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Abstract. Magnetic reconnection is a fundamental process in a magnetized plasma
at both low and high magnetic Lundquist numbers (the ratio of the resistive diffusion
time to the Alfvén wave transit time), which occurs in a wide variety of laboratory
and space plasmas, e.g., magnetic fusion experiments, the solar corona and the Earth’s
magnetotail. An implicit time advance for the two-fluid magnetic reconnection problem
is known to be difficult because of the large condition number of the associated matrix.
This is especially troublesome when the collisionless ion skin depth is large so that the
Whistler waves, which cause the fast reconnection, dominate the physics [1].

For small system sizes, a direct solver such as SuperLU can be employed to obtain
an accurate solution as long as the condition number is bounded by the reciprocal of the
floating-point machine precision. However, SuperLU scales effectively only to hundreds
of processors or less. For larger system sizes, it has been shown that physics-based [2]
or other preconditioners can be applied to provide adequate solver performance.

Recently, we have been developing a new algebraic hybrid linear solver, PDSLin
(Parallel Domain decomposition Schur complement based Linear solver) [3, 4]. In this
work, we compare numerical results from a direct solver and the proposed hybrid solver
for the magnetic reconnection problem and demonstrate that the new hybrid solver is
scalable to thousands of processors while maintaining the same robustness as a direct
solver.
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1. Introduction

Most of the visible universe is in the state of plasma, and plasma phenomena are of

major importance in space, solar and ionospheric physics. A plasma is an ionized gas,

which consists of positively charged ions and negatively charged electrons. In a plasma,

the microscopic processes are dominated by collective charged particles interactions:

charge separation between ions and electrons gives rise to electric fields, charged particles

motions result in currents and, consequently, magnetic fields. Electric and magnetic

fields configurations can be quite intricate and provide foundations for a wide range

of phenomena of overwhelming complexity. The mathematical description of plasma

appropriate for describing global dynamics is MagnetoHydroDynamics (MHD) [5].

The simplest form of MHD is ideal MHD, where fluid has so little resistivity that

it can be treated as a perfect conductor [6, 7]. The topology of magnetic fields is fixed

due to this small resistivity and energy can be stored in moving fluids. The release

of energy can happen when the condition of ideal MHD breaks down, thus resistive

MHD is considered [8, 9, 10]. Resistive MHD describes magnetized fluids with non-zero

electrical resistivity that leads to a breaking in magnetic topology, and the presence of

the Hall parameter introduces Whistler waves into the equations [5, 11, 12].

Among the multitude of plasma phenomena, magnetic reconnection problem

deserves special attention [13]. Magnetic reconnection is a fundamental process in a

magnetized plasma: in the reconnection process, two magnetic flux tubes come close

together at some point, and they are broken and reconnected in a different way due to

the effect of finite resistivity and other non-ideal effects, where the overall topology of

the magnetic field is changing and the magnetic field energy is converting into particle

heat and bulk kinetic energy over a relatively short period of time [11]. Such phenomena

occur in a wide range of laboratory and space plasmas, e.g., magnetic fusion experiments,

the solar corona, and the Earth’s magnetotail [11, 14, 15].

To fully capture the change of magnetic field topology in magnetic reconnection, we

focus on a four-field Hall MHD model valid in the low guide-field limit, where Whistler

waves are the dominant two-fluid (ion and electron) effect in the current work. This set

of extended MHD equations with hyper-resistivity terms is derived from a set of two-

dimensional basic MHD equations describing incompressible, two-fluid, quasi-neutral

plasma [16, 17, 18]. These equations are a subset of the full, compressible two-fluid

MHD equations which have been studied in two [19] and three [20, 21] dimensions.

However, simulation of magnetically confined, reconnecting plasma presents

numerical challenges [18, 22, 19, 23]. This is a result of many factors, including the

complexity of models that accurately represent burning plasmas, as well as the resolution

of the large range of spatial-temporal scales at which significant physical processes occur

[24]. Even in the simpler ideal MHD model, a symmetric hyperbolic system that is a

subset of the two-fluid or extended MHD equations, there are three distinct wave types

with a wide separation of propagation speeds and with complex polarizations when

applied to magnetized plasma conditions typical of fusion plasmas. When discretized
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on a finite difference or finite element mesh, these alone lead to a range of timescales

and accuracy requirements that are a challenge to address with a single simulation [25].

