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Computing for Genomics 

•  The DOE Joint Genome Institute 
– Who we are, what we do, and why 

•  Two computational problems in 
genomics 
– “Assembling” genomes from “shotgun” 

sequence 
– “Annotating” “metagenomic” data  
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DOE JGI- A Genomics User Facility 

•  In 1997, as part of the ramp-up for the 
human genome project, the DOE 
Office of Biological and 
Environmental Research created a 
virtual “Joint” Genome Institute 

•  DOE relevance: baseline for study of 
DNA damage from radiation.  

•  Goal: sequence 3 of the 23 human 
chromosomes (~11% of genome). 

•  “Joint” = LBNL, LLNL, LANL; in 1999 
efforts were centralized at one 
location in Walnut Creek, CA 



By 2003, the “mission” was completed! 

2/10/14 4 



DOE JGI- A Genomics User Facility 

•  In the meantime: sequencing had become 
more efficient and cost-effective. 

•  And genomic information was becoming 
more and more central to studying all 
biological systems. 

 •  As a continuation of the 
human genome project 
over a dozen animal 
genomes were 
sequenced by JGI for 
comparative purposes. 



DOE JGI- A Genomics User Facility 

•  In 2004, JGI became a DOE User Facility for 
Large Scale Genomics to Enable Bioenergy 
and Environmental  Research  

•  Not “just” sequencing: 
Ø New technologies & strategies 
Ø Novel computational methods and pipelines 
Ø Access to JGI scientific staff 
Ø DNA synthesis 
Ø Building user communities 

•  Over 1,200 users … 
•  In 2010, established partnership with NERSC 

to manage JGI computing infrastructure and 
collaborate on common scientific interests 



FIRST 
TREE 
GENOME 

SECOND 
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GENOME” 
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FUNGUS 
GENOME 



Sequencing capacity is outstripping 
Moore’s Law 
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Source: National Human Genome Research Institute 
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$1,000 
genome 
announced 
Jan 2014 

2007-8: 
massively 

parallel 
sequencing 
technologies 

emerge 



Massively parallel sequencing 
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Massively parallel sequencing 
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1 billion clusters per flow cell 

1 micron 
diameter ~1,000 molecules/

cluster 

These meethods produce billions of short 
sequences, each ~100-200 base pairs (bp) long 



Yearly JGI Sequencing Output 
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JGI Sequencing Output is Flat  
Reagents Costs are Increasing 



Bioenergy Carbon Cycling  Biogeochemistry 

Metagenomes Plants Fungi Microbes 
DNA Synthesis 

Science 

DNA  
Sequencing 

Advanced 
Genomic 

Technologies 
Computational 

Analysis 
DNA Synthesis 

JGI’s Science Programs 



Genomics & Cellulosic Biofuels 



JGI Plant Program Focus 
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Reference Plant Genomes 

Comparative 
genomics 

Genetic 
diversity 

Transcriptomics, 
epigenomics, 
metabolomics 



Large-scale genome assembly and mapping 

•  JGI: Jarrod Chapman, Isaac Ho, Eugene Goltsman, Martin Mascher, Dan Rokhsar 
•  NERSC/Berkeley/UCSB: Evangelos Georganas, Veronika Strnadova, Aydin Buluc, 

Lenny Oliker, Joey Gonzales, John Gilbert, Stefanie Jegelka, Kathy Yelick 

•  The “assembly” problem:   
–  We want the DNA sequence of chromosomes 
–  Each chromosome is a single DNA molecule that can be 

represented as a string of the chemical “letters” A,G,C, and T  
–  Chromosomes can be hundreds of thousands of “letters” (base 

pairs, nucleotides) long 

•  But the data produced by modern sequencing instruments are 
billions of short (~hundred letters), redundant sequence 
fragments (“reads”)  
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“Shotgun” sequencing: break up genome into short 
pieces, determine sequence, and reassemble. 

