
Checkpointing and
Restarting Jobs

with DMTCP

Zhengji Zhao
User Engagement Group

NERSC User Training, Berkeley CA
November 6, 2019

User Training on Checkpoint/Restart (I)

Outline

● Introduction
● DMTCP overview
● Checkpoint/restart serial and threaded applications on Cori
● Automatic job resubmission of checkpoint/restart jobs with DMTCP
● Summary

Introduction

What is Checkpointing/Restarting?

● Checkpointing is the action of saving the state of a running
process to a checkpoint image file
○ Dump a running process’s memory, state, etc. into a file

● The process can be restarted later from the checkpoint file:
continuing the execution from where it left off, on the same or
different computer

User Perspective
● Enable my jobs to run longer than

walltime limit
● Improve my jobs’ throughput by

exploiting the holes in the Slurm
schedule

● Extend interactive sessions by
saving & restarting where I left off

● Debug long-running jobs by
pausing just before the error &
restarting from that point multiple
times

NERSC Perspective
● Increased flexibility in scheduling

jobs
● (Potentially) enables preempting of

jobs for more important or time-
sensitive jobs

● Better backfill when reserving nodes
for large job, increasing utilization

● Run checkpointing jobs right up to
system maintenance

● (Potentially) checkpoint all jobs
before unexpected power outage

Why Checkpoint/Restart?

Cori (All) system utilization in Oct 2019

PSPS PSPS

Checkpoint/Restart: A Great Idea, Hard to Implement

● Requires extensive effort to create transparent-to-users

implementation

○ MPI support is especially challenging: combination of MPI

implementations (e.g., MPICH, OpenMPI) & networks (e.g., ethernet,

Cray Aries) means multiple versions required (MxN problem)

● Earlier checkpoint/restart project, BLCR, shifted development/

maintenance burdens to MPI developers, OS kernels, and

batch system developers

○ Required cooperation from all these entities

○ No longer being developed

Checkpoint/Restart: A Great Idea, Hard to Implement

● DMTCP (topic of today’s training) takes a different approach &
lives completely in user space
○ No kernel modifications or hooks into MPI or lower communication layers

are required

● A new implementation of DMTCP, MANA, has addressed the
MPI MxN maintainability issue, and proven to be scalable to
large number of processes
○ Work in progress: need to experiment with production workloads at

NERSC to further harden the code
○ Subject of future training

Schedule of NERSC User Trainings on Checkpoint/Restart

● A series of user training sessions on C/R are planned in
November, January, and February
○ November (today): focus on using DMTCP with serial/threaded

applications
○ January: focus on applications with internal C/R support - get good

job throughput with variable-time jobs
○ February: Checkpoint/restart MPI applications with DMTCP (MANA)

DMTCP: Distributed MultiThreaded
CheckPointing

- 9 -

DMTCP website, http://dmtcp.sourceforge.net/index.html

This work was partially supported by National Science Foundation Grants OAC-1740218 and ACI-1440788.

http://dmtcp.sourceforge.net/index.html

DMTCP: Distributed MultiThreaded CheckPointing

● DMTCP transparently checkpoints a single-host or distributed
computation in user-space -- with no modifications to user code
or to the O/S.

● DMTCP supports a variety of applications, including MPI
(various implementations over TCP/IP or InfiniBand), OpenMP,
MATLAB, Python, and many programming languages including
C/C++/Fortran, shell scripting languages, and resource
managers (e.g., Slurm)

How does DMTCP Work?

DMTCP Usage

dmtcp_launch --interval 30 ./a.out
^C
dmtcp_restart ckpt_a.out*.dmtcp

rm -f ckpt_a.out*.dmtcp

dmtcp_launch -j ./a.out arg1 …
^C
dmtcp_restart ckpt_a.out*.dmtcp

dmtcp_launch ./a.out arg1 …

^C
dmtcp_restart ckpt_a.out*.dmtcp

Terminal 1 Terminal 2

dmtcp_coordinator --interval 30

dmtcp_command --checkpoint

Or

Or

DMTCP Commands

dmtcp_coordinator -- coordinates checkpoints between multiple processes.