A key result of temporal stiffness is that traditional explicit methods used for

solution to such models may require prohibitively small time step restrictions compared

to the dynamical scales of macroscopic stability and plasma fueling. The Courant-

Friedrichs-Lewy (CFL) condition [26, 27] imposes the time step size limits for numerical

stability that grow quadratically with the mesh increment sizes. Implicit schemes

alleviate those issues related to the time step size and the mesh increment sizes.

We present implicit numerical methods in a Backwards Difference Formula (BDF)-

Newton solution framework. The Partial Differential Equations (PDE) system becomes

a set of nonlinear finite difference equations, F(u) = 0, after discretization. For such

a set of nonlinear algebraic equations, inexact Newton methods [28, 29, 30] are applied

on each implicit time step to iterate to a solution through a sequence of linear problems

(Newton update equations) from an initial guess of the solution from the previous time

step, and some linear solvers are used for the Newton equations. Moreover, such implicit

time advance for the two-fluid magnetic reconnection problem is known to be difficult

because of the large condition number of the associated matrix. This is especially

troublesome when the collisionless ion skin depth is large so that the Whistler waves,

which cause the fast reconnection, dominate the physics [1].

Large-scale sparse linear systems of equations, such as the Newton update equations

system within numerical simulations of magnetic reconnection, become more interesting

in large-scale numerical simulations because their complexity grows superlinearly with

traditional direct techniques. If such a system is solved via a direct solver by

factorization, the memory requirement is extremely large; if such a system is solved

via an iterative solver, the preconditioning techniques are highly required, in which

parameters tuning are quite complex to provide a quick convergence [1].

Recently, a new library called PDSLin (Parallel Domain decomposition Schur

complement based Linear solver) [3, 4] is introduced as a hybrid direct/iterative solver

based on Schur complement methods. The Krylov method (Generalized Minimal

RESidual (GMRES) method) with the exact LU factors of the approximation of the

Schur complement as the preconditioner in PETSc [31] is used to solve the Schur

complement system. Finally, the interior systems are solved in parallel, using the

already-computed LU factors of the subdomains. PDSLin is implemented in C with a

Fortran interface, and uses MPI for message passing on distributed memory machines.

In Section 2, we state the four-field extended MHD equations including hyper-

resistivity terms. Section 3 describes the inexact Newton methods. In Section 4,

the hybrid linear solver library PDSLin is introduced. The numerical experiments,

comparisons for the direct solver and the hybrid solver are discussed in Section 5. Section

6 concludes the current work.



Application of PDSLin to the magnetic reconnection problem 4

2. The mathematical model for the magnetic reconnection problem

The reduced two-fluid MHD equations in two-dimensions in the limit of zero electron

mass can be written [18, 32] as




∂
∂t
∇2φ + V · ∇(∇2φ) = [∇2ψ, ψ] + µ∇4φ,
∂V
∂t

+ V · ∇V = [B, ψ] + µ∇2V − µh∇4V,
∂ψ
∂t

+ V · ∇ψ = di[ψ,B] + η∇2ψ − ν∇4ψ,
∂B
∂t

+ V · ∇B = [V, ψ] + di[∇2ψ, ψ] + η∇2B − ν∇4B.

(1)

Here, φ and ψ are stream functions for the in-plane components of the ion velocity

and magnetic field, respectively, and V and B are z components of the ion velocity and

magnetic field, respectively. Hence, the ion velocity and the magnetic field are expressed

as V = ∇φ × ẑ + V ẑ and B = ∇ψ × ẑ + Bẑ, η is the electrical resistivity, di is the

collisionless ion skin depth, µ is the fluid viscosity, ν is the hyper-resistivity (or electron

viscosity), and h is the hyperviscosity coefficient added to damp spurious oscillations

that might otherwise develop. It must be verified that the physical results converge to

a unique value independence of those coefficients over some range [18]. The Poisson

bracket [f, g] ≡ ∇f × ∇g · ẑ = ∂f
∂x

∂g
∂y

− ∂f
∂y

∂g
∂x

, V · ∇f = −[φ, f ] (f = ∇2φ, V , ψ, B),

and the out-of-plane current density j is the negative Laplacian of the magnetic flux

j = −∇2ψ.

