
Running Jobs on
Cori with SLURM

Helen He
NERSC User Engagement Group "
"
Cori Phase 1 Training
June 14, 2016

Cori Phase 1 - Cray XC40

•  4	GB	memory	/	core	for	
applica1ons	

•  /scratch	disk	quota	of	20	TB	

•  30	PB	of	/scratch	disk	

•  Choice	of	full	Linux	opera1ng	
system	or	op1mized	Linux	OS	
(Cray	Linux)	

•  Intel,	Cray,	and	GNU	compilers		

2	

•  52,160	cores,	1,630	nodes	

•  “Aries”	interconnect	

•  2	x	16-core	Intel	’Haswell'	
2.3	GHz	processors	per	node	

•  32	processor	cores	per	node,	
64	with	hyperthreading	

•  128	GB	of	memory	per	node		

•  203	TB	of	aggregate	memory	

Cori Phase 1 Compute Nodes

-	3	-	

•  Cori	Phase	1:	NERSC	Cray	XC40,	1,630	nodes,	52,160	cores	

•  Each	node	has	2	Intel	Xeon	16-core	Haswell	processors	

•  2	NUMA	domains	per	node,	16	cores	per	NUMA	domain.																	
2	hardware	threads	per	core.	

•  Memory	bandwidth	is	non-homogeneous	among	NUMA	domains	

To	obtain	processor	info:	
	

Get	on	a	compute	node:	

%	salloc	-N	1	

	

Then:	

%	cat	/proc/cpuinfo	

or	

%	hwloc-ls	

User Jobs at NERSC
•  Most	are	parallel	jobs	(10s	to	100,000+	cores)	

•  Also	a	number	of	“serial”	jobs	
–  Typically	“pleasantly	parallel”	simula1on	or	data	analysis	

•  ProducTon	runs	execute	in	batch	mode	

•  Our	batch	scheduler	is	SLURM	(naTve)	

•  Debug	jobs	are	supported	for	up	to	30	minutes	

•  Typically	run	Tmes	are	a	few	to	10s	of	hours		
–  Each	machine	has	different	limits	

–  Limits	are	necessary	because	of	MTBF	and	the	need	to	

accommodate	6,000	users’	jobs	

What is SLURM
•  In	simple	word,	SLURM	is	a	workload	manager,	or	a	

batch	scheduler	

•  SLURM	stands	for	Simple	Linux	UTlity	for	Resource	
Management	

•  SLURM	unites	the	cluster	resource	management	(such	
as	Torque)	and	job	scheduling	(such	as	Moab)	into	one	
system.		Avoids	inter-tool	complexity.	

•  SLURM	was	used	in	6	of	the	top	10	computers	(June	
2015	TOP	500	list),	including	the	#1	system,	Tianhe-2,	
with	over	3M	cores	

•  More	Cray	sites	adopt	SLURM:	NERSC,	CSCS,	KAUST,	
TACC,	etc.	

-	5	-	

Advantages of Using SLURM
•  Fully	open	source	
•  SLURM	is	extensible	(plugin	architecture)	
•  Low	latency	scheduling.	Highly	scalable	
•  Integrated	“serial”	or	“shared”	queue	
•  Integrated	Burst	Buffer	support		
•  Good	memory	management	
•  Built-in	accounTng	and	database	support	
•  “NaTve”	SLURM	runs	without	Cray	ALPS	(Applica1on	Level	

Placement	Scheduler)			

–  Batch	script	runs	on	the	head	compute	node	directly	

–  Easier	to	use.	Less	chance	for	conten1on	compared	to	shared	
MOM	node		

	

-	6	-	

Login Nodes and Compute Nodes
Each	machine	has	2	types	of	nodes	visible	to	users	

•  Login	nodes	(external)	
–  Edit	files,	compile	codes,	submit	batch	jobs,	etc.	

–  Run	short,	serial	u1li1es	and	applica1ons	
•  Compute	nodes	
–  Execute	your	applica1on	
–  Dedicated	resources	for	your	job	

7	

Submitting Batch Jobs

•  To	run	a	batch	job	on	the	compute	nodes	you	must	
write	a	“batch	script”	that	contains	

–  Direc1ves	to	allow	the	system	to	schedule	your	job	

–  An	srun	command	that	launches	your	parallel	executable		

•  Submit	the	job	to	the	queuing	system	with	the	
sbatch	command	

–  % sbatch my_batch_script!
	