Usage: dmtcp_coordinator [OPTIONS] [port]

Options:
-p, --coord-port PORT_NUM (env DMTCP_COORD_PORT), Port to listen on (default: 7779)

--port-file filename, File to write listener port number. (Useful with '--port 0', which is

used to assign a random port)
--exit-on-last, Exit automatically when last client disconnects

--exit-after-ckpt, Kill peer processes of computation after first checkpoint is created

--daemon, Run silently in the background after detaching from the parent process.
-i, --interval (env DMTCP_CHECKPOINT_INTERVAL): Time in seconds between

automatic checkpoints (default: 0, disabled)
COMMANDS:

type '?<return>' at runtime for list

DMTCP Commands (cont.)

dmtcp_launch -- Start a process under DMTCP control.

Usage: dmtcp_launch [OPTIONS] <command> [args...]
-h, --coord-host HOSTNAME (env DMTCP_COORD_HOST), hostname where
dmtcp_coordinator is run (default: localhost)
-p, --coord-port PORT_NUM (env DMTCP_COORD_PORT), port where
dmtcp_coordinator is run (default: 7779)
--port-file FILENAME, file to write listener port number.
-j, --join-coordinator, join an existing coordinator, raise error if one doesn't

already exist
-i, --interval SECONDS (env DMTCP_CHECKPOINT_INTERVAL), time in seconds

between automatic checkpoints.
--ckpt-signal signum, signal number used internally by DMTCP for checkpointing

(default: SIGUSR2 (signal 12)).

DMTCP Commands (cont.)

dmtcp_restart -- Restart processes from a checkpoint image.

Usage: dmtcp_restart [OPTIONS] <ckpt1.dmtcp> [ckpt2.dmtcp...]
-h, --coord-host HOSTNAME (env DMTCP_COORD_HOST), Hostname where
dmtcp_coordinator is run (default: localhost)
-p, --coord-port PORT_NUM (env DMTCP_COORD_PORT), Port where
dmtcp_coordinator is run (default: 7779)
--port-file FILENAME, File to write listener port number.
-j, --join-coordinator, Join an existing coordinator, raise error if one doesn't already

exist
-i, --interval SECONDS (env DMTCP_CHECKPOINT_INTERVAL), Time in seconds

between automatic checkpoints.

DMTCP Commands (cont.)

dmtcp_command -- Send a command to the dmtcp_coordinator
remotely.

Usage: dmtcp_command [OPTIONS] COMMAND [COMMAND...]
-s, --status Print status message
-l, --list List connected clients
-c, --checkpoint Checkpoint all nodes
-bc, --bcheckpoint Checkpoint all nodes, blocking until done
-i, --interval <val> Update ckpt interval to <val> seconds (0=never)
-k, --kill Kill all nodes
-q, --quit Kill all nodes and quit

MPI Status of DMTCP on Cori

● We are working with the DMTCP developers to get “MANA for
MPI: MPI-Agnostic Network-Agnostic Transparent Checkpointing”,
which works with Cray MPICH, to work on Cori.
○ The openmpi module (tcp/ip) may work with your MPI applications now
○ However, we recommend the to-be-released MANA version of DMTCP for

MPI applications (target date Feb 2020)

● Confirmed that serial/threaded apps work with DMTCP on Cori
○ We invite users to experiment DMTCP with their production workloads, and

report bugs
○ DMTCP development team will prioritize bugs reported by NERSC

http://www.ccs.neu.edu/home/gene/papers/hpdc19.pdf

Checkpoint/Restart Serial/Threaded
Applications with DMTCP on Cori

- 18 -

Demo: C/R Jobs with DMTCP Interactively

module load dmtcp
#get a compute node
salloc –N1 –C knl –t 1:00:00 -q interactive

#launch job under DMTCP control
dmtcp_launch -j ./a.out arg1 ...

^c kill the running job

#restart from checkpoint image file
dmtcp_restart ckpt-*.dmtcp
#or run dmtcp_restart_script.sh

#ssh to the compute node of your running job
ssh_job <jobid>

#launch dmtcp_coordinator
module load dmtcp
dmtcp_coordinator

#checkpoint
c

q

#or use dmtcp_command to send checkpoint command
remotely
dmtcp_command -c

Terminal 1 (batch session) Terminal 2

Step 1

Step 2

Step 3

Step 4

Step 5

Step 6

Step 7

The application (a.out) must be linked dynamically!

