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Computing for Genomics JGI;S/f ‘

°* The DOE Joint Genome Institute

—Who we are, what we do, and why

°* Two computational problems in
genomics

—“Assembling” genomes from “shotgun”
sequence

—"Annotating

I«

metagenomic” data
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—== * In 1997, as part of the ramp-up for the

human genome project, the DOE
Office of Biological and
Environmental Research created a
virtual “Joint” Genome Institute

DOE relevance: baseline for study of
DNA damage from radiation.

Goal: sequence 3 of the 23 human
chromosomes (~11% of genome).

“Joint” = LBNL, LLNL, LANL; in 1999
efforts were centralized at one
location in Walnut Creek, CA




By 2003, the “mission” was completed!
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* In the meantime: sequencing had become
more efficient and cost-effective.

* And genomic information was becoming
more and more central to studying all
biological systems.

* As a continuation of the
human genome project
over a dozen animal
genomes were
sequenced by JGI for
comparative purposes.
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In 2004, JGI became a DOE User Facility for
Large Scale Genomics to Enable Bioenergy
and Environmental Research

Not “just” sequencing:

» New technologies & strategies

» Novel computational methods and pipelines

» Access to JGI scientific staff
» DNA synthesis

» Building user communities
Over 1,200 users ...

In 2010, established partnership with NERSC
to manage JGI computing infrastructure and
collaborate on common scientific interests
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Seguencing capacity is outstripping

Moore’s Law
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Source: National Human Genome Research Institute



Massively parallel sequencing
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Massively parallel sequencing

These meethods produce billions of short
sequences, each ~100-200 base pairs (bp) long

) 1 micron
diameter "

l 5 |
. I { : ——
|
~1,000 molecules/
cluster



Total Bases (Gb)

Yearly JGI Sequencing Output _]G[(:/-’?
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FY Total Bases (Gb) Sequenced

70,863

M FY Projection

M PacBio

M [llumina

L1454

M Sanger

FY2005 FY2006 FY2007 FY2008 FY2009 FY2010 FY2011 FY2012 FY2013 FY2014

JGI Sequencing Output is Flat
Reagents Costs are Increasing




JGI’s Science Programs

DOE
Mission
Areas
Bioenergy

Metagenomes Plants

D :{anced
DNA Genomic
Sequencing Technologies

Computational
Analysis

DNA Synthesis
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Genomics & Cellulosic Biofuels JGI Y \\

JOINT GENOME INSTITUTE r . ) ‘

eee®®C e,
o -
- -
.*® -

DNA Sequencmg e
DOE JOINT GENOME INSTITUTE

SUNLIGHT “EnzYmEs

Science

NAD(P)H)
NAD(P)+

Acyl-ACP Reductase

coO Aldehyde Decarbonylase

Alkane or Alkene
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JGI Plant Program JGI’\'/\?

Comparative
genomics

Genetic
diversity

Transcriptomics,
o 7 , , Shean epigenomics,
o O T ¢ o b 5" S metabolomics

Reference Plant Genomes




JOINT GENOME INSTITUTE &

Large-scale genome assembly and mapping JGI\/;?
)

* JGI: Jarrod Chapman, Isaac Ho, Eugene Goltsman, Martin Mascher, Dan Rokhsar

* NERSC/Berkeley/UCSB: Evangelos Georganas, Veronika Strnadova, Aydin Buluc,
Lenny Oliker, Joey Gonzales, John Gilbert, Stefanie Jegelka, Kathy Yelick

°* The “assembly” problem:
— We want the DNA sequence of chromosomes

— Each chromosome is a single DNA molecule that can be
represented as a string of the chemical “letters” A,G,C, and T

— Chromosomes can be hundreds of thousands of “letters” (base
pairs, nucleotides) long

° But the data produced by modern sequencing instruments are
billions of short (~hundred letters), redundant sequence
fragments (“reads”)

15



“Shotgun” sequencing: break up genome into sho

pieces, determine sequence, and reassemble.