8	

Interactive Parallel Jobs

•  You	can	run	small	parallel	jobs	interacTvely	for	up	
to	30	minutes	

login% salloc -N 2 -p debug -t 15:00
[wait for job to start]!
compute% srun –n 64 ./mycode.exe

9	

Launching Parallel Jobs with SLURM

10	

sbatch

Login	Node	 Head	Compute	Node		

Other	Compute	Nodes	
allocated	to	the	job	

Head	compute	node:	
•  Runs	commands	in	batch	script	

•  Issues	job	launcher	“srun”	to	start	parallel	

jobs	on	all	compute	nodes	(including	itself)	

Login	node:	
•  Submit	batch	jobs	via	sbatch	or	salloc	

•  Please	do	not	issue	“srun”	from	login	nodes	

•  Do	not	run	big	executables	on	login	nodes	

Sample Cori Batch Script - MPI

11	

#!/bin/bash -l !!
#SBATCH -p regular!
#SBATCH -N 40!
#SBATCH -t 1:00:00!
#SBATCH -n 1280!
#SBATCH -J myjob!
#SBATCH –L scratch!
!
export OMP_NUM_THREADS=1!
srun -n 1280 ./mycode.exe!

Sample Cori Batch Script - MPI

12	

#!/bin/bash -l !!
#SBATCH -p regular!
#SBATCH -N 40!
#SBATCH -t 1:00:00!
#SBATCH -n 1280!
#SBATCH -J myjob!
#SBATCH –L scratch!
!
export OMP_NUM_THREADS=1!
srun -n 1280 ./mycode.exe!

•  Need	to	specify	which	shell	to	use	for	batch	script	

•  Use	“-l”	as	login	shell	is	op1onal	

•  Environment	is	automa1cally	imported		

Sample Cori Batch Script - MPI

13	

#!/bin/bash -l !!
#SBATCH -p regular!
#SBATCH -N 40!
#SBATCH -t 1:00:00!
#SBATCH -n 1280!
#SBATCH -J myjob!
#SBATCH –L scratch!
!
export OMP_NUM_THREADS=1!
srun -n 1280 ./mycode.exe!

Job	direc1ves:	instruc1ons	for	the	batch	system		

•  Submission	par11on	(default	is	“debug”)	

•  How	many	compute	nodes	to	reserve	for	your	job	

•  How	long	to	reserve	those	nodes	

•  More	op1onal	SBATCH	keywords	

Sample Cori Batch Script - MPI

14	

#!/bin/bash -l !!
#SBATCH -p regular!
#SBATCH -N 40!
#SBATCH -t 1:00:00!
#SBATCH -n 1280!
#SBATCH -J myjob!
#SBATCH –L scratch!
!
export OMP_NUM_THREADS=1!
srun -n 1280 ./mycode.exe!

SBATCH	op1onal	keywords:		
•  How	many	instances	of	applica1ons	to	launch	(#	of	MPI	tasks)	

•  What	is	my	job	name	

•  What	file	system	licenses	are	used	

Sample Cori Batch Script - MPI

15	

#!/bin/bash -l !!
#SBATCH -p regular!
#SBATCH -N 40!
#SBATCH -t 1:00:00!
#SBATCH -n 1280!
#SBATCH -J myjob!
!
export OMP_NUM_THREADS=1!
srun -n 1280 ./mycode.exe!

•  By	default,	hyperthreading	is	on.	SLURM	sees	2	threads	are	available	for	

each	of	the	32	physical	CPUs	on	the	node	

•  No	need	to	set	this	if	your	applica1on	programming	model	is	pure	MPI.	

•  If	your	code	is	hybrid	MPI/OpenMP,	set	this	value	to	1	to	run	in	pure	

MPI	mode	

Sample Cori Batch Script - MPI

16	

#!/bin/bash -l !!
#SBATCH -p regular!
#SBATCH -N 40!
#SBATCH -t 1:00:00!
#SBATCH -n 1280!
#SBATCH -J myjob!
!
export OMP_NUM_THREADS=1!
srun -n 1280 ./mycode.exe!

“srun”	command	launches	parallel	executables	on	the	compute	nodes	

•  srun	flags	overwrite	SBATCH	keywords	

•  No	need	to	repeat	flags	in	srun	command	if	already	defined	in	

SBATCH	keywords.		(e.g.	“srun	./my_executable”	will	also	do	in	

above	example)	

Sample Cori Batch Script - MPI

17	

#!/bin/bash -l !!
#SBATCH -p regular!
#SBATCH -N 40!
#SBATCH -t 1:00:00!
#SBATCH -n 1280!
#SBATCH -J myjob!
!
export OMP_NUM_THREADS=1!
srun -n 1280 ./mycode.exe!

•  There	are	64	logical	CPUs	on	each	node	

•  With	40	nodes,	using	hyperthreading,	up	to	40*64=2,560	MPI	tasks	

can	be	launched:	“srun	-n	2560	./mycode.exe”	is	OK	

Sample Batch Script - Hybrid MPI/OpenMP

18	

#!/bin/bash -l !!
#SBATCH -p regular!
#SBATCH -N 40!
#SBATCH -t 1:00:00!
!
export OMP_NUM_THREADS=8!
srun -n 160 -c 8 ./mycode.exe!