It has been shown that Eqs. (1) are valid in the low guide-field limit in which

Whistler waves are the dominant two-fluid effect [17], and that a very similar set of

equations is valid in the high guide-field limit in which the kinetic Alfvén wave is

prominent [16]. Thus, we take Eqs. (1) to be typical of the extended MHD equations in

two dimensions. The hyper-viscosity term is present just to damp grid scale oscillations.

However, the hyper-resistivity term is necessary for the equations to be mathematically

well behaved in the neighborhood of the reconnection layer. It has been shown that a

unique converged result will be obtained if the hyper-resistivity decreases as the square

of the typical zone size h2 as h approaches 0 [19, 33].

The finite difference approximation to Eqs. (1) is obtained by applying standard

second order space-centered finite difference operators in spatial discretization and

variable order BDF methods in temporal discretization [1]. Our physical domain is

Ω = [−Lx

2
, Lx

2
]× [−Ly

2
, Ly

2
], Lx = 25.6, Ly = 12.8 [18] with periodic boundary conditions

in the x-direction and Dirichlet boundary conditions at y = ±Ly

2
. However, we take the

first quadrant Ω̃ = [0, Lx

2
] × [0, Ly

2
] as the computational domain and solutions in Ω are

obtained by mirroring solutions from this first quadrant. This is because φ,B in Eqs.

(1) are anti-symmetric along the x-axis and y-axis and V, ψ are symmetric along the

x-axis and y-axis. Therefore, boundary conditions of Eqs. (1) in Ω̃ become (i) Dirichlet

at y = Ly

2
and (ii) anti-symmetric for φ and B, symmetric for ψ and V at y = 0, x = 0,

and x = Lx

2
.

We define a Harris equilibrium and perturbation similar to the one used in the

Geospace Environmental Modeling (GEM) magnetic reconnection challenge [34], and
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take it as the initial condition for ψ. The other three fields (φ, V, B) are initialized to

zero:

ψ(x, y, 0) =
1

2
ln cosh 2y + ε cos kxx cos kyy, kx =

2π

Lx
, ky =

π

Ly
, ε = 0.1. (2)

The GEM initial conditions also included a perturbation in the fluid density, which we

take to be constant in this four-field model.

3. Nonlinear solver: inexact Newton methods

The nonlinear partial differential equations (1) become a set of nonlinear algebraic

equations through finite difference approximation: F(u) = 0 with F = (Fφ, FV , Fψ, FB)

and u = (φ, V, ψ, B) after spatial and temporal discretizations. When we advance the

system in time with the notation (φk, V k, ψk, Bk) and (φk−1, V k−1, ψk−1, Bk−1) as the

solutions for (φ, V, ψ, B) obtained at time level k, k− 1, respectively, a high-order BDF

method requires sufficient solution history to be accumulated at the beginning of the

time integration process. In our approach, the time integration process begins, starting

from an initial guess at t = 0 with a BDF method of order one (backward Euler),

gradually increasing the order up to a desired value as more and more solution history

becomes available ‡.
For the residual evaluation system F(u) = 0, we can do multivariable Taylor

expansion about a current point um:

F(um+1) = F(um) + F′(um+1 − um) + h.o.t.,

where h.o.t. means higher order terms. Let the right-hand side be zero and neglect

h.o.t. to derive a strict Newton iteration over a sequence of linear systems:
{

J(um)δum = −F(um)

um+1 = um + δum, m = 0, 1, · · · , (3)

for a given u0. Here, F(u) is a vector-valued function of nonlinear residuals, J = ∂F
∂u

is

its Jacobian matrix, u is the vector to be found, and m is the nonlinear iteration index.