Original DNA [ n
— — T
= -
fragments — — — &
e I =
Original DNA L
— =\ —
- saquenced entk/

contig 1 contig 2

consensus [
-— -

» » - -
— —_-— _—
fragments -
- -
-~

Aligned raw sequences produce
“‘consensus”

AAAACTCGCCTGCTTATCAACCGATCCCCCGCTACCTTCTACAGCCATCATTT

AAAACTCGCCTGCTTATCAACCGATCCCCCGCTACCTTCTACAGCCATCATTT
AAAACTCOCCTGCITATCAACCGATCCCCCGUTACCTTCTACAGCCATCATTT




Impact of nearly identical repetitive sequence JGI\/;? ‘
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Figure 5. Two copies of a repeat along a genome. The reads colored in red
and those colored in yellow appear identical to the assembly program.

- L

Figure 6. Genome mis-assembled due to a repeat. The assembly program
incorrectly combined the reads from the two copies of the repeat leading to
the creation of two separate contigs




Paired-ends allow some shorter repetitive

sequences to be skipped over and then
back-filled

Long insert

e _ ng i e .
N e B . e —
e eteeneanas N insert to fill R —
S1  RPT A1 S2 RPT A2  s3
= — - == I

Also can use repeat-
boundary spanning reads to
define edges

Can represent unresolved
assembly as a graph
S1>A>S2>A>S3



Complex 3 S LS
repetitive '
sequences

Can sometimes b .
resolve path |
using flow /
constraints

. g

(repeats are
higher apparent
coverage) and
paired-ends

http://www.ams.org/news/math-in-the-media/mmarc-03-2010-media




DeBruijn graph approach o
(Waterman, Idury, Pevzner, Myers, et al. ) JGI\/
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* Represent reads by overlapping k-mers
» Express assembly in terms of connectivity of k-mer graph

A Read Layout B Overlap Graph
" C
R,: GACCTACA - P
R,:  ACCTACAA B
R, CCTACAAG —a o
R, CTACAAGT ¢ {3~ i Reads
A: TACAAGTT 8888 as
B: ACAAGTTA 0
C: CAAGTTAG % nodes
X: TACAAGTC S
£ \/_\\
Y: ACAAGTCC >
Z: CAAGTCCG v
C de Bruijn Graph . TAG
TTA
GTT/

- K-mers
GAC » ACC » CCT » CTA - * TAC *ACA * CAA * AAG *AGT,
N St N ) et s’ N N’ N Py a S

% nodes

Schatz et al. (2010) Perspective: Assembly of Large Genomes w/2nd-Gen Seq.
Genome Res.




<€ Represent each read by a set of

— overlapping words (k-mers) that are long
—_— enough to be mostly unique in genome,
— but short enough to be unlikely to contain
a sequencing error

A “stringy” graph with bubbles representing polymorphisms




Counting k-mers is computationally simpler than
comparing reads to each other to find overlap JGI

JOINT GENOME INSTITUTE

=
A

Counting k-mers is dependent on total data size, not depth, so it avoids all-vs-all
alignments of reads.

In unique genomic sequence, each (error-free) read contains the same k-mers.
So data compression is achieved.

But info is lost in converting reads into strings of adjacent k-mers.
This info must be recovered elsewhere in the algorithm. These are longer-range
(beyond nearest neighbor) connections in the graph.

C de Bruijn Graph . TAG
TTA
GTT/'
- K-mers
(2" g g %710 g (1Y g 11+ 5 g g = gl o g 1V (Y as
acc nodes
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“Meraculous” Chapman, et al.

Input short-read dataset
>10° lllumina reads

- Contig generation

ID polym/struct variation

;

Scaffolding, gap closure

Parallelized calculation of
mer-graph, traversal, etc.

Load balancing depend
on genome, data quality,
and uniformity.

led Assemblathon | and Il
in several key categories.

Ongoing collaboration
with NERSC to produce
distributed parallel
version using UPC/PGAS.

Special features of metagenomes: sample-specific depth
and variation profiles. Must be learned from the data.