•  srun	does	most	of	op1mal	process	and	thread	binding	automa1cally.	

Only	flags	such	as	“-n”	“-c”,	along	with	OMP_NUM_THREADS	are	

needed	for	most	applica1ons	

•  Hyperthreading	is	enabled	by	default.	Jobs	reques1ng	more	than	32	

cores	(MPI	tasks	*	OpenMP	threads)	per	node	will	use	hyperthreads	

automa1cally	

Long and Short Commands Options

-	19	-	

#!/bin/bash	-l	

	

#SBATCH	--par11on=regular				

#SBATCH	--job-name=test			

#SBATCH	--account=mpccc	

#SBATCH	--nodes=2	

#SBATCH	--1me=00:30:00	

#SBATCH	--license=scratch	

	

srun	-n	64	./mycode.exe	

#!/bin/bash	-l	

	

#SBATCH	-p	regular				

#SBATCH	-J	test			

#SBATCH	-A	mpccc	

#SBATCH	-N	2	

#SBATCH	-t	00:30:00	

#SBATCH	-L	scratch	

	

srun	-n	64	./mycode.exe	

Long	command	op1ons	 Short	command	op1ons	

Running Multiple Parallel Jobs Sequentially

-	20	-	

#!/bin/bash	-l	

	

#SBATCH	-p	regular	

#SBATCH	-N	4	

#SBATCH	-t	12:00:00	

#SBATCH	-L	project,cscratch1	

	

srun	-n	128	./a.out		

srun	-n	128	./b.out		

srun	-n	128	./c.out!

•  Need	to	request	max	number	of	nodes	needed	by	each	srun	

Running Multiple Parallel Jobs Simultaneously

-	21	-	

#!/bin/bash	-l	

	

#SBATCH	-p	regular	

#SBATCH	-N	8	

#SBATCH	-t	12:00:00	

#SBATCH	-L	cscratch1	

	

srun	-n	44	-N	2	./a.out	&	

srun	-n	108	-N	4	./b.out	&	

srun	-n	40	-N	2	./c.out	&	

wait!

•  Need	to	request	total	number	of	nodes	needed	by	all	sruns	

•  No1ce	the	“&”	and	“wait”	above	

•  It	is	best	if	each	srun	takes	roughly	same	amount	of	1me	to	

complete,	otherwise	waste	alloca1on	

Running MPMD Jobs

-	22	-	

#	Config	file:	

	

%	cat	mpmd.conf	

0-35	./a.out	

36-95	./b.out	

#	Batch	Script:	

	

#!/bin/bash	-l	

	

#SBATCH	-p	regular	

#SBATCH	-N	4				

#SBATCH	-n	96						#	total	of	96	tasks	

#SBATCH	-t	02:00:00	

#SBATCH	–L	SCRATCH	

	

srun	--mul1-prog	./mpmd.conf!

•  Two	executables	will	share	one	MPI_COMM_WORLD	

•  Request	total	number	of	nodes	needed	for	a.out	and	b.out	

Job Steps and Dependency jobs

•  Use	job	dependency	features	to	chain	jobs	that	
have	dependency	

-	23	-	

cori%	sbatch	job1	

Submised	batch	job	5547	

	

cori06%	sbatch	--dependency=aterok:5547	job2	

or	

cori06%	sbatch	--dependency=aterany:5547	job2	

!
!

cori06%	sbatch	job1	

submised	batch	job	5547	

	

cori06%	cat	job2	

#!/bin/bash	-l	

	

#SBATCH	-p	regular	

#SBATCH	-N	1	

#SBATCH	-t	00:30:00	

#SBATCH	-d	aterok:5547	

	

cd	$SLURM_SUBMIT_DIR	

srun	-n	32	./a.out	

	

cori06%	sbatch	job2!
!

“shared” Partition on Cori
•  Users	see	many	jobs	in	“shared”,	appears	to	use	1	node	per	

job	(displayed	with	the	queue	monitoring	scripts),	actually	
NOT.		

•  Serial	jobs	or	small	parallel	jobs	are	shared	on	these	nodes	

•  40	nodes	are	set	aside	for	the	“shared”	jobs	
•  “shared”	jobs	do	not	run	on	other	nodes	currently	(may	

change	in	the	future)	

•  High	submit	limits	(10,000)	and	run	limits	(1,000)		

•  Jobs	are	gedng	very	good	throughput	

•  “shared”	jobs	are	not	charged	by	enTre	node,	but	by	actual	
physical	cores	used	

-	24	-	

Running Serial Jobs
•  The	“shared”	parTTon	allows	mulTple	executables	from	

different	users	to	share	a	node	
•  Each	serial	job	run	on	a	single	core	of	a	“shared”	node	
•  Up	to	32	jobs	from	different	users	depending	on	their	memory	

requirements	

	

	

	

	

	

	

25	

#SBATCH -p shared!
#SBATCH -t 1:00:00!
#SBATCH --mem=4GB!
#SBATCH -J my_job!
./mycode.exe!