We posit that the vector-valued function F(um) has following properties: there

exists an u∗ with F(u∗) = 0; F is continuously differentiable in a neighborhood of u∗;

and the Jacobian matrix J(u∗) is nonsingular.

The Newton iteration stops based on a required drop of the norm of the nonlinear

residual

‖F(um)‖ < εr‖F(u0)‖,

and/or a sufficiently small Newton update

‖δum‖ < εs.

Newton methods are attractive because they converge rapidly from any sufficiently good

initial guess u0. In transient problems, a good initial guess at each stage is the solution

‡ The highest order available in the hand-coded program is 4th order, and numerical experiments are
carried to 2nd order in time.
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at the previous stage. However, there is a drawback of Newton’s method when solving

the Newton correction (Newton update equation) at each stage: it is very expensive

to compute the exact solution using a direct method such as Gaussian elimination if

the number of unknowns is large and may not be justified when um is far from u∗.

Therefore, it is reasonable to use iterative methods to solve the Newton equation only

approximately.

There is a class of inexact Newton methods that computes an approximate solution

of Newton equations in a manner such that

‖rm‖
‖F(um)‖ ≤ ηm,

where the residual rm is given by

rm ≡ J(um)δum + F(um),

and the nonnegative forcing sequence {ηm} is used to control the level of accuracy [30].

Then the inexact Newton method is



J(um)δum = −F(um) + rm, where ‖rm‖
‖F(um)‖ ≤ ηm

um+1 = um + δum, m = 0, 1, · · · .
(4)

Here ηm may depend on um. When ηm = 0, we recover Newton method.

4. The parallel domain decomposition schur complement based linear

solver: PDSLin

At each Newton (nonlinear) iteration, we need to solve linear system (3) for Newton

methods or (4) for inexact Newton methods. In this section, we introduce the parallel

domain decomposition schur complement based linear solver PDSLin.

The hybrid linear software library PDSLin is designed to solve a large-scale linear

system:

Ax = b, (5)

where A is a square real or complex general matrix, b is a given right-hand-side vector,

and x is the solution vector. It uses a non-overlapping domain decomposition technique

called the Schur complement method [35]. The original linear system is first reordered

into a 2 × 2 block system of the following form:
(
A11 A12

A21 A22

)(
x1

x2

)
=

(
b1
b2

)
, (6)

where A11 are interior subdomains, A22 are separators, and A12 and A21 are the interfaces

between A11 and A22. To eliminate the unknowns associated with A11, an equivalent

system
(
A11 A12

0 S

)(
x1

x2

)
=

(
b1
b̂2

)
, (7)
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is obtained. In this system, the Schur complement S is defined as

S = A22 − A21A
−1
11 A12, (8)

and the right hand side

b̂2 = b2 − A21A
−1
11 b1. (9)

The solution of the global system can be achieved by solving the Schur complement

system

Sx2 = b̂2 (10)

first and then solving the interior system

A11x1 = b1 − A12x2. (11)

If k interior subdomains are extracted, the coefficient matrix of (6) has the form of

(
A11 A12

A21 A22

)
=




D1 E1

D2 E2

. . .
...

Dk Ek
F1 F2 · · · Fk A22




, (12)

where Dl is the l-th subdomain, and El and Fl are the interfaces between Dl and A22.

There are two processor groups gl and gs: processors in gl factorize the subdomain

Dl and rows of Dl, El and columns of Fl are distributed among these processors §;
processors in gs solve the Schur Complement system (10).

