
Introduction - The
basics of compiling
and running on KNL

Zhengji Zhao
User Engagement Group
Cori KNL User Training

April 16, 2019

System Backlogs

Cori KNL has a shorter backlog, so for a better queue turnaround, we
recommend the Edison/Cori Haswell users transit to KNL.

Agenda

● Difference between Edison/Cori Haswell (multi-core) and
Cori KNL (many-core)

● How to compile for KNL
● How to run on KNL nodes

● Variable-time jobs – a way to improve your queue

turnaround

Difference between
Edison/Cori Haswell
and Cori KNL

Configuration comparison between Edison and Cori KNL

1

Cores/node Threads/node Socket/Node Memory (DDR +
HBM)/node (GB)

Memory/Core
(GB)

Clock speed
(GHz)

Edison 24 48 2 64 2.67 2.4

Cori KNL 68 272 1 96 + 16 1.4 +0.24 1.4

Cori Haswell 32 64 2 128 4.0 2.3

Core-to-core performance comparison

0

500

1000

1500

2000

2500

3000

CAM GAMESS GTC IMPACT MAESTRO MILC PARATEC

240 1024 2048 1024 2048 8192 1024

Ru
n

tim
e

(s
ec

)

Codes /Core Counts

Edison SSP Benchmark Performance

Edison

Cori KNL

Cori Haswell

0

0.2

0.4

0.6

0.8

1

1.2

CAM GAMESS GTC IMPACT MAESTRO MILC

240 1024 2048 1024 2048 8192

Sp
ee

du
p

w
rt

Ed
iso

n

Codes /Core Counts

Edison SSP Benchmark Performance

Edison

Cori KNL

Cori Haswell

H
ig

he
r i

s
be

tte
r

Slide from Helen He

0

500

1000

1500

2000

2500

AMG SNAP MiniFE UMT miniGhost GTC MILC MiniDFT

49152 24576 49152 49152 12288 19200 24576 2000

Ru
n

tim
e

(s
ec

)

Codes /Core Counts

Cori Haswell SSP Benchmark Performance

Cori KNL

Cori Haswell

Core-to-core performance comparison

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

AMG SNAP MiniFE UMT miniGhost GTC MILC

49152 24576 49152 49152 12288 19200 24576

Sp
ee

du
p

w
rt

 C
or

i
H

as
w

el
l

Codes /Core Counts

Haswell SSP Benchmark Performance

Cori KNL

H
ig

he
r i

s
be

tte
r

NESAP Code Performance before/after Optimizations
H

ig
he

r i
s

be
tte

r

BeforeAfter

How to compile for
KNL

Binary compatibility

○ Edison binaries runs on Cori Haswell, and KNL; Haswell Binaries run on KNL

○ Not vice versa

- 10 -

Build system Edison Cori Haswell Cori KNL

Edison

Cori Haswell

Cori KNL

A separate build of your application for each platform is
recommended for optimal performance

- 11 -

VASP built with the –xMIC-AVX512
flag runs 35% faster than built with
the –xCORE-AVX2 flag on Cori KNL.

We will talk about only
● Compilation for Cori KNL nodes
● Compile/link lines

Compiler +
Compiler Flags +
–I/path/to/headers +
–L/path/to/library –l<library>

● Available compilers, libraries, etc.

You need to apply these info to your build systems.

- 12 -

Compilations on Cori and Edison are very similar

● Three programming environments are supported
○ Intel, GNU and Cray compilers are available on Cori. Intel is the default.

○ PrgEnv-intel, PrgEnv-gnu, and PrgEnv-cray loads the corresponding
programming environment which includes the compilers and matching
libraries.

○ Using module swap PrgEnv-Intel PrgEnv-cray to swap programing
environment.

○ Compiler wrappers, ftn, cc and CC, are recommended instead of the
native compiler invocations.