•  Small	parallel	job	that	use	less	than	a	full	node	can	also	run	in	
the	“shared”	parTTon	

	

	

	

	

	

	

•  Do	not	specify	#SBATCH	-N”	
•  Default	“#SBATCH	-n”	is	1	
•  Default	memory	is	1,952	MB	

•  Use	-n	or	--mem	to	request	

more	slots	for	larger	memory	

•  Do	not	use	“srun”	for	serial	
executable	(reduces	overhead)	

	

)	

“realtime” Partition

•  Special	permission	to	use	“realTme”	for	real-Tme	need	of	
data	intensive	workflows	

•  Highest	priority	for	“realTme”	jobs	so	they	start	almost	
immediately.		Could	be	disrupTve	to	overall	queue	
scheduling.	

•  “realTme”	jobs	can	run	in	“shared”	or	“exclusive”	mode	for	
node	usage	

•  Nodes	are	set	aside	for	the	“realTme”	jobs	(currently)	

•  “realTme”	jobs	can	run	on	other	nodes	

-	26	-	

Job Arrays
•  Use	Job	Arrays	for	submidng	and	managing	collecTons	of	

similar	jobs		
–  Beser	managing	jobs,	not	necessary	faster	turnaround	

–  Each	array	task	considered	a	single	job	for	scheduling,	submit/run	limits	

–  SLURM_ARRAY_JOB_ID	set	to	the	first	job	ID	of	the	array	

SLURM_ARRAY_TASK_ID	set	to	the	job	array	index	value	

	

-	27	-	

#	Submit	a	job	array	with	index	values	between	0	and	31	
%	sbatch	--array=0-31	-N	1	

#	Submit	a	job	array	with	index	values	of	1,	3,	5	and	7	
%	sbatch	--array=1,3,5,7	-N	1	-n2	

#	Submit	a	job	array	with	index	values	between	1	and	7,	with	a	step	size	of	2		
%	sbatch	--array=1-7:2	-N	1	-p	regular	

#	submit	a	job	array	with	index	values	between	1	and	7,	and	limit	max	running	jobs	to	2	
%	sbatch	--array=1:7%2	-N	1	-p	regular	

stderr/stdout
•  By	default,	while	your	job	is	running,	the	slurm-$SLURM-

JOBID.out	is	generated	and	contains	both	stderr	and	stdout	
•  stdout	is	buffered	in	segments	of	8KB	size		
•  stderr	is	not	buffered	
•  Can	rename	via	“#SBATCH	-o”	(for	stdout)	and	“#SBATCH	-

e”	(for	stderr)	flags	
•  Can	also	redirect	from	srun	commands	

–  srun	-n	48	./a.out	>&	my_output_file															(for	csh/tcsh)	

–  Srun	–n	48	./a.out	>	my_output_file	2>&1						(for	bash)			

•  srun	“-u”	opTon	disables	stdout	buffer		
–  Not	recommended	to	use	as	default	since	it	slows	down	applica1on	

significantly	

–  However	this	help	debugging	to	get	complete	output	before	job	
termina1on	

-	28	-	

Cluster Compatibility Mode (CCM) Applications

•  Certain	3rd	part	applicaTon	need	ssh	to	other	compute	
nodes	from	the	head	compute	node	

•  The	CCM	mode	allows	3rd	party	applicaTons	to	run	on	the	
compute	nodes	without	rebuild	

•  The	“#SBATCH	--ccm”	opTon	will	setup	the	necessary	
environment	to	support	CCM	applicaTons	

•  No	separate	CCM	queue,	CCM	jobs	can	run	in	any	queue	
now	

•  Since	sbatch	or	salloc	lands	on	a	compute	node,	applicaTons	
such	as	“matlab”	can	be	launched	directly	without	CCM	
support	

	

	 -	29	-	

Running Jobs Built with Intel MPI

-	30	-	

#!/bin/bash	-l	

	

#SBATCH	-p	regular							

#SBATCH	-N	8			

#SBATCH	-t	03:00:00	

#SBATCH	-L	project.SCRATCH			

	

module	load	impi					
mpiicc	-openmp	-o	mycode.exe	mycode.c	

	

export	OMP_NUM_THREADS=8	

export	I_MPI_PMI_LIBRARY=/opt/slurm/default/lib/pmi/libpmi.so	
srun	-n	32	-c	8	./mycode.exe	

Which File Systems to Use
•  Do	not	run	from	$HOME	

–  Meant	for	permanent	space	for	many	small	files	(source,	small	
input,	etc).		