Notes on DMTCP Usage

● Must link applications dynamically
● Use --help option with dmtcp_* commands to see available options

● Checkpoint options:

○ checkpoint periodically

○ checkpoint once and quit (detect allocated time)

○ checkpoint remotely as needed

○ for batch jobs, use --port-file number (-p), because host (-h) could be different

between restarted jobs

● For restart jobs, can use dmtcp_coordinator-generated restart script

dmtcp_restart_script.sh instead of dmtcp_restart ckpt*
○ This file is a link to the most recent restart script

Sample Job Script: C/R Using DMTCP on Cori Haswell

#!/bin/bash
#SBATCH –J test
#SBATCH -q regular
#SBATCH -N 1
#SBATCH -C haswell
#SBATCH -t 48:00:00
#SBATCH –o test-%j.out
#SBATCH –e test-%j.err

#user settings
export OMP_PROC_BIND=true
export OMP_PLACES=threads
export OMP_NUM_THREADS=32

./a.out

#!/bin/bash
#SBATCH –J test_cr
#SBATCH -q regular
#SBATCH -N 1
#SBATCH -C haswell
#SBATCH -t 48:00:00
#SBATCH –o test_cr-%j.out
#SBATCH –e test_cr-%j.err
#SBATCH --time-min=6:00:00

#user settings
export OMP_PROC_BIND=true
export OMP_PLACES=threads
export OMP_NUM_THREADS=32

#for c/r with dmtcp
module load dmtcp nersc_cr

#checkpointing once every hour
start_coordinator -i 3600

#run job under dmtcp control
dmtcp_launch ./a.out

#!/bin/bash
#SBATCH –J test_cr
#SBATCH -q regular
#SBATCH -N 1
#SBATCH -C haswell
#SBATCH -t 48:00:00
#SBATCH –o test_cr-%j.out
#SBATCH –e test_cr-%j.err
#SBATCH --time-min=6:00:00

#user settings
export OMP_PROC_BIND=true
export OMP_PLACES=threads
export OMP_NUM_THREADS=32

#for c/r with dmtcp
module load dmtcp nersc_cr

#checkpointing once every hour
start_coordinator -i 3600

#restart the job from dmtcp
checkpoint files
./dmtcp_restart_script.sh

Original job script restart.slurmrun.slurm

To run: sbatch run.slurm; sbatch restart.slurm; sbatch restart.slurm; …
or submit dependency jobs

The “flex” QOS is Available for You (on Cori KNL Only)

● The flex QOS is for user jobs that can produce useful work with
a relatively short amount of run time before terminating
○ For example, jobs that are capable of checkpointing and restarting from

where they left off

● Benefits to using the flex QOS include improved job
throughput and a 75% discount in charging.

● Access via “#SBATCH -q flex” and must use “#SBATCH --
time-min=2:00:00” or less

● A flex QOS job can use up to 256 KNL nodes for 48 hours

Sample Job Script: C/R Using DMTCP with flex QOS on Cori KNL

#!/bin/bash
#SBATCH –J test
#SBATCH -q regular
#SBATCH -N 1
#SBATCH -C knl
#SBATCH -t 48:00:00
#SBATCH –o test-%j.out
#SBATCH –e test-%j.err

#user settings
export OMP_PROC_BIND=true
export OMP_PLACES=threads
export OMP_NUM_THREADS=64

./a.out

#!/bin/bash
#SBATCH –J test_cr
#SBATCH -q flex
#SBATCH -N 1
#SBATCH -C knl
#SBATCH -t 48:00:00
#SBATCH –o test_cr-%j.out
#SBATCH –e test_cr-%j.err
#SBATCH --time-min=2:00:00

#user settings
export OMP_PROC_BIND=true
export OMP_PLACES=threads
export OMP_NUM_THREADS=64

#for c/r with dmtcp
module load dmtcp nersc_cr

#checkpointing once every hour
start_coordinator -i 3600

#run job under dmtcp control
dmtcp_launch ./a.out

#!/bin/bash
#SBATCH –J test
#SBATCH -q flex
#SBATCH -N 1
#SBATCH -C knl
#SBATCH -t 48:00:00
#SBATCH –o test_cr-%j.out
#SBATCH –e test_cr-%j.err
#SBATCH --time-min=2:00:00

#user settings
export OMP_PROC_BIND=true
export OMP_PLACES=threads
export OMP_NUM_THREADS=64

#for c/r with dmtcp
module load dmtcp nersc_cr

#checkpointing once every hour
start_coordinator -i 3600

#restart the job from dmtcp
checkpoint files
./dmtcp_restart_script.sh

original job script restart.slurmrun.slurm

To run: sbatch run.slurm; sbatch restart.slurm; sbatch restart.slurm; …
or submit depency jobs