Compilations on Cori and Edison are very similar -cont

○ Cross compiling: applications are compiled for compute nodes from the
login nodes. Cori has two types of compute nodes, KNL, and Haswell

○ Cori default environment loads craype-haswell module, which sets the
env CRAY_CPU_TARGET to haswell

Default programming environment on Cori:

To compile for KNL

● Do module swap craype-haswell craype-mic-knl before
compiling for Cori KNL nodes, then use the Cray provided
compiler wrappers instead of the native compiler
invocations

module swap craype-haswell craype-mic-knl
ftn –O3 mycode.f90. # Fortran:
cc –O3 mycode.c # for C
CC –O3 myC++code.C # for C++

Compiler recommendations

● Will not recommend any specific compiler
○ Intel - better chance of getting processor specific optimizations, especially for

KNL
○ Cray compiler – many new features and optimizations, especially with Fortran;

useful tools like reveal work with Cray compiler only
○ GNU - widely used by open software

● Start with the compilers that vendor/code developers used
so to minimize the chance to hit the compiler and code bugs,
then explore different compilers for optimal performance.

- 16 -

Compiler flags

● Validity check after compilation
● Compilers’ default behavior could vary between compilers

○ Default number of OpenMP threads used is the CPU slots available for Intel and GNU compilers; 1 for Cray
compiler.

- 17 -

Intel GNU Cray Description/
Comment

-O2 -O0 -O2 default

default , or –O3 -O2 or -O3,-Ofast default recommended

-qopenmp -fopenmp default, or –h omp OpenMP

-g -g -g debug

-v -v -v verbose

Compiler wrappers, ftn, cc and CC, are recommended
● Use ftn, cc, and CC to compile Fortran, C and C++ codes,

respectively, instead of the underlying native compilers,
such as ifort, icc, icpc, gfortran, gcc, g++, etc.
○ The compiler wrappers wraps the underlying compilers with the additional

compiler and linker flags depending on the modules loaded in the
environment

○ The same compiler wrapper command (e.g. ftn) is used to invoke any
compilers supported on the system (Intel, GNU, Cray)

● Compiler wrappers do cross compilation
○ Compiling on login nodes to run on compute nodes

- 18 -

Compiler wrappers, ftn, cc and CC, are recommended
○ May need to use the –host=x86_64 configure option (if supported) to help the

configure script to skip compiler tests.
○ To compile on a KNL node, do salloc –N 1 –q interactive –C knl –t 4:00:00 to

get on a compute node

● Compilers wrappers link statically by default
○ Preferred for performance at scale

● Use –dynamic or set an environment variable
CRAYPE_LINK_TYPE=dynamic to link dynamically
○ A dynamically linked executable may take a long time to load shared

libraries when running with a large number of processes

- 19 -

Why compiler wrappers?
● They include the architecture specific compiler flags into the

compile/link line automatically.

● They automatically add the header and library paths and
libraries on the compilation/link lines
○ Compiler wrappers use the pkg-config tool to dynamically detect paths and libs from

the environment (loaded cray modules and some NERSC modules)
○ The architecture specific builds of libraries will be linked into

● Allow user provided options to take the precedence
- 20 -

Intel*) GNU Cray Module
Cori KNL -xMIC-AVX512 -march=knl -h cpu=mic-knl craype-mic-knl
Cori Haswell -xCORE-AVX2 -march=core-avx2 -h cpu=haswell craype-haswell
Edison Ivy Bridge -xCORE-AVX-I -march=corei7-avx -h cpu=ivybridge craype-ivybridge

*) for the latest Intel compilers, -march=knl,haswell,ivybridge can be used instead of –xcode.

What do compiler wrappers link by default?
● Depending on the modules loaded, compiler wrappers link to the MPI,

LAPACK/BLAS/ScaLAPACK libraries, and more automatically
● Library names could be different from what you used before on other non-cray systems

- 21 -

More on the verbose output from compiler wrappers

- 22 -
Note, -Wl,--start-group … -Wl,--end-group for static linking

Available libraries

● Cray supports many software packages – Cray Developer

Toolkits (CDT)

○ Access via modules, type “module avail” or “module avail –S” to see the available

modules

○ There are different builds for different compilers

○ Programming environment modules allow the libraries built with the matching

compilers to be linked to

● NERSC also supports many libraries

○ Some of them interact with the Cray compiler wrappers while many of them do not.

● Where are the libraries ?