In parallel, the Schur complement S in (8) is computed as

S = A22 −
k∑

l=1

FlD
−1
l El = A22 −

k∑

l=1

(U−T
l F T

l )T (L−1
l El) = A22 −

np∑

p=1

W (p)G(p) (13)

for an LU factorization Dl = LlUl. Here, np is the number of cores used to solve the

entire system, and the matrices W (p) and G(p) are given by ‖

W (p) = W (:, jp : (jp+1 − 1)), G(p) = G(jp : (jp+1 − 1), :), (14)

such that the p-th processor owns the jp-th through (jp+1 − 1)-th columns of W =

(U−T
11 AT21)

T and rows of G = L−1
11 A12, where A11 = L11U11 given by Ll and Ul,

l = 1, · · · , k.
When computing W (p) and G(p), their approximations W̃ (p) and G̃(p) are calculated

by discarding nonzeros with magnitudes less than a prescribed drop tolerance σ1, and

the approximate update matrix T̃ (p) = W̃ (p)G̃(p). If the p-th processor belongs to the

processor group gs, to compute its local portion of the approximate Schur complement,

it gathers the corresponding rows of T̃ (q) from all processors, and compute

Ŝ(p) = A
(p)
22 −

∑

q

T̃ (q)(ip : (ip+1 − 1), :),

§ The nonzeros of Dl and El are stored in the Compressed Row Storage (CRS) format and the nonzeros
of Fl are stored in the Compressed Column Storage (CCS) format.
‖ Fortran notation is used here.



Application of PDSLin to the magnetic reconnection problem 8

where p-th processor owns the ip-th through (ip+1 − 1)-th row of A22. Moreover,

small nonzeros are dropped from Ŝ(p) to form its approximation S̃(p) with dropping

tolerance σ2. In the process of computing the approximate Schur complement S̃, several

performance-enhancing techniques are employed [3].

There are three main phases: extracting and factorizing the interior subdomains

A11; computing an approximate Schur complement S̃ of S in (8); and computing the

solution. During those phases, challenges are existed for developing such a robust,

efficient, and general purpose hybrid solver for thousands of processors with a parallel

implementation.

When the parallel nested dissection algorithm implemented in PT-SCOTCH [36]

is used to extract interior subdomains, multiple processors are assigned to each interior

subdomain to allow us to increase the processor count without increasing neither the

number of subdomains nor the size of the Schur complement. This two-level parallel

approach is different from the general one-level approach ¶ and does not need a large

number of subdomains to use large numbers of processors; therefore, the size of the

Schur complement does not increase. To compute an approximate Schur complement as

a preconditioner, we have to deal with the load imbalance and communication both in

an intra-processor group assigned to the same subdomain and the inter-processor groups

assigned to different subdomains [3]. When computing the solution, a preconditioned

Krylov method in PETSc [31] is used to solve the Schur complement system, and the

preconditioner is the exact LU factorization of the approximate Schur complement S̃

via SuperLU [37]. Finally, the interior systems are solved in parallel, using the already-

computed LU factors of the subdomains.

The most challenging phase of the parallel implement is to compute an approximate

Schur complement S̃, especially for a two-level parallel framework, where multiple

processors are assigned to one subdomain. The benefit of using such a two-level approach

is to limit the size of the Schur complement when using thousands of processors; however,

it is hard to deal with the load imbalance and communication in these two aspects: an

intra-processor group assigned to the same subdomain and the inter-processor groups

assigned to different subdomains.

There are other two hybrid linear solvers HIPS [38] and MaPHyS [39] that are

also based on the Schur complement methods. However, they have different approaches

in parallel implementations. The one-level approach is used in HIPS, where multiple

subdomains are assigned to one single processor, and PDSLin and MaPHyS use the

two-level approach. As a result, HIPS has a larger Schur complement system when

the number of cores increases. The Schur complement system is treated as a global

system in PDSLin and HIPS, but a local system + in MaPHyS. When solving the Schur

complement system, HIPS uses the block level-based ILU and MaPHyS uses additive

¶ In a one-level parallel approach, a single processor is assigned to factorize one or more interior
subdomains.
+ MaPHyS computes the local Schur complements associated with the subdomains explicitly to
construct a set of parallel local preconditioners.
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Schwarz as preconditioners; PDSLin uses the LU of the approximation of the Schur

complement S̃ as the preconditioner, which provides a robust preconditioning for solving

highly-indefinite or ill-conditioned systems.