Towards a highly parallelized mer-aculous assembler JGI’\/a ‘

— Jarrod Chapman, Evangelos Georganas, Aydin Buluc, Kathy Yelick, Dan Rokhsar

 Two critical steps in
Meraculous have been

Parallel execution time for human genome

translated to UPC (Unified . | = —
O 500 —+&— Build hash-table
Parallel C) 3
 Realized thousand-fold 2 I\ N
speedup! o
pees P . RN
* Allows access to arbitrary = N
memory footprint for large e
n . :

o

assembly problems NP I
- Remaining steps are also being Number of cores
translated to UPC.

24
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Genomic rearrangements In prostate cancersy/ ¢ \\
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With souped-up UPC meraculous, we’ll be able to assemble complex genomes
like human genomes in minutes ....
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Figure 1 | Graphical representation of seven prostate cancer genomes. Fach  shown in purple and green, respectively. Genomes are organized according to
Circos plot'? depicts the genomic location in the outer ring and chromosomal  the presence (top row) or absence (bottom row) of the TMPRSS2-ERG gene
copy number in the inner ring (red, copy gain; blue, copy loss). fusion.

Interchromosomal translocations and intrachromosomal rearrangements are




Some rearrangements break up genes.
Some of these recur independently across prostate cancers.
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Figure 4 | Disruption of CADM2 and the PTEN pathway by
rearrangements. a, Location of intragenic breakpoints in CADM2. b, CADM?2
break-apart demonstrated by FISH in an independent prostate tumour.

¢, Location of intragenic breakpoints in PTEN (top) and MAGI2 (bottom).

d, MAGI2inversion demonstrated by FISH in an independent prostate tumour,
using probes flanking MAGI2 (red and green) and an external reference probe
also on chromosome 7q (green). The probes and strategy for detecting novel

rearrangements by FISH are shown in diagram form in Supplementary Fig. 8.

Can we access these kinds of structural
changes through a ”diff” that acts on a pair of

mer-graphs?



Assembly humongous genomes

Human genome: 3 giga-base pairs
Maize: 2.4 Gbp

Switchgrass: 1.4 Gb
Miscanthus: 2.5 Gb J' }k J‘” K—

;3"arley genome: 7 Gbp " {— }’(h )‘ 't‘”

Wheat genome: 17 Gbp

Pine genome: 20 Gbp ‘75 )!J !‘1‘ ﬁ ”‘)(
Salamander: 20-30 Gbp




Progress towards assembling wheat genes
(hybrid C/UPC version)

Total scaff length (Gbp)

JGI;
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Assembly improves byadding
more-and mor&pairedend
vkages

- Raw contigs:
many sho
[ fragments

\. S

UUTIGS
SPLINT -p 3
SHORT -p 2

MED -p 2
LONG -p 2

After full

assembly: most of
the genome is in
pieces at least 7-8
kb long. Big
enough to include

multiple genes.

“But not

éhnromosomes

1 M

Ll Ll

0.1

1

10
Min scaff length (kbp)

100
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Genetic mapping with millions of markers

- N o a2
\ QAP13 / \w wV516w w/
TN TN TN
[]
U Eu) U 8o U 8oy

F1 recombinants track “orange” vs “yellow” in offspring




JGI ¥
Efficient and Accurate Clustering for Large-Scale Genetic Mapping * \) ‘
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Veronika Strnadova Aydin Buluct Jarrod Chapman? John R. Gilbert¥
Joseph Gonzalez! Stefanie Jegelka™* Daniel Rokhsar'T Leonid Oliker#