○ Use “module show <module name> “ to see the installation paths

○ ls –l <installation_path> to see the library files

- 23 -

Examples of linking to the Cray provided libraries

● Linking to Cray MPI and Cray Scientific libraries are
automatic by default if compiler wrappers are used

CC parallel_hello.cpp or ftn dgemmx1.f90

● Linking to HDF5 and NETCDF libraries are automatic, user
just need to load the cray-hdf5 or cray-netcdf modules

module load cray-hdf5; cc h5write.c
○ Note The library name could be different. Using the –v option to see the library names

and other detailed link line information.

- 24 -
Liking example

Examples of linking to the Cray provided libraries

● Linking to PETSc libraries are automatic, but users need to

choose a proper module (real/complex,32/64 bit integer)
○ E.g., module load cray-petsc-complex-64

○ Use cc –v test1.c to see the linking detail

● Linking to fftw libraries – fftw 3 is the default
○ module load cray-fftw

○ Loading the cray-fftw module always links to the pthread version of the library, -

lfftw3f_mpi -lfftw3f_threads -lfftw3f -lfftw3_mpi -lfftw3_threads -lfftw3, to link with

OpenMP implementation, need to manually provide the libraries.

- 25 -

Liking example

Examples of linking to the NERSC provided library modules

● Some of the NERSC provided modulefiles are written to interact
with the Cray compiler wrappers, e.g., elpa module on Cori

module load elpa
ftn –qopenmp –v test2.f90 # this will automatically link to elpa and MKL ScaLAPACK
libraries

○ Type module show <module name> to check if the envs <libname>_PKGCONFIG_LIBS,
PE_PKGCONFIG_PRODUCTS, and PKG_CONFIG_PATH are defined in the modulefile,
which compiler wrappers look for.

● Most of the NERSC provided modulefiles do not interact with the compiler
wrappers, user need to provide the include path and library path and
libraries manually, e.g. GSL

module load gsl; ftn test3.f90 $GSL
GSL is set as -I/usr/common/software/gsl/2.1/intel/include

-L/usr/common/software/gsl/2.1/intel/lib -lgsl -lgslcblas - 26 -
Liking example

Linking to Intel MKL library

● Resource:
○ Intel® Math Kernel Library Link Line Advisor, https://software.intel.com/en-

us/articles/intel-mkl-link-line-advisor/
○ Learn from Intel compiler verbose output, -

mkl={parallel,sequential,cluster}

● For intel compiler, use –mkl flag
○ ftn test1.f90 –mkl # default to parallel –multi-threaded lib
○ The loaded cray-libsci will be ignored if –mkl is used.

- 27-
Liking example

https://software.intel.com/en-us/articles/intel-mkl-link-line-advisor/

Linking to Intel MKL library

● For GNU compiler (e.g., to link to 32-bit integer build):
○ Save the MKLROOT from the Intel compiler module, and then
○ Threaded: -L$MKLROOT/lib/intel64 –Wl,--start-group -lmkl_gf_lp64 -lmkl_gnu_thread -

lmkl_core -liomp5 -Wl,--end-group –lpthread –lm –ldl
○ ScaLAPACK: -L$MKLROOT/lib/intel64 -Wl,--start-group -lmkl_gf_lp64 -

lmkl_gnu_thread -lmkl_scalapack_lp64 -lmkl_blacs_intelmpi_lp64 -lmkl_core -Wl,--end-
group -lgomp –lpthread –lm -ldl

○ Note that mkl modules could be out-dated

- 28-
Liking example

Linking to Intel MPI library – Use native compilers

● Cray MPICH libraries are recommended for performance
especially at scale.

● Compiler wrappers links to Cray MPICH libraries.
● However, if you need to link to Intel MPI library, do

module load impi

mpiifort test1.f90
○ Note that the binaries linked to the Intel MPI need to run with srun instead of

mpirun to get a proper process/thread affinity,
http://www.nersc.gov/users/computational-systems/cori/running-jobs/advanced-
running-jobs-options/#toc-anchor-6

○ Native Intel compilers link dynamically

- 29 -
Liking example

http://www.nersc.gov/users/computational-systems/cori/running-jobs/advanced-running-jobs-options/

Summary

●Compilations for Cori and Edison are very similar
●To compile for Cori KNL, do

– module swap craype-haswell craype-mic-knl

●Use compiler wrappers where possible, they
○ add architecture specific optimization flags
○ link to the Cray MPI, LibSci libraries and other Cray provided libraries