Notes on the DMTCP Job Script

● nersc_cr module provides a set of bash functions to manage C/R jobs
○ See /global/common/sw/cray/cnl7/haswell/nersc_cr/19.10/etc/env_setup.sh

● start_coordinator is a bash function (from nersc_cr module) that wraps
the dmtcp_coordinator command and sets two envs to save coordinator host
& port number, and generate dmtcp_command.<jobid> file in the run directory
for communication with your running jobs as needed

dmtcp_coordinator --daemon --exit-on-last -p 0 --port-file $fname $@
1>/dev/null 2>&1
export DMTCP_COORD_HOST=$h
export DMTCP_COORD_PORT=$p

● User selects checkpoint interval (-i option for coordinator): periodic checkpoint
vs checkpoint only once before the job terminates
○ The checkpoint overhead should be less than the time needed to dump the full

memory on the node to the disk

Automatic Resubmission of
Checkpoint/Restart Jobs with

DMTCP

- 25 -

Automatic Resubmission of DMTCP Restart Jobs Using flex QOS (KNL Only)

#!/bin/bash
#SBATCH -J test
#SBATCH -q flex
#SBATCH -N 1
#SBATCH -C KNL

#SBATCH --time=48:00:00
#SBATCH --error=test%j.err
#SBATCH --output=test%j.out
#SBATCH --time-min=02:00:00

module load dmtcp nersc_cr
start_coordinator -i 3600

#checkpoint/restart job
if [[$(restart_count) == 0]]; then

#user setting
export OMP_NUM_THREADS=64
export OMP_PROC_BIND=spread
export OMP_PLACES=threads
dmtcp_launch -j ./a.out &

elif [[$(restart_count) > 0]] && [[-e dmtcp_restart_script.sh]]; then
bash ./dmtcp_restart_script.sh &

else
echo "Failed to restart the job, exit”; exit

fi

#!/bin/bash
#SBATCH –J test
#SBATCH -q regular
#SBATCH -N 1
#SBATCH -C knl
#SBATCH -t 48:00:00
#SBATCH –o test-%j.out
#SBATCH –e test-%j.err

#user setting
export OMP_PROC_BIND=true
export OMP_PLACES=threads
export OMP_NUM_THREADS=64

./a.out

#!/bin/bash
#SBATCH –J test_cr
#SBATCH -q flex
#SBATCH -N 1
#SBATCH -C knl

#SBATCH -t 48:00:00
#SBATCH –o test_cr-%j.out
#SBATCH –e test_cr-%j.err
#SBATCH –time-min=2:00:00

#user setting
export OMP_PROC_BIND=true
export OMP_PLACES=threads
export OMP_NUM_THREADS=64

module load dmtcp nersc_cr
#checkpointing once every hour
start_coordinator -i 3600

#run job under dmtcp control
dmtcp_launch ./a.out

#!/bin/bash
#SBATCH –J test

#SBATCH -q flex

#SBATCH -N 1

#SBATCH -C knl

#SBATCH -t 48:00:00

#SBATCH –o test_cr-%j.out

#SBATCH –e test_cr-%j.err
#SBATCH –time-min=2:00:00

#for c/r with dmtcp

module load dmtcp nersc_cr

#checkpointing once every hour

start_coordinator -i 3600

#restart the job from dmtcp checkpoint files

bash ./dmtcp_restart_script.sh

#SBATCH --comment=48:00:00
#SBATCH --signal=B:USR1@300
#SBATCH --requeue
#SBATCH --open-mode=append

requeueing the job if remaining time >0
ckpt_command=
requeue_job func_trap USR1

wait

Original Job script

C/R jobs with DMTCP
Manual resubmission

C/R jobs with DMTCP
Automatic resubmission

Automatic Resubmissions of DMTCP Jobs (cont.)

#SBATCH --time-min=02:00:00
Specify the minimum time for your job. Flex QOS requires time-min to be no more than 2 hours.

#SBATCH --comment=48:00:00
A flag to add comments about the job, used by the script to specify the desired walltime and to track the
remaining walltime for the requeued jobs (after pre-termination). You can specify any length of time,
e.g., a week or even longer

#SBATCH --signal=B:USR1@<sig_time>
Request the batch system to send user-defined signal USR1 to the batch shell (where the job is
running) sig_time seconds (e.g., 300) before the job hits the wall clock limit

#SBATCH --requeue
Specify the job is eligible to requeue

#SBATCH --open-mode=append
Append the standard output/error of the requeued job to the
same standard out/error files from the previously terminated job.