Aligned raw sequences produce 
“consensus”  

“D
EP

TH
” 



Impact of nearly identical repetitive sequence 

Figure 5. Two copies of a repeat along a genome.  The reads colored in red 
and those colored in yellow appear identical to the assembly program. 

 
Figure 6.  Genome mis-assembled due to a repeat.  The assembly program 
incorrectly combined the reads from the two copies of the repeat leading to 
the creation of two separate contigs 



Paired-ends allow some shorter repetitive 
sequences to be skipped over and then 
back-filled 

Long insert 
to span 

shorter 
insert to fill 

Also can use repeat-
boundary spanning reads to 
define edges  

S1 S2 S3 

Can represent unresolved 
assembly as a graph 
S1 > A > S2 > A > S3 



Complex 
repetitive 
sequences 
 
Can sometimes 
resolve path 
using flow 
constraints 
(repeats are 
higher apparent 
coverage) and 
paired-ends   

http://www.ams.org/news/math-in-the-media/mmarc-03-2010-media 



DeBruijn graph approach  
(Waterman, Idury, Pevzner, Myers, et al. ) 

Schatz et al. (2010) Perspective: Assembly of Large Genomes w/2nd-Gen Seq.  
Genome Res. 

Reads 
as 
nodes 

K-mers 
as 
nodes 

•  Represent reads by overlapping k-mers 
•  Express assembly in terms of connectivity of k-mer graph 



“mer-aculous” genome assembly 

Represent each read by a set of 
overlapping words (k-mers) that are long 
enough to be mostly unique in genome, 
but short enough to be unlikely to contain 
a sequencing error 

“shotgun sequencing” of a diploid genome 

A “stringy” graph with bubbles representing polymorphisms  



Counting k-mers is computationally simpler than 
comparing reads to each other to find overlap 

K-mers 
as 
nodes 

Counting k-mers is dependent on total data size, not depth, so it avoids all-vs-all 
alignments of reads. 
In unique genomic sequence, each (error-free) read contains the same k-mers.  
So data compression is achieved. 
 
But info is lost in converting reads into strings of adjacent k-mers. 
This info must be recovered elsewhere in the algorithm.  These are longer-range 
(beyond nearest neighbor) connections in the graph. 
 



“Meraculous” Chapman, et al. 

•  Parallelized calculation of 
mer-graph, traversal, etc.   

•  Load balancing depend 
on genome, data quality, 
and uniformity.   

•  led Assemblathon I and II 
in several key categories. 

•  Ongoing collaboration 
with NERSC to produce 
distributed parallel 
version using UPC/PGAS. 

… 

Input short-read dataset 
>109 Illumina reads 

Contig generation 

Scaffolding, gap closure 

ID polym/struct variation 

Special features of metagenomes: sample-specific depth 
and variation profiles.  Must be learned from the data.  



Performance results on Edison 
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–  Jarrod Chapman, Evangelos Georganas, Aydin Buluc, Kathy Yelick, Dan Rokhsar  
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•  Two critical steps in 
Meraculous have been 
translated to UPC (Unified 
Parallel C) 

•  Realized thousand-fold 
speedup! 

•  Allows access to arbitrary 
memory footprint for large 
assembly problems 

•  Remaining steps are also being 
translated to UPC.   

 



Genomic rearrangements in prostate cancers 
With souped-up UPC meraculous, we’ll be able to assemble complex genomes 
like human genomes in minutes …. 



Some rearrangements break up genes. 
Some of these recur independently across prostate cancers. 

Can we access these kinds of structural 
changes through a ”diff” that acts on a pair of 
mer-graphs? 