Given a collection of
“markers” (short sequences
that can be either “yellow” or

“orange”) L
. i Is | Lo | 1s | 1s
Compare markers with every — T (1) my
other marker, across all family s > =45
members. e mg 1
. my [A(A|-|-]-]|B mg
Look for pairs of markers such m|A|-|8|-|5]¢®
that when one is yellow, the me |8 -[8|a]-|A
other is almost always yellow; YA RINEE LG2
when one is orange, the other i e I B g
almost always orange. (2[5 [2 5 -
— “Color” is unknown at the me A8 2] |- >
start. Like a (trivial) Ising mw|B|B|B|-|A|A
gauge factor. my| A|A[A|A|B] 8 "":3 ;
— Amount of mis-correlation is mp|B)-|A|B|A mip myg
lated to dist | th my|B|B|-|A|A]|- mys 10 15
related to distance along the 13 me
chromosome. ma| || -[2]A] A mya 2 (3) 5 Tme =
H B|-||A|A|B ™8 m
Need clever ways to organize mys i m; o, —
the calculation, taking (s data) M2 omy ! my
advantage of the inherent mi1 :;:3 m,
linearity of chromosomes. ',':;‘ mis
n handle 10’s of millions of
Can handle 10°s o ons o IG1 LG2 1G1 LG2

markers, far more than other
genetic mapping codes.

30




Progress in mapping the wheat genome JGI

barley POPSEQ
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7H

6H

S5H

4H

3H

2H

1H

1A 2A 3A 4A 5A BA 7A 1B 2B 3B 4B 5B 6B 7B 1D 2D 3D 4D 5D 6D

wheat sorted chromosomes POPSEQ

Within a week or two we will have a de novo assembly and map of the
wheat genome, after the algorithmic dust settles!

31
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T - 79 \7
Annotating” DNA sequence JGIQ/\ f

* JGI: Amrita Pati, Marcel Huntemann, Nikos Kyrpides
°* NERSC: Seung-Jin Sul, Kjiersten Fagnan, Shane Canon

°* The “annotation” problem:

— When sequencing a “metagenome” from a microbial
community, we may sample a billion gene fragments,
derived from the constituent microbes.

— Q. How do we computationally infer the function of
these fragments?

— A. By grouping related gene sequences together, and
detecting similarity with genes of known function.

32



Microbial communities (“meta” genomes) JGI\/?

A
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Metagenome,
metatranscriptome and
single-cell sequencing
reveal microbial response
to Deepwater Horizon oil
spill. ISME J

J

Metagenomic analysis of a
permafrost microbial community
reveals a rapid response to thaw.
Nature

The metagenome of a
marine anammox
bacterium illustrates
role in the global
nitrogen cycle.
Environmental
Microbiology

Global transcriptome

response to ionic liquid

by a tropical rain forest
soil bacterium,
Enterobacter
lignolyticus. PNAS

- ‘ e
- Al &
¢ ! 2
3 d
(|

-

The genome of the polar
eukaryotic microalga
coccomyxa subellipsoidea
reveals traits of cold
adaptation. Genome
Biology

33




Growth of metagenomic data JGI ;/;? ‘
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POWERED BY
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Genome Sequencing Projects on GOLD

>15,000 projects

BIncomplete

OComplete

0 — ——— v y— \
1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012

Complete Bacteria/Archaea OIncomplete Bacteria/Archaea

1995-2009 | 2010-2014 now

Finished

1000 3,000 2,975

Draft

1000 10,000 12,379

Genes

6 Million | 39 Million 52 Million
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Metagenomics analysis challenges JGI ¥ ‘

POWERED BY

= How do you compare 15 Billion genes
(all vs all)? NERSC

1. Cluster all genes from “isolate” genomes
« 22 Million Genes

2.Pledge all genes of the metagenomes to the clusters
of the isolate genomes
« 15 Billion genes

3. Cluster all the metagenomes genes that did not
pledge and create additional (purely metagenomics)
clusters.

 These may have interesting unknown functions




1. Generation of isolate protein clusters JGI Y \\
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IMG-nr Cluster seed set size Avg pairwise %id vs. #seeds
distribution
60 - 100
90
BLAT 50 - cg o0
All vs. all g 40 - _g gg
similarities, retain | 3 £ 50
highly similar pairs | 2 g 40
©20 - 5 30
_ S z 20
70% alignment 10 - 18
and70%identity 0 —— S NOFTOONDTOOWMDON DT N O
TOUO OO MTOMNMNOOT—TWOT
/ 2 3 4 5 ¢ 7 8 9»>20 LTI T T« NN O