#SBATCH --comment=48:00:00
#SBATCH --signal=B:USR1@300
#SBATCH --requeue
#SBATCH --open-mode=append

Automatic Resubmission of DMTCP Jobs (cont.)

requeue_job
This function traps the user defined signal (e.g., USR1). Upon receiving the signal, it executes a function
(e.g., func_trap below) provided on the command line.

func_trap
This function contains the list of commands to be executed to initiate checkpointing, prepare inputs for the
next job, requeue the job, and update the remaining walltime.
func_trap() {

$ckpt_command
scontrol requeue ${SLURM_JOB_ID}
scontrol update JobId=${SLURM_JOB_ID} TimeLimit=${requestTime}

}

requeue_job() {
parse_job # to calculate the remaining walltime
if [-n $remainingTimeSec] && [$remainingTimeSec -gt 0];

then
commands=$1
signal=$2
trap $commands $signal

fi
}

Bash functions used to automate job resubmission: requeue_job, func_trap, start_coordinator, ...

requeueing the job if remaining
time >0
ckpt_command=
requeue_job func_trap USR1

wait

How Does Automatic Resubmission of DMTCP Jobs Work?

1. User submits job script.
2. The batch system looks for a backfill opportunity for the job. If it can allocate the requested

number of nodes for this job for any duration (e.g., 6 hours) between the specified minimum
time (2 hours) and the time limit (48 hours) before those nodes are used for other higher
priority jobs, the job starts execution.

3. The job runs until it receives signal USR1 (--signal=B:USR1@300) 300 seconds before it
hits the allocated time limit (6 hours).

4. Upon receiving the signal, the func_trap function gets executed, which in turn executes
a. ckpt_command if specified
b. Requeues the job and then updates remaining walltime for requeued job.

5. Steps 2-4 repeat until job runs for the desired amount of time (48 hours) or job completes.
6. User checks results.

func_trap() {
$ckpt_command
scontrol requeue ${SLURM_JOB_ID}
scontrol update JobId=${SLURM_JOB_ID} TimeLimit=${requestTime}

}

Summary

● DMTCP works with serial and threaded applications on Cori
○ You are encouraged to experiment with your workloads, and report bugs at

help.nersc.gov

○ Benefits of checkpoint/restart jobs with DMTCP using the flex QOS on Cori

KNL include increased job throughput, a large charging discount, and

capability of running jobs of any length

○ For Haswell you can use DMTCP with regular QOS, just no charging

discount

● For MPI applications, we recommend the to-be-released MANA

implementation of DMTCP, which will work with Cray MPICH. We

will host user training on MANA DMTCP in Feb 2020

Resources

● DMTCP website, http://dmtcp.sourceforge.net/index.html
● DMTCP github site https://github.com/dmtcp/dmtcp/blob/master/QUICK-

START.md

● NERSC website, https://docs.nersc.gov/development/checkpoint-restart/
○ will be available on Nov 7, 2019

● Presentation slides will be posted in our training site after the training
● Our dmtcp module used Twinkle Jain’s DMTCP fork,

https://github.com/JainTwinkle/dmtcp.git (branch: spades-v2)

http://dmtcp.sourceforge.net/index.html
https://github.com/dmtcp/dmtcp/blob/master/QUICK-START.md
https://docs.nersc.gov/development/checkpoint-restart/
https://docs.nersc.gov/development/checkpoint-restart/
https://www.nersc.gov/users/training/events/user-training-on-checkpointing-and-restarting-jobs-using-dmtcp-on-november-6-2019/
https://github.com/JainTwinkle/dmtcp.git

Acknowledgements

● Rebecca Hartman-Baker for her vision on C/R, leading the C/R effort at NERSC
○ worked with a summer student (Tiffany Connors, now NERSC staff) developed the

variable-time job script, automated the job resubmissions
○ Initiated the collaboration with DMTCP team

● Steve Leak - for working on improving/rewriting the variable-time job scripts (work in
progress)

● Gene Cooperman, Twinkle Jain, and Rohan Garg for collaborations on getting DMTCP
into production at NERSC (technical support, quick bug fixes, etc.)