●Use available libraries where possible
○ Use module avail command to check available libraries
○ Use module show <module name> to see the installation paths if needed

●Learn from the compiler verbose output (-v)

How to Run jobs on
KNL

Cori KNL Queue Policy

32

• Jobs use 1024+ nodes on Cori KNL get 20% charging discount
• “interactive” qos available on Cori Haswell and KNL, job starts immediately

or get canceled in 5 minutes, up to 64 nodes on Cori per repo

Difference between Edison/Haswell and Cori KNL

Cores/node Threads/node Socket/Node Memory (DDR +
HBM)/node (GB)

Memory/Core
(GB)

Clock speed
(GHz)

Edison 24 48 2 64 2.67 2.4

Cori Haswell 32 64 2 128 4.0 2.3

Cori KNL 68 272 1 96 + 16 1.4 +0.24 1.4

• KNL has a lot more (slower) cores on the node
• A much reduced per core memory

Interactive batch job on KNL nodes

Cori KNL:

salloc -N 2 –q debug –t 30:00 -C knl

salloc -N 2 –q interactive –t 4:00:00 -C knl

- 34 -

Edison:
salloc -N 2 –q debug –t 30:00

Use of interactive queue is highly recommended!

Sample job script to run a MPI job

Cori KNL:
#!/bin/bash -l

#SBATCH –N 1

#SBATCH -C knl

#SBATCH –q regular

#SBATCH –t 1:00:00

#SBATCH –L SCRATCH

srun –n68 -c4 --cpu_bind=cores ./a.out

- 35 -

Edison:
#!/bin/bash -l

#SBATCH –N 2

#SBATCH –q regular

#SBATCH –t 1:00:00

#SBATCH –L SCRATCH

srun –n 48 ./a.out

#or srun –n48 –c2 --cpu_bind=cores ./a.out

Sample job script to run an MPI + OpenMP code

#!/bin/bash -l
#SBATCH –N 1
#SBATCH –q regular
#SBATCH –t 1:00:00
#SBATCH -C knl

export OMP_PROC_BIND=true
export OMP_PLACES=threads
export OMP_NUM_THREADS=4

launching 1 task every 4 cores/16 CPUs
srun –n16 –c16 --cpu_bind=cores ./a.out

- 36 -

#!/bin/bash -l
#SBATCH –N 1
#SBATCH –q regular
#SBATCH –t 1:00:00
#SBATCH -C knl

export OMP_PROC_BIND=true
export OMP_PLACES=threads
export OMP_NUM_THREADS=4

launching 1 task every 2 cores/8 CPUs
srun –n32 –c8 --cpu_bind=cores ./a.out

• Using –c option to spread processes evenly over on the CPUs on the node
• Using –cpu_bind=cores to pin the processes to the cores on the node
• Using OMP environment variables to fine control the thread affinity

In the examples above, 64 cores /256 CPUs out of 68 cores/272 CPUs are used.

Process affinity is important to get optimal performance

0%	

10%	

20%	

30%	

40%	

50%	

60%	

70%	

0.00	

200.00	

400.00	

600.00	

800.00	

1000.00	

1200.00	

1400.00	

CAM		 GAMESS	 GTC	 IMPACT	 MAESTRO	 MILC	 PARATEC	

Sl
ow

	d
ow

n	
(%

)		

Ti
m
e	
(s
)	

NERSC	7	SSP	Applicaition	Benchmarks	
	

*		Slowdown	=	(Time	(process	free	to	drift)	-	Time	(process	pin	to	cores))/Time	(process	pin	to	core)	

The	perforamnce	effect	of	process	affinity	on	Edison		
Processes	free	to	drift	 processes	pin	to	cores	 Slowdown	(%)*	

Run date:
July 2017

Affinity verification methods

● NERSC has provided pre-built binaries from a Cray code (xthi.c) to display process

thread affinity: check-mpi.intel.cori, check-mpi.cray.cori, check-hybrid.intel.cori, etc.