Single-linkage Number of seeds

clustering
Isolate Genomes

UGIlust Total Genes 22 Million

v
Refine clusters NR Genes 16 Million
Clusters 1.8 Million

obtained above
o )
70% alfnment Genes inclusters 8 Million

and 70%, identity

Singletons 8 Million

RISSGGMMFKATTTVAALVIATSAMAQDDL TISSLAKGETTKAAFNQMVQGHKL P
B RAQ D Q ACKPHDCGSORLAVMA: e DEKE

Isolate protein
clusters




Create new clusters from metagenomic
genes that don’t have any hits to gene
clusters from isolates

Pledge all
metagenomic genes

Create new clusters
from the unpledged

to the clusters of metagenomic genes

iIsolates




Metagenomic Clustering from assembled metagenomes JGI’\/a
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|
Unpledged,
49,260,177
21%

® Pledged to
isolate

clusters,
186,392,061
79%

Metagenome Genes

Total Genes 49 Million
Clusters 1.3 Million

Genesinclusters 25 Million

Metagenome clusters
1.27M clusters

Within a cluster linkages have 70%id
and 50% alignment length across both members

Singletons 24 Million




Gene
Clustering

Metagenome Classification

letagenomic Samples (1930)

: vironmental (711)

—-Aquatic (580)

_+ -Non-marine Saline and Alkaline (70)
+-Marine (264)

[+ Thermal springs (0)
Habitat distribution of metagenomes + Freshwater (152)
=+ Terrestrial (119)
3% 1+ Rock-dwelling (subaerial biofilms) (5)
[+ S0il (113)
+-Deep subsurface (1)
(= Air (T)

+-Indoor Air (2)
.+ Outdoor Air (4)
+ Host-associated (1122)
+-Engineered (97)

EEnvironmental ®Host-associated ®Engineered




.?P.F.!?.‘!‘..‘.?.‘J.”..‘ 'E“I'ISIII UTE Marcel Huntemann
e el Amrita Pati (P1) Massive computational

Terabytes of sequence data systems |
JGI engineers Consultants to help GENEPOOL..

-

4

Distributed computational bu”f intiﬁaézes with h flll" l!}" 3ED
' custom hardware §§ =
paradigms i fﬁ""’

Tools for bioinformatics
sequence analysis

e

Functional and R&D towards

phylogenetic annotation generating

for scalable

12 Billion metagenoy; computational

genes in 12 months frameworks for
big sequence

Massive backlogs data

cleared




Computing for Genomics JGI;S/f ‘

°* The DOE Joint Genome Institute

—Who we are, what we do, and why

°* Two computational problems in
genomics

—“Assembling” genomes from “shotgun”
sequence

—"Annotating” "metagenomic” data
°* We have a User Group meeting too!
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DNA Synthesis & Synthetic 2=\
Biology |

v Single-Cell Genomics for
| Bioprospecting

GEOMICS OF Biofuel Traits in Biomass

ENERGY AND  Feedstocks N
ENVIRONMENT HPC for Next-Gen /

, Sequencing Applications EENS
Functional Metagenomics | ./}

000000000000000000000000000 | '
March 18 - 20, 2014 000000000000000000000000000 |

Walnut Creek, CA ‘\if

Invited presentations, workshops and tutorials on
sequence-based bioinformatics, and data
management systems.



Thanks! JGIX ‘

Assembly

* JGI: Jarrod Chapman, Isaac Ho, Eugene Goltsman, Martin
Mascher, Dan Rokhsar

° NERSC/Berkeley/UCSB: Evangelos Georganas, Veronika
Strnadova, Aydin Buluc, Lenny Oliker, Joey Gonzales, John Gilbert,
Stefanie Jegelka, Kathy Yelick

Metagenome annotation
* JGI: Amrita Pati, Marcel Huntemann, Nikos Kyrpides
* NERSC: Seung-Jin Sul, Kjiersten Fagnan, Shane Canon

Thanks to DOE OBER, ASCR, and LBNL for support

Also: Thanks to NERSC for JGI computing partnership!
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