
Debbie Bard
Data and Analytics Services
NERSC
NUG telecon, 26th Jan 2017

Accelerate 
your IO with 
the NERSC 
Burst Buffer

- 1 -



HPC memory hierarchy

Memory 
(DRAM)

Storage 
(HDD)

CPU
CPU

Far Memory 
   (DRAM)

Far Storage 
    (HDD)

Near Storage 
       (SSD)

Near Memory 
    (HBM)

Past Future

On 
Chip

On 
Chip

Off 
Chip

Off 
Chip

- 2 -



HPC memory hierarchy

CPU

Far Memory 
   (DRAM)

Far Storage 
    (HDD)

Near Storage 
       (SSD)

Near Memory 
    (HBM)

Future

On 
Chip

Off 
Chip

- 3 -

•Silicon and system 
integration

•Bring everything – storage, 
memory, interconnect – 
closer to the cores

•Raise center of gravity of 
memory pyramid, and make 
it fatter

–Enable faster and more 
efficient data movement

–Scientific Big Data: Addressing  
Volume, Velocity



Why an SSD Burst Buffer?

• Motivation: Handle spikes in I/O bandwidth 
requirements 
– Reduce overall application run time
– Compute resources are idle during I/O bursts

• Some user applications have challenging I/O 
patterns
– High IOPs, random reads, different concurrency…

• Cost rationale: Disk-based PFS bandwidth is 
expensive

– Disk capacity is relatively cheap
– SSD bandwidth is relatively cheap

=>Separate bandwidth and spinning disk
• Provide high BW without wasting PFS capacity
• Leverage Cray Aries network speed

- 4 -- 4 -



Why an SSD Burst Buffer?

• Motivation: Handle spikes in I/O bandwidth 
requirements 
– Reduce overall application run time
– Compute resources are idle during I/O bursts

• Some user applications have challenging I/O patterns
– High IOPs, random reads, different concurrency… perfect for 

SSDs

• Cost rationale: Disk-based PFS bandwidth is expensive
– Disk capacity is relatively cheap
– SSD bandwidth is relatively cheap

=>Separate bandwidth and spinning disk
• Provide high BW without wasting PFS capacity
• Leverage Cray Aries network speed

- 5 -- 5 -



NERSC/Cray Architecture 

- 6 -

• DataWarp software (integrated with SLURM WLM) allocates 
portions of available storage to users per-job (or ‘persistent’).

• Users see a POSIX filesystem
• Filesystem can be striped across multiple BB nodes (depending 

on allocation size requested)

Compute Nodes

Aries High-Speed Network

Blade  = 2x Burst Buffer Node: 4 Intel P3608 3.2 TB SSDs
 

I/O Node (2x InfiniBand HCA)

InfiniBand Fabric

Lustre OSSs/OSTs

St
o

ra
ge

 F
ab

ri
c 

(I
n

fi
n

iB
an

d
)

Storage Servers

CN

CN CN

CN

BB SSD
SSD

ION IB
IB



NERSC/Cray Architecture 

- 7 -

• DataWarp software (integrated with SLURM WLM) allocates 
portions of available storage to users per-job (or ‘persistent’).

• Users see a POSIX filesystem
• Filesystem can be striped across multiple BB nodes (depending 

on allocation size requested)

Compute Nodes

Aries High-Speed Network

Blade  = 2x Burst Buffer Node: 4 Intel P3608 3.2 TB SSDs
 

I/O Node (2x InfiniBand HCA)

InfiniBand Fabric

Lustre OSSs/OSTs

St
o

ra
ge

 F
ab

ri
c 

(I
n

fi
n

iB
an

d
)

