

Cosmic Microwave Background Data Analysis

Julian Borrill Computational Cosmology Center, LBNL Space Sciences Laboratory, UCB

A History Of The Universe

CMB Science

- Past:
 - Existence => evidence of Big Bang over Steady State
 - Temperature anisotropies => fundamental parameters of cosmology, complementary constraints (SN1a)
- Present:
 - Temperature & E-mode polarization anisotropies => precision cosmology, complementary constraints (DE)
- Future:
 - B-mode polarization anisotropies => measurement of lensing potential, evidence of & constraints on Inflation

2 Nobel Prizes awarded, 1 supported, 1 anticipated!

The CMB Data Challenge

- Extracting fainter signals (polarization, high resolution) from the data requires:
 - larger data volumes to provide higher signal-to-noise.
 - more complex analyses to control fainter systematic effects.

Experiment	Start Date	Observations - N _t	Pixels - N _p	Signal/Noise
COBE	1989	10 ⁹	104	10 ⁵
eg. BOOMERanG*	2000	10 ⁹	10 ⁶	10 ³
WMAP	2001	10 ¹⁰	10 ⁷	10 ³
Planck*	2009	10 ¹²	10 ⁹	10 ³
eg. PolarBear*	2012	10 ¹³	10 ⁷	10 ⁶
eg. QUIET-II*	2015	10 ¹⁴	10 ⁷	10 ⁷
CMBpol*	2020+	10 ¹⁵	10 ¹⁰	10 ⁵

- 1000x increase in data volume over previous & forthcoming 15 years
 - need algorithms/implementations to scale through 20 M-foldings !

CMB Computing Challenges

Dominated by manipulations of time-ordered data

- 1. Mapping real data:
 - Read/distribute detector data & flags, mission pointing
 - Generate detector pointing by interpolation & rotation
 - Solve for map using PCG over FFT-based matrix-vector multiply
 - Reduce distributed submaps at each iteration
 - Write map
- 2. Simulating & mapping synthetic data in a Monte Carlo loop
 - Read/distribute detector flags & mission pointing
 - Generate detector pointing by interpolation & rotation
 - For each realization
 - Generate simulated data on the fly using PRNG, FFT, SHT
 - Solve for map as above
 - Write map

Scaling

	Real Map	MC SimMap
Calculation	Iterations x Observations	Realizations x (Simulation + Iterations) x Observations
Communication	Iterations x Pixels	Realizations x Iterations x Pixels
I/O	Observations	Realizations x Pixels
Calc/(Comm+IO) per Iteration	1	Observations/Pixel ~ S/N

- Observations & pixels are properties of the data set
- Iterations depend on the quality of the preconditioner (research in progress)
- Simulation depends on the mission properties (beam asymmetry, noise correlations)
- Realizations are a requirement of the science (10² 10⁴ for 10 1% uncertainties)

2006-12: 250x Speed-Up

16x Moore's Law (6,000 – 100,000 cores) 16x code optimization (breaking & re-breaking I/O & comm scaling bottlenecks)

Current CMB Work At NERSC

- Multiple suborbital experiments share a single repo (mp107 1.5M MPP-hrs)
 - typically O(10) experiments & O(100) data analysts
 - Currently EBEX, PolarBear, QUIET, SPTpol, Spider, etc
 - annual allocation shared by internal negotiation
 - also supports domain-generic algorithm & implementation work
- Planck satellite has two repos (planck, usplanck 11M + 7.5M* MPP-hrs)
 - planck: standard allocation for O(100) Planck members worldwide
 - usplanck: dedicated resources for O(50) US Planck members
 - initially a stand-alone cluster (256 cores)
 - now a cabinet of carver (640 cores)
 - run as an allocation* with a reservation & dedicated queue
- Also
 - common/public + mission-specific/private software modules
 - dedicated project spaces (including Planck's purchased 100TB ELS)
 - pseudo-user accounts to own/manage the data

The Planck Example

- Planck at NERSC has been a spectacularly successful relationship possibly a model for other large experiments or possibly domains.
- Under a DOE/NASA MoU
 - DOE provides a guaranteed minimum annual NERSC allocation (2M MPP-hrs) for the lifetime of the mission - though we can and do ask for much more.
 - NASA provides 2.5 FTEs to develop the tools to exploit this resource efficiently.
- Because of the security afforded by the MoU
 - Planck locates its dedicated hardware on the NERSC floor
 - Executed as "exceptional level of service" even better than ownership!
 - NGF supports both general and dedicated resources no data replication*
- Because of the long-term Planck/NERSC collaboration
 - Planck is an early adopter (and occasional driver) of new technologies
 - initial NGF buy-in, cluster-to-reservation transition, pseudo-users, etc
 - NERSC regularly provides extraordinary service
 - eg. user boost for collaboration meetings/mission-critical runs

2017 Projections

- We will have 100x the current data volume, but only 10x Moore's Law.
- Detecting fainter signals means more tightly controlling systematics
 - The relatively modest jump to NERSC-7 is a concern it is essential for NERSC-8 to overcompensate!
 - The breadth of requirements NERSC serves don't map to a single system.
- Data movement at scale has the potential completely to disable us.
 - NGF is essential in a multi-platform environment, but its performance is already a concern.
 - MPI-like communication will still be essential, but its performance at moderate to high concurrency (even at 1 process per node) is a concern.
- Next-generation architectures will require major code re-working
 - Domain-generic elements (algorithms, implementations, shared data) must be consolidated.

Requirements Summary

	Used in 2012	Needed in 2017
Compute Hours	20M	500M
Typical #cores/run	30,000	Full system
Maximum #cores/run	30,000	Full system
Data I/O/run	2 TB in, 5 TB out	50 TB in, 5 TB out
Bandwidth	10 GB/s (hopper)	250 GB/s (ngf)
% IO time/run	35%	35%
Filesystem space	0.2 PB	5 PB
Archive space	0.5 PB	50 PB
Memory/node	1-2 GB	1-2 GB
Total memory	0.5 TB	5 TB

Domain Dimensions

- Computer, computational & physical science
 - multi-focus, overlapping collaborations, overlapping projects/funding
- Capability, capacity, on-demand & experimental computing.
 - different platforms, same data
- Experiment-specific & domain-generic software + data.
 - collaboration of collaborations
- Multi-agency (DOE + NSF, NASA, ESA, JAXA etc)
 - primary responsibility for computing varies with domain/experiment
 - formal responsibility may not match actual resources
- Multi-institution
 - multi-hatted individuals, given DOE lab constraints

The Conundrum

"As a cosmologist:

- want access to medium sized systems with short queues and no downtime
- often would benefit more from high disk bandwidth than super fast interconnect
- appreciate a chance to prepare my software for future systems at my own pace (e.g. Dirac GPU testbed)
- can tolerate longer run times with fewer cores
- would often greatly benefit from more memory per core

As a HPC software developer:

- want access to largest systems ever built
- want access to latest technology that might not even make it to production
- give less weight to disk performance
- can tolerate intermittent system access
- am less likely to exhaust memory due to large concurrency"

Current Challenges

- File-system performance is very unpredictable very rarely matches its formal specifications.
- NGF is often too slow for production computing, but staging files to Hopper scratch is painfully time- and space-consuming.
- Archiving and retrieving data is slow & inflexible.
- Scheduling does not support the complexity we would like to use.
- Low-hanging algorithm/implementation fruit have (largely) gone.
- Next-generation architectures are disparate, heterogeneous & unpredictable.

One day in October ...