–  Performance	not	op1mized	for	large	IO	

–  Running	large	IO	jobs	from	$HOME	can	cause	delayed	
interac1ve	response	1me	for	other	users		

•  Use	$SCRATCH	(Lustre	file	system)	or	project	directory	
to	run	your	jobs,	for	bemer	IO	performance	and	larger	
space	quota	
–  $SCRATCH:	default	20	TB	quota,	10M	inodes.		Files	not	accessed	
for	12	weeks	are	subject	to	be	purged.	Back	up	important	files.	

–  /global/project/projectdirs/your_repo:	default	4	TB	quota,	1M	

inodes.	Not	purged.	

-	31	-	

File System Licenses

•  Use	“#SBATCH	-L”	or	“#SBATCH	--license=“	to	specify	file	
systems	needed	

•  Jobs	that	use	file	system	licenses	will	not	start	if	there	is	an	
issue	with	that	parTcular	file	system		
–  Protects	jobs	from	failing	with	file	system	issues	

–  Allows	selec1ve	maintenance	on	file	systems	

•  Example:	#SBATCH	-L	scratch1,project	

•  “SCRATCH”	can	be	used	as	short	hand	for	your	default	
scratch	file	system	on	Edison	or	Cori	

•  Currently	opTonal,	but	strongly	encouraged	
•  May	be	enforced	in	the	near	future	

-	32	-	

More SBATCH Options

•  Which	QOS	to	use:	normal	(default),	premium,	low	

–  #SBATCH	--qos=premium	

•  What’s	my	stdout	file	name	

–  #SBATCH	-o	my_stdout_name	
•  Which	account	to	charge	

–  #SBATCH	-A	my_repo	
•  When	to	send	email	

–  #SBATCH	--mail-type=BEGIN,END,FAIL		

•  …	

-	33	-	

1-node “Long” Jobs Up to 96 hrs

•  Run	in	“regular”	parTTon,	no	“premium”	or	“low”	QOS	
priority	

•  %	salloc	-N	1	-p	regular	-t	96:00:00	-L	SCRATCH	
•  Can	only	use	a	single	node	
•  A	user	can	have	up	to	4	long	jobs	running	simultaneously	

•  A	user	can	submit	a	maximum	of	10	long	jobs	at	a	Tme	

•  A	maximum	of	10	nodes	can	be	occupied	by	long	jobs	from	
all	users	

•  Be	aware	of	jobs	won’t	start	if	Tme	let	before	a	system	
maintenance	is	less	than	96	hrs	

-	34	-	

Recap: Running Jobs with SLURM
•  Use	“sbatch”	to	submit	batch	script	or	“salloc”	to	request	

interacTve	batch	session.	

•  Use	“srun”	to	launch	parallel	jobs	
•  Most	SLURM	command	opTons	have	two	formats	(long	

and	short)	

•  Need	to	specify	which	shell	to	use	for	batch	script.	
•  Environment	is	automaTcally	imported	

•  Lands	in	the	submit	directory	

•  Batch	script	runs	on	the	head	compute	node	

•  No	need	to	repeat	flags	in	the	srun	command	if	already	
defined	in	SBATCH	keywords.		

•  srun	flags	overwrite	SBATCH	keywords	

-	35	-	

Some SLURM Gotchas
•  Hyperthreading	is	enabled	by	default.		

–  SLURM	sees	64	CPUs	per	node	(each	Cori	node	has	32	physical	cores,	

total	of	64	logical	cores	per	node.)	

–  srun	will	decide	whether	to	use	logical	cores.	(see	last	bullet)	
•  Need	to	set	OMP_NUM_THREADS=1	explicitly	to	run	in	pure	

MPI	mode	(with	hybrid	MPI/OpenMP	applicaTons	built	with	
OpenMP	compiler	flag	enabled)		

•  Always	use	“#SBATCH	-N”	to	request	number	of	nodes.	If	
asking	nodes	with	“#SBATCH	-n”	only	(for	num_MPI_tasks),	
you	may	get	half	the	#nodes	desired.	

•  AutomaTc	process	and	thread	affinity	is	good.	Hyperthreading	
will	not	be	used	if	num_MPI_tasks	*	
num_OpenMP_threads_per_node	is	<=	32.		Can	explore	with	
advanced	sedngs	for	more	complicated	binding	opTons.	

-	36	-	

Two SLURM Schedulers are in Work
•  Instant	Scheduler	(event	triggered)	

–  Performs	a	quick	and	simple	scheduling	asempt	at	events	
such	as	job	submission	or	comple1on	and	configura1on	
changes.	

•  Backfill	Scheduler	(at	set	intervals)	
–  Considers	pending	jobs	in	priority	order,	determining	when	

and	where	each	will	start,	taking	into	considera1on	the	
possibility	of	job	preemp1on,	gang	scheduling,	generic	
resource	(GRES)	requirements,	memory	requirements,	etc.		