Storage Servers

CN

CN CN

CN

BB SSD
SSD

ION IB
IB

- 7 -- 7 -

compute nodes

BB blade

LNET/DVS
IO nodes

service nodes



Aries

Xeon 
E5 v1

Xeon
E5 v1

PCIe Gen3 8x

PCIe Gen3 8x

PCIe Gen3 8x

PCIe Gen3 8x

3.2 TB Intel P3608 SSD

3.2 TB Intel P3608 SSD

3.2 TB Intel P3608 SSD

3.2 TB Intel P3608 SSD

Burst Buffer Blade = 2xNodes

- 8 -

To
  H

SN

- 8 -



Aries

Xeon 
E5 v1

Xeon
E5 v1

PCIe Gen3 8x

PCIe Gen3 8x

PCIe Gen3 8x

PCIe Gen3 8x

3.2 TB Intel P3608 SSD

3.2 TB Intel P3608 SSD

3.2 TB Intel P3608 SSD

3.2 TB Intel P3608 SSD

Burst Buffer Blade = 2xNodes

- 9 -

To
  H

SN

- 9 -

●  ~1.8PiB of SSDs over 288 nodes
● Accessible from both HSW and KNL nodes



10

DataWarp: Under the hood

•Workload Manager (Slurm) 
schedules job in the queue on 
Cori

•DataWarp Service (DWS) 
configures DW space and 
compute node access to DW

•DataWarp Filesystem handles 
stage interactions with PFS 
(Parallel File System, i.e. scratch)

•Compute nodes access DW via a 
mount point



Using Cray DataWarp at 
NERSC

- 11 -

http://www.nersc.gov/users/computational-syste
ms/cori/burst-buffer/example-batch-scripts/

http://www.nersc.gov/users/computational-systems/cori/burst-buffer/example-batch-scripts/
http://www.nersc.gov/users/computational-systems/cori/burst-buffer/example-batch-scripts/
http://www.nersc.gov/users/computational-systems/cori/burst-buffer/example-batch-scripts/


Two kinds of DataWarp Instances 

12

•“Instance”: an allocation on the BB

•Can it be shared? What is its lifetime?
–Per-Job Instance

•Can only be used by job that creates it

•Lifetime is the same as the creating job

•Use cases: PFS staging, application scratch, checkpoints

–Persistent Instance
•Can be used by any job (subject to UNIX file permissions)

•Lifetime is controlled by creator

•Use cases: Shared data, PFS staging, Coupled job workflow

•NOT for long-term storage of data! 



Two DataWarp Access Modes

13

•Striped (“Shared”)
–Files are striped across all DataWarp nodes

–Files are visible to all compute nodes 
Aggregates both capacity and BW per file

–One DataWarp node elected as the metadata 
server (MDS)

•Private
–Files are assigned to one DataWarp node

–File are visible to only the compute node that 
created them

–Each DataWarp node is an MDS for one or 
more compute nodes

BB_1 BB_2 BB_3

CN_
1

CN_
2

CN_
3

BB_1

CN_
1

CN_
2

CN_
3



14

How to use DataWarp

•Principal user access: SLURM Job script directives: #DW 
–Allocate job or persistent DataWarp space

–Stage files or directories in from PFS to DW; out DW to PFS

–Access BB mount point via $DW_JOB_STRIPED, 
$DW_JOB_PRIVATE, $DW_PERSISTENT_STRIPED_name

•User library API – libdatawarp 
–Allows direct control of staging files asynchronously

–C library interface
–https://www.nersc.gov/users/computational-systems/cori/burst-buffer/example-batch

-scripts/#toc-anchor-8 

–https://github.com/NERSC/BB-unit-tests/tree/master/datawarpAPI 

https://www.nersc.gov/users/computational-systems/cori/burst-buffer/example-batch-scripts/%23toc-anchor-8
https://www.nersc.gov/users/computational-systems/cori/burst-buffer/example-batch-scripts/%23toc-anchor-8
https://www.nersc.gov/users/computational-systems/cori/burst-buffer/example-batch-scripts/%23toc-anchor-8
https://github.com/NERSC/BB-unit-tests/tree/master/datawarpAPI
https://github.com/NERSC/BB-unit-tests/tree/master/datawarpAPI


- 15 -

Integration with SLURM

• ‘type=scratch’ – duration just for compute job (i.e. not ‘persistent’)

• ‘access_mode=striped’ – visible to all compute nodes (i.e. not 
‘private’) and striped across multiple BB nodes 

–Actual distribution across BB Nodes is in units of (configurable) 
granularity (currently 200 GB at NERSC in wlm_pool, so 1000 GB 
would normally be placed on 5 BB nodes)