Assembly humongous genomes 

•  Human genome: 3 giga-base pairs  
•  Maize: 2.4 Gbp 
•  Switchgrass: 1.4 Gb 
•  Miscanthus: 2.5 Gb 
•  … 
•  Barley genome: 7 Gbp 
•  Wheat genome: 17 Gbp  
•  Pine genome: 20 Gbp 
•  Salamander: 20-30 Gbp 
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Progress towards assembling wheat genes 
(hybrid C/UPC version) 
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After full 
assembly: most of 
the genome is in 
pieces at least 7-8 
kb long.  Big 
enough to include 
multiple genes. 
But not 
chromosomes …. 

Raw contigs: 
many short 
fragments 

Assembly improves by adding 
more and more paired end 

linkages è 



Gene6c	
  mapping	
  with	
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  of	
  markers	
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Algorithm development 

•  Given a collection of 
“markers” (short sequences 
that can be either “yellow” or 
“orange”) 

•  Compare markers with every 
other marker, across all family 
members.   

•  Look for pairs of markers such 
that when one is yellow, the 
other is almost always yellow; 
when one is orange, the other is 
almost always orange.  

–  “Color” is unknown at the 
start. Like a (trivial) Ising 
gauge factor. 

–  Amount of mis-correlation is 
related to distance along the 
chromosome. 

•  Need clever ways to organize 
the calculation, taking 
advantage of the inherent 
linearity of chromosomes. 

•  Can handle 10’s of millions of 
markers, far more than other 
genetic mapping codes. 
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Progress in mapping the wheat genome 
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Within a week or two we will have a de novo assembly and map of the 
wheat genome, after the algorithmic dust settles!  



“Annotating” DNA sequence 

•  JGI: Amrita Pati, Marcel Huntemann, Nikos Kyrpides  
•  NERSC: Seung-Jin Sul, Kjiersten Fagnan, Shane Canon 

•  The “annotation” problem: 
–  When sequencing a “metagenome” from a microbial 

community, we may sample a billion gene fragments, 
derived from the constituent microbes. 

–  Q. How do we computationally infer the function of 
these fragments? 

–  A. By grouping related gene sequences together, and 
detecting similarity with genes of known function. 

32 



Microbial communities (“meta” genomes) 
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Metagenome, 
metatranscriptome and 
single-cell sequencing 
reveal microbial response 
to Deepwater Horizon oil 
spill. ISME J 

Metagenomic analysis of a 
permafrost microbial community 
reveals a rapid response to thaw. 
Nature 

The metagenome of a 
marine anammox 
bacterium illustrates 
role in the global 
nitrogen cycle. 
Environmental  
Microbiology  

Global transcriptome 
response to ionic liquid 
by a tropical rain forest 
soil bacterium, 
Enterobacter 
lignolyticus. PNAS 

The genome of the polar 
eukaryotic microalga 
coccomyxa subellipsoidea 
reveals traits of cold 
adaptation. Genome 
Biology 



DECEMBER 2012 
Samples 2,112 
DNA (bps) 1,266 T 
Genes 8.2 B 

February 2014 

Samples 3,854 

DNA (bps) 3,9 Tb 

Genes 23.4 Billion 

Growth of metagenomic data 

CLUSTER CAPACITY 

minimum 250 M genes /wk 

maximum 1.3 Billion genes /wk 

POWERED BY  
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1995-2009 2010-2015 
Finished 1000 3000 

Draft 1000 10000 
Genes 6 Million 52 Million 

P. Chain et al. Science, 2009 
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Metagenomics analysis challenges 

§  How do you compare 15 Billion genes 
(all vs all)? 

  

1. Cluster all genes from “isolate” genomes  
•  22 Million Genes 

2. Pledge all genes of the metagenomes to the clusters 
of the isolate genomes 
•  15 Billion genes 

 
3. Cluster all the metagenomes genes that did not 

pledge and create additional (purely metagenomics) 
clusters.   
•  These may have interesting unknown functions 