–  If	the	job	under	considera1on	can	start	immediately	without	
impac1ng	the	expected	start	1me	of	any	higher	priority	job,	
then	it	does	so.		

-	37	-	

SLURM User Commands
•  sbatch:	submit	a	batch	script	

•  salloc:	request	nodes	for	an	interac1ve	batch	session	

•  srun:	launch	parallel	jobs	

•  scancel:	delete	a	batch	job	

•  sqs:	NERSC	custom	queue	display	with	job	priority	ranking	info	

•  squeue:	display	info	about	jobs	in	the	queue	

•  sinfo:	view	SLURM	configura1on	about	nodes	and	par11ons	

•  scontrol:	view	and	modify	SLURM	configura1on	and	job	state		

•  sacct:	display	accoun1ng	data	for	jobs	and	job	steps	

•  hsps://www.nersc.gov/users/computa1onal-systems/cori/

running-jobs/monitoring-jobs/	

-	38	-	

sqs: NERSC Custom Queue Monitoring Script

•  Provides	two	columns	of	ranking	values	to	give	users	more	
perspecTve	of	their	jobs	in	queue.	
–  Column	RANK_BF	shows	the	ranking	using	the	best	es1mated	start	

1me	(if	available)	at	a	backfill	scheduling	cycle,	so	the	ranking	is	

dynamic	and	changes	frequently	along	with	the	changes	in	the	

queued	jobs.	

–  Column	RANK_P	shows	the	ranking	with	absolute	priority	value,	

which	is	a	func1on	of	par11on	QOS,	job	wait	1me,	and	fair	share.	

Jobs	with	higher	priority	won't	necessarily	run	earlier	due	to	various	

run	limits,	total	node	limits,	and	backfill	depth	we	have	set.		

	

-	39	-	

sqs Example Commands
%	sqs											(show	user’s	own	jobs)	

%	sqs	-a							(shows	all	jobs)	

%	sqs	-a	-p	debug					(shows	only	debug	jobs)	

%	sqs	-a	-nr	-np	shared			(no	running	jobs,	no	shared	jobs)	

%	sqs	-w						(shows	all	my	jobs	in	wide	format	with	more	info)	

%	sqs	-s							(short	summary	of	queued	jobs)	

	

See	man	page	or	use	“sqs	--help”	for	more	opTons.	

	

	

	

	
-	40	-	

squeue Example Commands

-	41	-	

%	squeue	-u	<username>	

%	squeue	-j	<jobid>	--start	

%	squeue	-o	"%.18i	%.3t	%.10r	%.10u	%.12j	%.8D	%.10M	%.10l	
%.20V	%.12P	%.20S	%.15Q”	
JOBID		ST					REASON							USER									NAME				NODES							TIME	TIME_LIMIT										

SUBMIT_TIME				PARTITION											START_TIME			PRIORITY	

	
See	man	page	or	“squeue	--help”	for	more	opTons.	

	

sinfo Example Commands

-	42	-	

%	sinfo	-s	
PARTITION	AVAIL		TIMELIMIT			NODES(A/I/O/T)		NODELIST	

debug*							up						30:00		5357/154/8/5519		nid[00008-00063,00072-00127,…]	

regular						up	4-00:00:00		5110/147/6/5263		nid[00296-00323,00328-00383,…]	

regularx					up	2-00:00:00		5357/154/8/5519		nid[00008-00063,00072-00127,…]	

real1me					up			12:00:00		5420/158/8/5586		nid[00008-00063,00072-00127,…]	

shared							up	2-00:00:00								55/0/0/55		nid[06089-06143]	

	

%	sinfo	-p	debug	
PARTITION	AVAIL	JOB_SIZE		TIMELIMIT			CPUS		S:C:T			NODES	STATE						NODELIST	

debug*				up				1-infini						30:00					48	2:12:2							6	down*						nid[01343,02062,02137,03132,03150,03307]	

debug*				up				1-infini						30:00					48	2:12:2							2	drained				nid[00008-00009]	

debug*				up				1-infini						30:00					48	2:12:2							2	reserved			nid[00010-00011]	

debug*				up				1-infini						30:00					48	2:12:2							2	mixed						nid[00077,00090]	

debug*				up				1-infini						30:00					48	2:12:2				5349	allocated		nid[00012-00063,00072-00076,	--]	

debug*				up				1-infini						30:00					48	2:12:2					158	idle							nid[00083-00086,00091-00094,	…]	

	

See	man	page	or	“sinfo	--help”	for	more	op1ons.	

scontrol Example commands

%	scontrol	show	parTTon	<parTTon>	

%	scontrol	show	job	<jobid>	

%	scontrol	hold	<jobid>		

%	scontrol	release	<jobid>		

%	scontrol	update	job	<jobid>	Tmelimit=	24:00:00		

%	scontrol	update	job	<jobid>	qos=premium	

	

See	man	page	or	“scontrol	--help”	for	more	opTons.	