5. Numerical results

Our numerical experiments are carried on the Cray XE6 Hopper, a leading petascale

supercomputing system at the National Energy Research Scientific Computing Center

(NERSC). Hopper is NERSC’s first petascale system with a peak performance of 1.28

Petaflops/sec, 153, 216 processors cores for running scientific applications, 212 TB of

memory, and 2 Petabytes of online disk storage. Hopper has 6, 384 compute nodes

made up of 2 twelve-core AMD ‘MagnyCours’ 2.1-GHz processors per node, in which

there are 6000 nodes have 32GB DDR3 1333-MHz memory per node and 384 nodes have

64GB DDR3 1333-MHz memory per node [40]. All calculations are carried out with 64

bit arithmetic.

There are five physical parameters: the electrical resistivity η, the fluid viscosity µ,

the hyper-viscosity h = C1hxhy, the hyper-resistivity ν = C2hxhyη, and the collisionless

ion skin depth di. The cell size is hx×hy. We choose as defaults the values used given in

the GEM problem specification: η = 0.005, µ = 0.05, C1 = 4.0, C2 = 1.0, and di ∈ [0, 1]

[18, 34].

For the nonlinear solver: the relative convergence tolerance εr = 10−8; the

convergence tolerance in terms of the norm of the change in the solution between steps

εs = 10−7.

5.1. Condition numbers

Starting from initial states (2), the system (1) evolves in time. When the collisionless

ion skin depth number di = 0.0 (resistive MHD), because φ = V = B = 0.0 at t = 0,

the second and fourth equations in (1) imply that V and B remain unchanged as time

advances, and the out-of-plane current density has large gradient in the mid-plane.

As we expect, there is a thin current layer in the mid-plane, known as the Sweet-

Parker layer [41, 42] and no x-point shows up. As di changes from 0.0 to 1.0, the

reconnection region has essentially changed character from a y-point to an x-point as

expected [43] (see Figure 1). For the system (1), the reconnected magnetic flux is defined

as Ψ(t) = 1
2
[ψ(0, 0, t) − ψ(Lx/2, 0, t)], and the reconnection rate is the time derivative

of Ψ(t): R(t) = ∂Ψ(t)/∂t.

The implicit time advance for this two-fluid magnetic reconnection problem is

known to be difficult because of the large condition number of the associated matrix.

This is especially troublesome when the collisionless ion skip depth di is large so that

the Whistler waves, which cause the fast reconnection, dominate the physics [1].

Figure 2(a) and Figure 2(b) show comparisons between Ψ(t) and R(t) for the

collisionless ion skin depth di = 0.1, 0.5, and 1.0 with dt = 0.1. When di = 1.0,



Application of PDSLin to the magnetic reconnection problem 10

Figure 1. The plots of the negative current density −j in Ω = [−Lx

2 , Lx

2 ]× [−Ly

2 ,
Ly

2 ]
at time t = 0.0 (left), time t = 40.0 with di = 0.0 (middle) and time t = 40.0 with
di = 1.0 (right).
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Figure 2. The reconnected magnetic flux Ψ(t) (a), the reconnection rate R(t) (b) for
di = 0.1, 0.5, 1.0 with dt = 0.1, and the condition numbers (c) for di = 0.0, 0.2, 0.4,
0.6, 0.8, 1.0 with dt = 1.0 from time t = 0.0 to T = 40.0 for η = 0.005, µ = 0.05,
C1 = 4.0, C2 = 1.0 on a 128× 128 grid.

the reconnection rate reaches its maximum at R(t = 26.6) = 0.03. Figure 2 (c) shows

comparisons of condition numbers of different di = 0.0, 0.2, 0.4, 0.6, 0.8 and 1.0 with

dt = 1.0. When di = 1.0, the condition number reaches its maximum 1.95e + 07 at

t = 11.0.

Moreover, the condition number increases when the problem size increases or the

time step size increases [1]. Table 1 lists condition numbers of associated matrices

of the time-dependent nonlinear system for different problem sizes. The problem size

(Nx × Ny), the size of the associated matrix (size(A)), the nonzeros in the matrix

(nnz(A)), the nonzeros in the matrix L + U (nnz(L + Z)), the fill-ratio, the condition

number (cond(A)) and the memory usage (mem) in Gigabyte are listed in the table.

