_Is_thread_main(int *flag)
○ Thread calls this to determine whether it is main thread

● MPI_Query_thread(int *provided)
○ Thread calls to query level of thread support
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Supported Threading Models: Single
● Use single pragma
#pragma omp parallel

{

  #pragma omp barrier

  #pragma omp single

  {

    MPI_Xyz(…);

  }

  #pragma omp barrier

}
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Supported Threading Models: Funneled
● Cray & Intel MPI implementations support funneling
● Use master pragma
#pragma omp parallel

{

  #pragma omp barrier

  #pragma omp master

  {

    MPI_Xyz(…);

  }

  #pragma omp barrier

}
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Supported Threading Models: Serialized
● Cray & Intel MPI implementations support serialized
● Use single pragma
#pragma omp parallel

{

  #pragma omp barrier

  #pragma omp single

  {

    MPI_Xyz(…);

  }

  //Don't need omp barrier

}
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Supported Threading Models: Multiple
● Intel MPI implementation supports multiple!

○ (Cray MPI can turn on multiple support with env variables, but 
performance is sub-optimal)

● No need for pragmas to protect MPI calls
● Constraints:

○ Ordering of MPI calls maintained within each thread but not 
across MPI process -- user is responsible for preventing race 
conditions

○ Blocking MPI calls block only the calling thread
● Multiple is rarely required; most algorithms can be written 

without it
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Which Threading Model Should I Use?

Depends on the application!
Model Advantages Disadvantages
Single Portable: every MPI 

implementation supports this
Limited flexibility

Funneled Simpler to program Manager thread could get 
overloaded

Serial Freedom to communicate Risk of too much 
cross-communication

Multiple Completely thread safe Limited availability; sub-optimal 
performance
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Designing Hybrid Algorithms

● Just because you can communicate thread-to-thread, 
doesn’t mean you should

● Tradeoff between lumping messages together and 
sending individual messages
○ Lumping messages together: one big message, one overhead
○ Sending individual messages: less wait time (?)

● Programmability: performance will be great, when you 
finally get it working!
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Example: Mesh Partitioning

● Regular mesh of finite elements
● When we partition mesh, need to communicate 

information about (domain) adjacent cells to 
(computationally) remote neighbors
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Example: Mesh Partitioning
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Example: Mesh Partitioning
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INTERLUDE 4: COMPUTING PI WITH 
HYBRID PROGRAMMING
“pi” by Travis Morgan from http://www.flickr.com/photos/morgantj/5575500301/sizes/l/in/photostream/

http://www.flickr.com/photos/morgantj/5575500301/sizes/l/in/photostream/
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Interlude 4: Computing π with Hybrid Programming
● Putting it all together:

○ How can we combine inter-node and intra-node parallelism to 
create a hybrid program that computes π using the method of 
darts?

○ What potential pitfalls do you see?
● Your assignment: create a code, darts-hybrid.c or 

darts-hybrid.f, developed from 
darts-collective.c/darts-collective.f and 
darts-omp.c/darts-omp.f, that uses OpenMP to 
exploit parallelism within the node, and MPI for parallelism 
between nodes
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APPENDIX 1: COMPUTING PI
“Pi” by Gregory Bastien, from 
http://www.flickr.com/photos/gregory_bastien/2741729411/sizes/z/in/photostream/

http://www.flickr.com/photos/gregory_bastien/2741729411/sizes/z/in/photostream/
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Computing 𝝅
● Method of Darts is a TERRIBLE way to compute 𝝅

○ Accuracy proportional to square root of number of darts
○ For one decimal point increase in accuracy, need 100 times more 

darts!
● Instead,

○ Look it up on the internet, e.g., 
http://www.geom.uiuc.edu/~huberty/math5337/groupe/digits.html

○ Compute using BBP (Bailey-Borwein-Plouffe) formula:

○ For less accurate computations, try your programming 
language’s constant, or quadrature or power series expansions

http://www.geom.uiuc.edu/~huberty/math5337/groupe/digits.html
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APPENDIX 2: ABOUT RANDOM NUMBER 
GENERATION
“Random Number Generator insides” by mercuryvapour, from 
http://www.flickr.com/photos/mercuryvapour/2743393057/sizes/l/in/photostream/

http://www.flickr.com/photos/mercuryvapour/2743393057/sizes/l/in/photostream/
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About Random Number Generation

● No such thing as random number generation – proper 
term is pseudorandom number generator (PRNG)

● Generate long sequence of numbers that seems 
“random”

● Properties of good PRNG:
○ Very long period
○ Uniformly distributed
○ Reproducible
○ Quick and easy to compute
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Pseudorandom Number Generator

Correlation of RANDU LCG (source: 
http://upload.wikimedia.org/wikipedia/common
s/3/38/Randu.png)

● Generator from 
lcgenerator.h is a Linear 
Congruential Generator (LCG)
○ Short period (= PMOD, 714025)
○ Not uniformly distributed – 

known to have correlations
○ Reproducible
○ Quick and easy to compute
○ Poor quality (don’t do this at 

home)

http://upload.wikimedia.org/wikipedia/commons/3/38/Randu.png
http://upload.wikimedia.org/wikipedia/commons/3/38/Randu.png
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Good PRNGs

● For serial codes
○ Mersenne twister
○ GSL (GNU Scientific Library), many generators available 

(including Mersenne twister) http://www.gnu.org/software/gsl/
○ Also available in Intel MKL

● For parallel codes
○ SPRNG, regarded as leading parallel pseudorandom number 

generator http://sprng.cs.fsu.edu/

http://www.gnu.org/software/gsl/
http://sprng.cs.fsu.edu/

