
Cori and Edison Queues


-	1	-	

Helen He

NUG Meeting, 1/21/2016






Goals for Cori and Edison

•  Where	to	run	what	type	of	jobs	a2er	Carver	and	Hopper	re7red?	
•  The	Cori	Phase	1	(also	known	as	the	"Cori	Data	Par77on")	system	is	

designed	to	accelerate	data-intensive	applica7ons,	with	high	throughput	
and	“real	7me”	need.	
–  "shared”	par--on.	Mul-ple	jobs	on	the	same	node.		Larger	submit	and	run	limits.	
–  The	1-2	node	bin	in	the	"regular"	par--on	(mimics	“thruput”	queue	on	Hopper).		

Large	submit	and	run	limits.	
–  “real-me”	par--on.	Highest	queue	priority.		Special	permission	only.	
–  “burst	buffer”	capability,	in	early	user	period.	
–  Max	wall-me	limit	for	Cori	increased	to	48	hrs	(from	24	hrs)	yesterday	

•  Edison’s	purpose	is	the	support	of	large	jobs	
–  Edison	is	the	largest	NERSC	system.		
–  Larger	jobs	are	boosted	for	queue	priority.	
–  Jobs	use	683+	nodes	on	Edison	get	40%	charging	discount.		
–  Edison	queue	structure	is	largely	simplified.	

•  These	goals	have	been	communicated	with	users	in	weekly	newsleMer	
and	published	on	NERSC	web	site.	

-	2	-	



Cori Queues 


-	3	-	



Edison Queues


-	4	-	



SLURM on Cori and Edison


•  This	presenta7on	will	focus	more	on	Cori.	
•  Users	have	been	on	Cori	with	SLURM	longer	

–  Cori:	all	users	from	11/12/2015	
–  Edison:	all	users	from	01/04/2016	
–  More	experience	tuning	SLURM	configura-ons	on	Cori	

•  Cori	has	more	complicated	queue	structures	
–  Exci-ng	new	features	complicates	scheduling	

•  Edison	and	Cori	share	similar	SLURM	configura7ons.	
•  Lessons	learned	from	Cori	are	applied	to	Edison,	and	

vice	versa.	

-	5	-	



SLURM Configuration is Ongoing

•  Before	AY16	starts	on	Jan	12,	we	mostly	focused	on	

installing	Cori,	moving	Edison,	and	performing	ini7al	
deployments	of	SLURM.	

•  A2er	the	move	and	alloca7on	year	policy	changes	are	in,	
we've	focused	a	lot	on	detailed	queue	turn-around,	
u7liza7on	and	scheduling	of	workload	in	an	efficient	
manner.	
–  Extremely	successful	in	fixing	the	issues	that	were	present	in	the	ini-al	

configura-ons	
•  We	will	be	tuning	towards	more	user	facing	issues,	such	as	

reliable	rankings	of	the	queue,	end-of-job	processing,	and	
enabling	new	features	to	allow	users	to	con7nue	running	
once	their	repo	has	been	exhausted.	

•  User	feedback	and	comments	are	always	welcome	

-	6	-	



“shared” Partition on Cori

•  Users	see	many	jobs	in	“shared”,	appears	to	use	1	node	per	

job	(displayed	with	the	queue	monitoring	scripts),	actually	
NOT.		

•  Serial	jobs	or	small	parallel	jobs	are	shared	on	these	nodes.		
•  40	nodes	are	set	aside	for	the	“shared”	jobs.	
•  “shared”	jobs	do	not	run	on	other	nodes	currently	(may	

change	in	the	future).		
•  High	submit	limits	(2500)	and	run	limits	(500).		
•  Jobs	are	gedng	very	good	throughput.	
•  “shared”	jobs	are	not	charged	by	en7re	node,	but	by	actual	

physical	cores	used.	

-	7	-	



“realtime” Partition on Cori


•  Special	permission	to	use	“real7me”	for	real-7me	need	of	
data	intensive	workflows.	

•  Highest	priority	for	“real7me”	jobs	so	they	start	almost	
immediately.		Could	be	disrup7ve	to	overall	queue	
scheduling.	

•  “real7me”	jobs	can	run	in	“shared”	or	“exclusive”	mode	for	
node	usage.		