When the problem size increases, the fill-ratio increases, therefore the memory usage

increases. The maximum memory per node on Hopper is 64GB, which is not enough

for evaluating the condition number for the associated matrix for the 1024 × 1024 size

problem: if the fill-ratio is 100, the estimate requirement of memory is about 98GB.

The sequential direct solver package SuperLU 4.3 [44] is used to get these condition

numbers.

Two matrices are chosen for numerical experiments: the first one has a size of

1, 048, 576 with 23, 970, 514 nonzeros, and we call the related linear system mcomp; the
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Nx ×Ny size(A) nnz(A) nnz(L + U) fill-ratio cond(A) mem(GB)

64 × 64 16, 384 358, 674 13, 698, 180 38 6.30e+ 04 0.15

128 × 128 65, 536 1, 470, 802 71, 554, 872 48 1.48e+ 06 0.88

256 × 256 262, 144 5, 956, 050 401, 569, 028 67 2.41e+ 07 5.00

512 × 512 1, 048, 576 23, 970, 514 2, 133, 808, 772 89 3.93e+ 08 28.54

Table 1. The condition numbers of associated matrices of the magnetic reconnection
problem for t = 0.0 with dt = 0.5, di = 1.0, η = 0.005, µ = 0.05, C1 = 4.0, C2 = 1.0.

other one has a size of 4, 194, 304 with 96, 175, 314 nonzeros, and we call the related

linear system bcomp.

5.2. Hybrid linear solver: PDSLin

In this section, we use PDSLin library as the linear solver for the associated matrices

in the magnetic reconnection problem and present some numerical results and parallel

performance of this hybrid linear solver. In PDSLin, the SuperLU DIST 2.4 [37] is used

as a direct solver for interior subdomains and the Schur complement systems are solved

using a preconditioned Krylov method in PETSc ∗ [31]. The stopping criterion for the

Krylov solver is to check the l2-norm of the initial residual, if it is reduced by at least

10−12, we consider the solution to be converged ].

The first experiment is to compare the total time required by the direct solver

and the hybrid solver (both the one-level parallel framework and the two-level parallel

framework) to solve the mcomp linear system. In the one-level approach, the number of

the interior subdomains k is set to be the same as the total number of cores, the cores

used for solving the Schur complement system is the half of the total number of cores;

in the two-level approach, the number of the interior subdomains is fixed at 32, and the

processors are distributed equally among all interior subdomains.

To enhance the performance of the hybrid solver, the drop tolerance σ1 is used to

enforce the sparsity of Ẽ and F̃ , and the drop tolerance σ2 is used to enforce the sparsity

of S̃. Figure 3 shows comparisons of the total time with σ1 = 10−6, σ2 = 10−5, and

the number of cores np = 32, 64, · · · , 4096: PDSLin scales better than SuperLU DIST,

and the scaling of the one-level and two-level approaches is similar. For example,

SuperLU DIST does not scale after 128 cores, while PDSLin scales well till 512 cores

for the one-level approach and 2048 cores for the two-level approach.

Although similar scaling of the one-level and two-level approaches is observed here,

it is not always true. For matrices in other applications [3], the two-level approach has

a better scaling than the one-level approach. In the one-level approach, the number

of the interior subdomains k increases as the total number of cores increases, thus the

∗ The version is 3.1.09
] When using the Krylov solver to solve the system 10, very accurate solution (x2) is required as it is
used to achieve x1 in the system 11 for the whole solution of the linear system Ax = b.
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Figure 3. The total time required to solve the linear system mcomp: the direct solver
SuperLU DIST 3.0 (black dotted line), the one-level approach (red solid line) and the
two-level approach (blue dashed line). The tolerances σ1 = 10−6 and σ2 = 10−5.

size of the Schur complement increases. In general, the iterative solver has difficulty in

convergence in large size Schur complement systems: the iteration number increases as

the size of the Schur complement increases. Thus for most matrices, the scaling of the

one-level approach is not as good as that of the two-level approach, where the two-level

approach has a fixed number of subdomains, and a fixed size of the Schur complement

when the number of cores increases.