● JGI SPADES team to adopt DMTCP in their workflow, resulting in multiple bug fixes
● NERSC team members, Chris Samuel, Eric Roman for helping system side debugging,

batch system incorporation, etc.
● Thanks Rebecca, Gene and Twinkle help with preparing the training slides
● DMTCP work (Gene Cooperman’s research group at Northeastern Univ.) was partially

supported by National Science Foundation Grants OAC-1740218 and ACI-1440788.

Thank You!

Backup slides

- 34 -

Running dmtcp_command from Cori Login Nodes

● From a Cori login node
mom_local.py dmtcp_command.<jobid> --checkpoint
○ mom_local.py script transfers current user environment, wd, and command line

arguments precisely to the remote nodes and execs the command there
zz217@cori04:~> mom_local.py ./dmtcp_command.25583470 -s
Coordinator:
Host: nid02471
Port: 35241

Status...
NUM_PEERS=0
RUNNING=no
CKPT_INTERVAL=3600

● Otherwise get on to the compute node first
ssh_job <jobid>
dmtcp_command.<jobid> --checkpoint

For a Quick Hands-on on Cori

● Using the binaries available at the test directory of the dmtcp modules, e.g.,
dmtcp1
module load dmtcp
append_testpath #so the DMTCP test directory in your path
cd $SCRATCH #run on your scratch directory, because the image file
could be large

● Or use the jacobi.f90 available at /global/csratch1/sd/zz217/dmtcp_demo
cp -pr /global/csratch1/sd/zz217/dmtcp_demo $SCRATCH
cd $SCRATCH/dmtcp_demo
./compile.sh

then run the jac.x under DMTCP control

System Utilizations

● Can we make use of the idle nodes when the system drains for larger
jobs? Yes, we can! We just need many shorter jobs to backfill.

● The jobs submitted with a short ---time-min (on both Haswell and KNL
nodes) will get higher job throughput, provided your jobs can do
checkpoint/restart.

Cori Haswell

Cori KNL

#!/bin/bash
#SBATCH -q regular
#SBATCH -N 2
#SBATCH -C knl
#SBATCH -t 48:00:00

module load vasp/20181030-knl
export OMP_NUM_THREADS=4

launching 1 task every 4 cores (16 CPUs)
srun –n32 –c16 --cpu_bind=cores vasp_std

#!/bin/bash
#SBATCH -q flex
#SBATCH –N 2
#SBATCH -C knl
#SBATCH –t 48:00:00
#SBATCH --time-min=2:00:00

module load vasp/20181030-knl
export OMP_NUM_THREADS=4

launching 1 task every 4 cores (16 CPUs)
srun –n32 –c16 --cpu_bind=cores vasp_std

Flex QOS VASP jobs
(manual resubmissions)

Regular QOS VASP jobs

Automatic Resubmissions of VASP flex Jobs

#!/bin/bash
#SBATCH -q flex
#SBATCH –N 2
#SBATCH -C knl
#SBATCH –t 48:00:00
#SBATCH --time-min=2:00:00

module load vasp/20181030-knl
export OMP_NUM_THREADS=4

launching 1 task every 4 cores (16 CPUs)
srun –n32 –c16 --cpu-bind=cores vasp_std

wait

&

https://docs.nersc.gov/jobs/examples/#vasp-example

#SBATCH --comment=48:00:00
#SBATCH --signal=B:USR1@300
#SBATCH --requeue
#SBATCH --open-mode=append

srun must execute in background and catch signal
on wait command

For automatic resubmissions of pre-terminated jobs
put any commands that need to run to continue the next
job here
ckpt_vasp() {

set -x
restarts=`squeue -h -O restartcnt -j $SLURM_JOB_ID`
echo checkpointing the ${restarts}-th job

to terminate VASP at the next ionic step
echo LSTOP = .TRUE. > STOPCAR
wait until VASP to complete the current ionic step,

write WAVECAR file and quit
srun_pid=`ps -fle|grep srun|head -1|awk '{print $4}’`
wait $srun_pid

copy CONTCAR to POSCAR
cp -p CONTCAR POSCAR
set +x

}

ckpt_command=ckpt_vasp
max_timelimit=48:00:00
ckpt_overhead=300

requeueing the job if remaining time >0
. /global/common/cori/software/variable-time-job/setup.sh
requeue_job func_trap USR1

https://docs.nersc.gov/jobs/examples/