% srun -n 32 -c 8 --cpu_bind=cores check-mpi.intel.cori|sort -nk 4

Hello from rank 0, on nid02305. (core affinity = 0,1,68,69,136,137,204,205)

Hello from rank 1, on nid02305. (core affinity = 2,3,70,71,138,139,206,207)

Hello from rank 2, on nid02305. (core affinity = 4,5,72,73,140,141,208,209)

Hello from rank 3, on nid02305. (core affinity = 6,7,74,75,142,143,210,211)

● Intel compiler has a run time environment variable KMP_AFFINITY, when set to

"verbose”:

OMP: Info #242: KMP_AFFINITY: pid 255705 thread 0 bound to OS proc set {55}

OMP: Info #242: KMP_AFFINITY: pid 255660 thread 1 bound to OS proc set {10,78}

OMP: Info #242: OMP_PROC_BIND: pid 255660 thread 1 bound to OS proc set {78} …

● Cray compiler has a similar env CRAY_OMP_CHECK_AFFINITY, when set to

"TRUE”:

[CCE OMP: host=nid00033 pid=14506 tid=17606 id=1] thread 1 affinity: 90

[CCE OMP: host=nid00033 pid=14510 tid=17597 id=1] thread 1 affinity: 94 …

- 38 -

Slide from Helen He

A few useful commands

● Commonly used commands:
sbatch,salloc,scancel,srun,squeue,sinfo,sqs,scontrol,sacct

● sinfo –format=“%F %b” for available features of nodes, or sinfo
–format=“%C %b”

○ A/I/O/T (allocated/idle/other/total)

● scontrol show node <nid>
● ssh_job <jobid> to ssh to the head compute nodes of your

running jobs

- 39 -

Summary

● The “-C knl” is used to request KNL nodes
● Recommend explicitly use of the srun’s –cpu-bind and -c options to

pin the processes to the cores/CPUs, and spread the MPI tasks
evenly over the cores/CPUs on the nodes

● Use OpenMP envs, OMP_PROC_BIND and OMP_PLACES to fine
pin threads to the CPUs allocated to the tasks

● Consider using 64 cores out of 68 in most cases
● The interactive queue is highly recommended
● Submit shorter jobs for a better queue turnaround. Use

variable-time jobs automatically split a long running job to
multiple shorter ones.

- 40 -

Thank You!

Variable-time jobs
to improve the queue turnaround

Who is relevant to variable-time jobs?

● Users who want to a improved the queue turnaround
● Users who need to run long jobs, including jobs running

for more than 48 hours - the max time allowed on Cori and
Edison.

● Provided the code can do checkpointing by itself

Variable-time jobs

● Slurm allows jobs submitted with a minimum time limit in
addition to the time limit, e.g.,

#SBATCH –time=48:00:00

#SBATCH –time-min=2:00:00

● Jobs specified the --time-min can start the execution
earlier than they would otherwise with a time limit
anywhere between the time-min and the time limit.

○ This is performed by a backfill scheduling algorithm to allocate resources
otherwise reserved for higher priority jobs.

Variable-time jobs - continued

● The pre-terminated job can be requeued to resume from
where the previous execution left off.

○ #SBATCH –requeue

○ scontrol requeue <jobid>

● Requeuing the pre-terminated job can be done
automatically until the cumulative execution time reaches
the requested time limit or the job completes earlier before
the requested time limit.

https://docs.nersc.gov/jobs/examples/#variable-time-jobs

https://docs.nersc.gov/jobs/examples/

Sample job script for variable-time jobs

Provide ckpt-command only if
your application needs
external trigger to initiate the
checkpointing. Leave blank if
none# requeueing the job if remaining time >0

. /global/common/cori/software/variable-time-job/setup.sh
requeue_job func_trap USR1

Variable-time script for CP2K
#!/bin/bash -l
#SBATCH -q regular
#SBATCH -N 1
#SBATCH -C knl
#SBATCH -J md
#SBATCH --comment=96:00:00
#SBATCH --time-min=00:30:00 #the minimum amount of time the job should run
#SBATCH --time=48:00:00
#SBATCH --signal=B:USR1@60
#SBATCH --requeue
#SBATCH --open-mode=append

#timelimit per job, and the amount of time (in seconds) needed for checkpointing (same as in
--signal)
max_timelimit=48:00:00
ckpt_overhead=60
ckpt_command=