	

	

-	43	-	

 !

sacct Example Commands

-	44	-	

%	sacct	-u	<username>	--stardme=01/12/16T00:01	--
endTme=01/15/16T12:00	-o	jobid,elapsed,nnodes,start,end,submit	

%	sacct		-a	--stardme=01/12/16T00:01	--endTme=01/15/16T12:00		-o	
User,JobID,NNodes,State,Start,End,TimeLimit,Elapsed,ExitCode,DerivedExit
code,Comment	

%	sacct	-u	<username>	-j	<jobid>	-o	jobid,elapsed,nnodes,nodelist	

	

See	man	page	or	“sacct	--help”	for	more	opTons.!

Edison Queue Policy (as of 06/10/2016)

-	45	-	

Specify	these	par11ons	with		
#SBATCH -q partition_name	

Specify	these	QOS	with		
#SBATCH --qos=premium	

These	limits	are	per	user	

per	par11on/QOS	limits	

Jobs	with	insufficient	

alloca1ons	to	run	are	

directed	to	“scanvenger”	

Cori Queue Policy (as of 06/10/2016)

-	46	-	

Large	user	limits	

serial	workload	
real1me	workflow		

Cori Phase 1 Data Features Implemented in
SLURM

•  Cori	Phase	1	also	known	as	the	"Cori	Data	ParTTon”	

•  Designed	to	accelerate	data-intensive	applicaTons,	with	high	
throughput	and	“real	Tme”	need.	
–  "shared”	par11on.	Mul1ple	jobs	on	the	same	node.		Larger	submit	and	

run	limits.	40	nodes	set	aside	

–  The	1-2	node	bin	in	the	"regular"	for	high	throughput	jobs.		Large	submit	
and	run	limits.	

–  “real1me”	par11on	for	jobs	requiring	real	1me	data	analysis.		Highest	
queue	priority.		Special	permission	only.	

–  Internal	sshd	(CCM	mode)	in	any	queue		

–  Large	number	of	login/interac1ve	nodes	to	support	applica1ons	with	
advanced	workflows	

–  “burst	buffer”	usage	integrated	in	SLURM,	in	early	user	period.	

–  Encourage	users	to	run	jobs	using	683+	nodes	on	Edison	with	queue	
priority	boost	and	40%	charging	discount	there.	

-	47	-	

Charge Factors & Discounts

•  Each	machine	has	a	“machine	charge	factor”	(MCF)	that	
mulTplies	the	“raw	hours”	used	
–  Edison	MCF	=	2.0	

–  Cori	MCF	=	2.5	

•  Each	QOS	has	a	“QOS	charge	factor”	(QCF)		
–  premium	QCF	=	2.0	

–  normal	QCF	=	1.0	(default)	

–  low	QCF	=	0.5	
–  scavenger	QCF	=	0	

•  On	Edison:	
–  Jobs	reques1ng	683	or	more	nodes	get	a	40%	discount	

48	

How Your Jobs Are Charged
•  Your	repository	is	charged	for	each	node	your	job	was	

allocated	for	the	enTre	duraTon	of	your	job.	
–  The	minimum	allocatable	unit	is	a	node	(except	for	the	“shared”	
parGGon	on	Cori).	Edison	have	24	cores/node	and	Cori	has	32	
cores/node.	

	

–  Example:		4	Cori	nodes	for	1	hour	with	“premium”	QOS	
MPP	hours	=	(4)	*	(32)	*	(1	hour)	*	(2)	*	(2.5)	=	640	MPP	hours	

–  “shared”	jobs	are	charged	with	physical	CPUs	used	instead	of	
en1re	node.	

•  If	you	have	access	to	mulTple	repos,	pick	which	one	to	
charge	in	your	batch	script	
#SBATCH –A repo_name

MPP	hours	=	(#	nodes)	*	(#	cores	/	node)	*	(wall1me	used)	*	(QCF)	*	(MCF)	

I submitted my job, but it is not running!
•  That’s	what	the	batch	queue	is	for!	