POWERED BY  



IMG-nr 

All vs. all 
similarities, retain 
highly similar pairs 

Single-linkage 
clustering 

Refine clusters 
obtained above 

Isolate protein 
clusters 

0 

10 

20 

30 

40 

50 

60 

2 3 4 5 6 7 8 9 >10 

%
 o

f c
lu

st
er

s 

Number of seeds 

Cluster seed set size 
distribution 

0 
10 
20 
30 
40 
50 
60 
70 
80 
90 

100 

2 18
 

34
 

50
 

66
 

82
 

98
 

11
4 

13
0 

14
6 

16
3 

17
9 

19
7 

21
9 

25
4 

30
2 

44
5 

Av
g.

 p
ai

rw
is

e 
%

id
 

Number of seeds 

Avg pairwise %id vs. #seeds 

1. Generation of isolate protein clusters 

Isolate Genomes 
Total Genes 22 Million 
   NR Genes 16 Million 
   Clusters 1.8 Million 
    Genes in clusters  8 Million 
    Singletons  8 Million 

70% alignment 
and 70% identity 

BLAT 

UClust 

70% alignment 
and 70% identity 



Create new clusters from metagenomic 
genes that don’t have any hits to gene 

clusters from isolates 

Next steps 

Pledge all 
metagenomic genes 

to the clusters of 
isolates 

Create new clusters 
from the unpledged 
metagenomic genes 



Pledged to 
isolate 

clusters, 
186,392,061 

79% 

 
Unpledged, 
49,260,177 

21% 

Metagenome clusters 
1.27M clusters 
Within a cluster linkages have 70%id  
and 50% alignment length across both members 

Metagenomic Clustering from assembled metagenomes 

Metagenome Genes 

Total Genes 49 Million 

   Clusters 1.3 Million 
    Genes in clusters  25 Million 
    Singletons  24 Million 



Metagenome Classification 

Gene 
Clustering 

IMG/M: 23 Billions Genes 

31% 

66% 

3% 

Environmental Host-associated Engineered 

Habitat distribution of metagenomes 



HOPPER 
GENEPOOL 
JESUP TESTBED 

•  Terabytes of sequence data 
•  JGI engineers 
•  Distributed computational 

paradigms 
•  Tools for bioinformatics 

sequence analysis 

Functional and 
phylogenetic annotation 
for 
12 Billion metagenome 
genes in 12 months 
 
Massive backlogs 
cleared 

R&D towards 
generating 
scalable 
computational 
frameworks for 
big sequence 
data 

Marcel Huntemann 
Amrita Pati (PI) 

Seung-Jin Sul 
Shane Canon (PI) 

•  Massive computational 
systems 

•  Consultants to help 
build interfaces with 
custom hardware 



Computing for Genomics 

•  The DOE Joint Genome Institute 
– Who we are, what we do, and why 

•  Two computational problems in 
genomics 
– “Assembling” genomes from “shotgun” 

sequence 
– “Annotating” “metagenomic” data 

• We have a User Group meeting too!  
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Invited presentations, workshops and tutorials on 
sequence-based bioinformatics, and data 
management systems. 

•  DNA Synthesis & Synthetic 
Biology 

•  Single-Cell Genomics for 
Bioprospecting 

•  Biofuel Traits in Biomass 
Feedstocks 

•  HPC for Next-Gen 
Sequencing Applications 

•  Functional Metagenomics 



Thanks! 

Assembly 
•  JGI: Jarrod Chapman, Isaac Ho, Eugene Goltsman, Martin 

Mascher, Dan Rokhsar 
•  NERSC/Berkeley/UCSB: Evangelos Georganas, Veronika 

Strnadova, Aydin Buluc, Lenny Oliker, Joey Gonzales, John Gilbert, 
Stefanie Jegelka, Kathy Yelick 

 
Metagenome annotation 
•  JGI: Amrita Pati, Marcel Huntemann, Nikos Kyrpides  
•  NERSC: Seung-Jin Sul, Kjiersten Fagnan, Shane Canon 

Thanks to DOE OBER, ASCR, and LBNL for support 
 
Also: Thanks to NERSC for JGI computing partnership! 
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