•  8	nodes	are	set	aside	for	the	“real7me”	jobs	(currently)	
•  “real7me”	jobs	can	run	on	other	nodes.	

-	8	-	



Two SLURM Schedulers are in Work


•  Instant	Scheduler	(event	triggered)	
–  Performs	a	quick	and	simple	scheduling	a^empt	at	events	
such	as	job	submission	or	comple-on	and	configura-on	
changes.	

•  Backfill	Scheduler	(at	set	intervals)	
–  Considers	pending	jobs	in	priority	order,	determining	when	
and	where	each	will	start,	taking	into	considera-on	the	
possibility	of	job	preemp-on,	gang	scheduling,	generic	
resource	(GRES)	requirements,	memory	requirements,	etc.		

–  If	the	job	under	considera-on	can	start	immediately	without	
impac-ng	the	expected	start	-me	of	any	higher	priority	job,	
then	it	does	so.		

-	9	-	



SLURM Limits and Priority Tunings

•  No	separate	queues	for	“premium”,	“low”,	etc.	These	are	now	

available	via	QOS	sedngs	in	“regular”	par77on.		
•  No	“idle”	limits	concept.			

–  All	jobs	in	the	queue	are	eligible,	except		
•  User	held	jobs,	priority	value	is	0.		

–  Dependency	jobs,	priority	value	is	not	0,	but	do	not	age	
•  Limits	and	policies	enforced	to	ensure	fairness	

–  Max	submit	limit	
–  Max	run	limit	
–  Total	nodes	number	nodes	per	par--on/QOS	
–  Backfill	interval	
–  Max	backfill	per	user	(users	submihng	many	jobs	won’t	have	advantage)	
–  Max	backfill	per	par--on	
–  Max	total	remaining	wall-me*nodes	from	all	running	jobs	(used	previously)	
–  Fairshare	policy	(based	on	remaining	alloca-on	and	usage	before	AY16,	

based	on	recent	usage	and	much	lower	weight	now)	
	

-	10	-	



Shorter Queues After Charging Began


•  Many	more	jobs	were	submiMed	during	free	7me.		
–  Backlogs	are	large	

•  Charging	began	at	AY16	start	
–  jobs	with	no	ac-ve	repo	were	cancelled	
–  Users	cancelled	own	jobs	that	would	not	like	to	be	charged	
–  Job	submission	limits	were	decreased	

•  User	educa7on	
–  communicated	with	individual	users	to	use	the	“shared”	par--on,	job	

arrays,	and	bundling	jobs.	

	

-	11	-	



Job Wait Time Improves Significantly on Cori

•  Users	complained	about	VERY	LONG	wait	7me	for	jobs	
•  Changes	were	made	from	Jan	15		

–  Added	max	number	of	backfill	jobs	per	par--on	(on	top	of	max	number	
of	backfill	jobs	per	user)	significantly	improved	the	backlog	for	debug	
jobs.	

–  It	allows	lower	priority	debug	jobs	to	run	ahead	of	regular	jobs	that	
have	higher	absolute	value	of	priority.			

–  Decreased	max	size	of	debug	from	128	to	112.		
•  Most	debug	jobs	now	start	within	30	min,	many	much	

shorter!	
•  The	regular	jobs	wait	7me	are	significantly	smaller	too	

–  Addi-onal	tuning:		
•  Increased	max	backfill	interval	from	30	to	150	sec	
•  Tuned	max	backfill	jobs	per	user,	and	max	backfill	per	par--on	

–  Users	delete	more	jobs	submi^ed	during	free	-me	
•  Backlog	on	Cori	is	now	only	~4	days	

-	12	-	



Backlogs on Cori

•  Current	backlog	is	4	days.	
•  Huge	submissions	from	2	users	increased	backlogs	significantly.		

–  One	user	submit	many	512	nodes	jobs,	each	24	hrs.	increased	backlog	from	40	to	
92	days	

–  Another	user	submi^ed	a	1000-task	large	array	job,	with	1	hr	wall	-me	limit,	later	
increased	to	12	hrs	-me	limit,	increased	backlog	from	33	to	83	to	644	days.		