•  Your	jobs	will	wait	unTl	the	resources	are	available	for	
them	to	run		

•  Your	job’s	place	in	the	queue	is	a	mix	of	Tme	and	priority,	
so	line	jumping	is	allowed,	but	it	may	cost	more		

-	50	-	

Cori Backlog Over Time

-	51	-	

•  Current	backlog	is	~8	days	
•  Plot	obtained	from	MyNERSC			

Average Queue Wait Time

•  Historic	data	can	be	obtained	from
hmps://www.nersc.gov/users/queues/queue-wait-Tmes/	

•  D	

-	52	-	

53	

Tips for Getting Better Throughput
•  Line	jumping	is	allowed,	but	it	may	cost	more	
•  Submit	shorter	jobs,	they	are	easier	to	schedule	

–  Checkpoint	if	possible	to	break	up	long	jobs	
–  Short	jobs	can	take	advantage	of	‘backfill’	opportuni1es	
–  Run	short	jobs	just	before	maintenance	

•  Very	important:	make	sure	the	wall	clock	Tme	you	request	is	
accurate	
–  As	noted	above,	shorter	jobs	are	easier	to	schedule	
–  Many	users	unnecessarily	enter	the	largest	wall	clock	1me	possible	as	a	

default	

•  Bundle	jobs	(mulTple	“srun”s	in	one	script,	sequenTal	or	
simultaneously)	

•  Use	“shared”	parTTon	for	serial	jobs	or	very	small	parallel	jobs.	
•  Queue	wait	Tme	staTsTcs	

–  hsps://www.nersc.gov/users/queues/queue-wait-1mes/	

	

Places and Tools to Check Job Status

•  Completed	jobs	web	page:	
–  hsps://www.nersc.gov/users/job-logs-sta1s1cs/completed-jobs/	

•  MyNERSC	Queues	display	
–  hsps://my.nersc.gov/queues.php?machine=cori&full_name=Cori	

•  Queue	Wait	Times	
–  hsp://www.nersc.gov/users/queues/queue-wait-1mes/	

•  Scripts	described	on	Queue	Monitoring	Page		
–  sqs,	squeue,	sstat,	sprio,	etc.	
–  hsps://www.nersc.gov/users/computa1onal-systems/cori/

running-jobs/monitoring-jobs/	

-	54	-	

Not Covered in Details Here
•  Taskfarmer	

–  Manage	single-core	(“serial”)	or	mul1-core	jobs	

•  Using	“realTme”	parTTon	
•  “xfer”	jobs	

–  Transfer	data	between	Cori	to	archive	
–  Run	on	external	login	nodes	

•  Burst	Buffer	
–  Non-vola1le	storage	sits	between	memory	and	file	system	

–  Accelerate	IO	performance	

•  Shiter	
–  Run	jobs	in	custom	environment	

•  Advanced	workflow	
•  Please	refer	to	Cori	running	jobs	web	page	

–  hsp://www.nersc.gov/users/computa1onal-systems/cori/running-jobs/	

	

-	55	-	

Demo and Hands on will be on Edison

•  Cori	is	currently	down	due	to	OS	upgrade	to	prepare	for	
Phase	2	KNL	support	

•  Edison	is	also	a	Cray	system	with	Intel	Ivybridge	processors.	

•  Edison	has	24	cores	per	node	as	compared	to	32	cores	per	
node	on	Cori.	

•  Each	Edison	node	has	64	GB	of	memory,	as	compared	to	128	
GB	of	memory	for	each	Cori	node.	

•  To	do	SLURM	exercises	
–  %	module	load	training	

–  %	cp	-r	$EXAMPLES/CoriP1/SLURM	.						(no1ce	the	“dot”	at	the	end)	

	

-	56	-	

Edison - Cray XC30

•  2.7	GB	memory	/	core	for	
applica1ons	

•  /scratch	disk	quota	of	10	TB	

•  7.6	PB	of	/scratch	disk	

•  Choice	of	full	Linux	opera1ng	
system	or	op1mized	Linux	OS	
(Cray	Linux)	

•  Intel,	Cray,	and	GNU	compilers		

57	

•  133,824	cores,	5,576	nodes	

•  “Aries”	interconnect	

•  2	x	12-core	Intel	’Ivy	Bridge'	
2.4	GHz	processors	per	node	

•  24	processor	cores	per	node,	
48	with	hyperthreading	

•  64	GB	of	memory	per	node		

•  357	TB	of	aggregate	memory	

Edison Compute Nodes

-	58	-	

•  Edison:	NERSC	Cray	XC30,	5,576	nodes,	133,824	cores.	

•  2	NUMA	domains	per	node,	12	cores	per	NUMA	domain.																	
2	hardware	threads	per	core.	

•  Memory	bandwidth	is	non-homogeneous	among	NUMA	domains.	

More Information

•  NERSC	web	pages	
–  hsp://www.nersc.gov/users/computa1onal-systems/cori/running-jobs/	

–  hsp://www.nersc.gov/users/computa1onal-systems/edison/running-jobs/	

•  SchedMD	
–  hsp://www.schedmd.com/	

–  Man	pages	for	SLURM	commands	

	
•  Contact	NERSC	ConsulTng	

–  Toll-free	800-666-3772		
–  510-486-8611,	op1on	#3	
–  Email	consult@nersc.gov	

	
59	

Thank You