k size nnz(LU(S̃)) its k size nnz (LU(S̃)) its

32 38, 056 280, 975, 663 70 512 128, 236 575, 865, 038 62

64 53, 610 365, 279, 060 85 1024 178, 925 671, 580, 408 75

128 80, 780 554, 788, 925 124 2048 251, 229 788, 066, 929 80

256 110, 672 637, 663, 812 120 4096 346, 378 860, 595, 342 93

Table 2. The Schur complement system in the one-level approach: the number
of subdomains, the size of the Schur complement, the number of nonzeros and the
iteration numbers in iterative solver.

In the two-level approach of solving mcomp linear system, the size of the Schur

complement is 38056 × 38056 with average nonzeros 303, 189, 610 for a fixed 32

subdomains, and the number of iterations is 70; in the one-level approach of solving

mcomp linear system, the size of the Schur complement increases. In Table 2, the

number of subdomains (k: equivalent to the number of cores np), the size of the Schur

complement (size), the nonzeros (nnz), and the iteration numbers of the iterative solver

for the Schur complement system (its) are listed.
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The nonzeros in Schur complement increases slower than the increment of the size

of the Schur complement: while the size increases 128 times from 32 to 4096, the size

of the Schur complement only increases about 9 times from 38, 056 to 346, 378, and

the nonzeros only increases about 3 times from 280, 975, 663 to 860, 595, 342. Moreover,

there is a dip of nonzeros when the number of cores increases from 256 to 512; therefore,

the iterations required has decreases from 120 to 62. These explain why the one-level

approach and the two-level approach has a similar scaling in the current reconnection

model.

Similar scaling is also found in solving bcomp linear system in both one-level

and two-level approaches. Moreover, we check the times (in seconds) for the

LU decomposition of the interior subdomain Dl (LU(D)), the computation of the

approximate Schur complement S̃ (comp(S)), the LU decomposition of S̃ (LU(S)), and

the computation of the solution vector (Solve) for bcomp. Figure 4 shows 7 cases where

the number of cores np = 32, 128, · · · , 2048 for both one-level and two-level approaches

for solving bcomp linear system.

32 64 128 256 512 1024 2048
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T
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e
 (
s
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Figure 4. The time for LU factorization of the interior domains LU(D), computation
of the approximate Schur complement comp(S), LU of the approximate Schur
complement LU(S), solution of the system for the one-level (a) and the two-level (b)
approaches for bcomp.

In general, LU(S) increases with the number of cores because doubling the number

of cores doubles the number of subdomains and typically doubles the size of the Schur

complement. Hence, LU(S) typically increases when twice many cores are used on a

twice larger Schur complement. This is unfortunate because one-level parallelization

will not scale on a large number of cores. However, we can use two-level parallelism to

scale to a larger number of cores by fixing a small number of subdomains. We can see

from Figure 4 (a) (the one-level parallelization for bcomp) and Figure 4 (b) (the two-level

parallelization for bcomp) that all the times are scaling well, and the good scaling of

LU(S) allows one-level parallelization to scale to thousands of cores.
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6. Conclusions

In this paper, we have presented implicit numerical methods in a BDF-Newton solution

framework as the nonlinear solver for the four-field extended MHD equations (magnetic

reconnection problem). Two different types of linear solvers are compared for the linear

system (Newton update equations): the direct solver and the hybrid solver. Numerical

experiments show that in solving the linear system associated with the magnetic

reconnection problem, the parallel hybrid solver (both the one-level parallelization and

the two-level parallelization) can scale up to thousands of processors. Moreover, the one-

level parallelization can scale as well as the two-level parallelization, which is usually

difficult to see from other linear systems, for example, the linear systems from the

numerical simulation of an accelerator cavity designs [3]. The flexibility of having both

the one-level parallelization and the two-level parallelization enables PDSLin to solve

linear systems with different properties. When solving the nonlinear system in time, we

expect that PDSLin can provide a better scaling than the direct solver while maintaining

the same robustness as a direct solver.
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