–  Although	backlogs	caused	from	such	submissions	are	shown	high,	they	won’t	
affect	scheduling	for	other	users	jobs	significantly,	since	the	limits	we	have	set	
will	basically	cause	most	of	these	jobs	not	being	considered	for	scheduling.		

	
	

	
	

-	13	-	



Average Wait Time for Debug Jobs on Cori


-	14	-	

1/12/16	–	1/15/16	 1/16/16-1/20/16	11/30/15-1/11/16	



Current Debug Jobs on Cori 


-	15	-	



Average Wait Time for Regular Jobs on Cori (1) 


-	16	-	

11/30/15	–	1/11/16,	Edison	move	started	on	11/30/15,	Hopper	re-red	on	12/15/15	



Average Wait Time for Regular Jobs on Cori (2) 


-	17	-	

Dec	16	–	Jan	11	

1/12/16	–	1/15/16,	AY16	started	on	1/12/16	



Average Wait Time for Regular Jobs on Cori (3)


-	18	-	

Jan	16-20,	2016,	aoer	changes	made	on	Jan	15	

Dec	16	–	Jan	11	



New “sqs” with 2 Columns of Priority Ranking

•  A	new	version	of	“sqs”	(a	NERSC	custom	queue	monitoring	script)	deployed	on	

Jan	19.		Original	“sqs”	has	one	column	for	ranking	based	on	start	7me	provided	
by	the	backfill	scheduler.	

•  “sqs”	in	default,	only	shows	user’s	own	jobs	
•  “sqs	-a”	shows	all	jobs	
•  Other	sample	op7ons:	

–  “sqs	-a	-p	debug”	(show	only	debug	jobs)	
–  “sqs	-a	-nr	-np	shared”	(no	running	jobs,	no	shared	jobs)	
–  “sqs	-w”	(show	all	my	jobs	in	wide	format	with	more	info)	
–  “sqs	–s”	(short	summary	of	queued	jobs)	

•  This	version	provides	two	columns	of	ranking	values	to	give	users	more	
perspec7ve	of	their	jobs	in	queue.	
–  Column	RANK_P	shows	the	ranking	with	absolute	priority	value,	which	is	a	func-on	of	

par--on	QOS,	job	wait	-me,	and	fair	share.	Jobs	with	higher	priority	won't	necessarily	run	
earlier	due	to	various	run	limits,	total	node	limits,	and	backfill	depth	we	have	set.		

–  Column	RANK_BF	shows	the	ranking	using	the	best	es-mated	start	-me	(if	available)	at	a	
backfill	scheduling	cycle	(every	150	sec	now),	so	the	ranking	is	dynamic	and	changes	
frequently	along	with	the	changes	in	the	queued	jobs.	

–  The	first	few	jobs	with	reason	being	“Resources”	are	ranked	by	priority	value,	hence	they	
match	in	RANK_P	and	RANK_BF	columns.	

-	19	-	



Sample “sqs” Output


-	20	-	

%	sqs	-a	-nr	|more	



Places and Tools to Check Job Status


•  Completed	jobs	web	page:	
–  h^ps://www.nersc.gov/users/job-logs-sta-s-cs/completed-jobs/	

•  MyNERSC	Queues	display	
–  h^ps://my.nersc.gov/queues.php?machine=cori&full_name=Cori	

•  Queue	Wait	Times	
–  h^p://www.nersc.gov/users/queues/queue-wait--mes/	

•  Scripts	described	on	Queue	Monitoring	Page	(sqs,	squeue,	
sstat,	sprio,	etc.)	
–  h^ps://www.nersc.gov/users/computa-onal-systems/cori/
running-jobs/monitoring-jobs/	

-	21	-	



A Few Tips to Get Faster Job Turnaround


•  Request	shorter	wall	7me	if	you	can,	do	not	use	
allowed	max	wall	7me.	

•  Use	“shared”	par77on	for	serial	jobs	or	very	small	
parallel	jobs.	

•  Bundle	jobs	(mul7ple	“sruns”	in	one	script,	
sequen7al	or	simultaneously)	

•  Use	Job	Arrays	(beMer	managing	jobs,	not	necessary	
faster	turnaround.		Each	array	task	is	considered	a	
single	job	for	scheduling.	

	

-	22	-	