#requeueing the job if remaining time >0
. /global/common/cori/software/variable-time-job/setup.sh
requeue_job func_trap USR1

module load cp2k
srun -n 68 ./cp2k.popt run.inp >> run.out &

wait

Variable-time script for VASP atomic relaxation jobs
#!/bin/bash

#SBATCH -J ata_vasp

#SBATCH -q regular

#SBATCH -C knl

#SBATCH -N 2

#SBATCH --time=48:0:00

#SBATCH --error=ata-%j.err

#SBATCH --output=ata-%j.out

#SBATCH --mail-user=zz217@nersc.gov

#

#SBATCH --comment=96:00:00

#SBATCH --time-min=02:0:00

#SBATCH --signal=B:USR1@300

#SBATCH --requeue

#SBATCH --open-mode=append

#user setting

export OMP_PROC_BIND=true

export OMP_PLACES=threads

export OMP_NUM_THREADS=8

#srun must execute in background and catch signal on wait command

module load vasp/20171017-knl

srun -n 8 -c32 --cpu_bind=cores vasp_std &

put any commands that need to run to continue the next job (fragment) here

ckpt_vasp() {

set -x

restarts=`squeue -h -O restartcnt -j $SLURM_JOB_ID`

echo checkpointing the ${restarts}-th job

#to terminate VASP at the next ionic step

echo LSTOP = .TRUE. > STOPCAR

#wait until VASP to complete the current ionic step, write out WAVECAR file and quit

srun_pid=`ps -fle|grep srun|head -1|awk '{print $4}'`

echo srun pid is $srun_pid

wait $srun_pid

#copy CONTCAR to POSCAR

cp -p CONTCAR POSCAR

set +x

}

ckpt_command=ckpt_vasp

max_timelimit=48:00:00

ckpt_overhead=300

requeueing the job if remaining time >0

. /global/common/cori/software/variable-time-job/setup.sh

requeue_job func_trap USR1

wait

More information
● NERSC website, especially,

○ http://www.nersc.gov/users/computational-systems/cori/programming/compiling-codes-on-cori/
○ http://www.nersc.gov/users/computational-systems/edison/programming/
○ Transitioning to NERSC Docs: https://docs.nersc.gov/development/compilers/
○ For further compiler optimizations read intel slides: e.g.,

https://www.nersc.gov/users/training/events/intel-compilers-tools-and-libraries-training-march-6-
2018/

○ Cori KNL: http://www.nersc.gov/users/computational-systems/cori/running-jobs/example-batch-
scripts-for-knl/

○ Transitioning to NERSC Docs: https://docs.nersc.gov/jobs/
● Compiler and linker man pages:

○ ifort, icc, icpc, crayftn, etc.
○ man ld (-Wl,-zmuldefs, -Wl,-y<symbol>)

● Contact NERSC Consulting:
○ Call at 800-666-3772 or 510-486-8600, option #3
○ File consulting tickets at help.nersc.gov or https://my.nersc.gov/tickets.php

- 49 -

http://www.nersc.gov/users/computational-systems/cori/programming/compiling-codes-on-cori/
http://www.nersc.gov/users/computational-systems/edison/programming/
https://docs.nersc.gov/development/compilers/
https://www.nersc.gov/users/training/events/intel-compilers-tools-and-libraries-training-march-6-2018/
http://www.nersc.gov/users/computational-systems/cori/running-jobs/example-batch-scripts-for-knl/
https://docs.nersc.gov/jobs/
https://my.nersc.gov/tickets.php

Compute node reservations for hands-on

● We have 6 separate reservations under repo nintern:

Apr 16: noon - 5pm, 256 KNL nodes (ReservationName: knl_apr16);

32 Haswell nodes (ReservationName: hsw_apr16)

Apr 17: noon - 5pm, 256 KNL nodes (ReservationName: knl_apr17);

32 Haswell nodes (ReservationName: hsw_apr17)

Apr 18: 9am - 5pm, 128 KNL nodes (ReservationName: knl_apr18)

16 Haswell nodes (ReservationName: hsw_apr18)

• Use “--reservation=knl_apr16 -A nintern” with sbatch or salloc to use the

reservation and also charge to the nintern repo instead of your own.

• Use the interactive queue if all reserved nodes are used.

• Use squeue –A nintern or squeue –R <ReservationName> to check jobs under

a repo or a reservation, respectively.