• Data ‘stage_in’ before job start and ‘stage_out’ after

#!/bin/bash
#SBATCH –p regular –N 10 –t 00:10:00
#DW jobdw capacity=1000GB access_mode=striped type=scratch
#DW stage_in source=/lustre/inputs destination=$DW_JOB_STRIPED/inputs \ 
type=directory
#DW stage_in source=/lustre/file.dat destination=$DW_JOB_STRIPED/ type=file
#DW stage_out source=$DW_JOB_STRIPED/outputs destination=/lustre/outputs \  
type=directory
srun my.x --indir=$DW_JOB_STRIPED/inputs --infile=$DW_JOB_STRIPED/file.dat \  
--outdir=$DW_JOB_STRIPED/outputs



- 16 -

Integration with SLURM

• ‘type=scratch’ – duration just for compute job (i.e. not ‘persistent’)

• ‘access_mode=striped’ – visible to all compute nodes (i.e. not 
‘private’) and striped across multiple BB nodes 

–Actual distribution across BB Nodes is in units of (configurable) 
granularity (currently 200 GB at NERSC in wlm_pool, so 1000 GB 
would normally be placed on 5 BB nodes)

• Data ‘stage_in’ before job start and ‘stage_out’ after

#!/bin/bash
#SBATCH –p regular –N 10 –t 00:10:00
#DW jobdw capacity=1000GB access_mode=striped type=scratch
#DW stage_in source=/lustre/inputs destination=$DW_JOB_STRIPED/inputs \ 
type=directory
#DW stage_in source=/lustre/file.dat destination=$DW_JOB_STRIPED/ type=file
#DW stage_out source=$DW_JOB_STRIPED/outputs destination=/lustre/outputs \  
type=directory
srun my.x --indir=$DW_JOB_STRIPED/inputs --infile=$DW_JOB_STRIPED/file.dat \  
--outdir=$DW_JOB_STRIPED/outputs



- 17 -

Integration with SLURM

• ‘type=scratch’ – duration just for compute job (i.e. not ‘persistent’)

• ‘access_mode=striped’ – visible to all compute nodes (i.e. not 
‘private’) and striped across multiple BB nodes 

–Actual distribution across BB Nodes is in units of (configurable) 
granularity (currently 200 GB at NERSC in wlm_pool, so 1000 GB 
would normally be placed on 5 BB nodes)

• Data ‘stage_in’ before job start and ‘stage_out’ after

#!/bin/bash
#SBATCH –p regular –N 10 –t 00:10:00
#DW jobdw capacity=1000GB access_mode=striped type=scratch
#DW stage_in source=/lustre/inputs destination=$DW_JOB_STRIPED/inputs \ 
type=directory
#DW stage_in source=/lustre/file.dat destination=$DW_JOB_STRIPED/ type=file
#DW stage_out source=$DW_JOB_STRIPED/outputs destination=/lustre/outputs \  
type=directory
srun my.x --indir=$DW_JOB_STRIPED/inputs --infile=$DW_JOB_STRIPED/file.dat \  
--outdir=$DW_JOB_STRIPED/outputs



- 18 -

Integration with SLURM

• ‘type=scratch’ – duration just for compute job (i.e. not ‘persistent’)

• ‘access_mode=striped’ – visible to all compute nodes (i.e. not 
‘private’) and striped across multiple BB nodes 

–Actual distribution across BB Nodes is in units of (configurable) 
granularity (currently 200 GB at NERSC in wlm_pool, so 1000 GB 
would normally be placed on 5 BB nodes)

• Data ‘stage_in’ before job start and ‘stage_out’ after

#!/bin/bash
#SBATCH –p regular –N 10 –t 00:10:00
#DW jobdw capacity=1000GB access_mode=striped type=scratch
#DW stage_in source=/lustre/inputs destination=$DW_JOB_STRIPED/inputs \ 
type=directory
#DW stage_in source=/lustre/file.dat destination=$DW_JOB_STRIPED/ type=file
#DW stage_out source=$DW_JOB_STRIPED/outputs destination=/lustre/outputs \  
type=directory
srun my.x --indir=$DW_JOB_STRIPED/inputs --infile=$DW_JOB_STRIPED/file.dat \  
--outdir=$DW_JOB_STRIPED/outputs



19

•Using a persistent DataWarp instance
–Lifetime different from the batch job

–Usable by any batch job (posix permissions permitting)

–name=xyz: Name of persistent instance to use

            

C

Integration with SLURM

 Use in another job Delete 



20

•Using a persistent DataWarp instance
–Lifetime different from the batch job

–Usable by any batch job

–name=xyz: Name of persistent instance to use

            

C

Integration with SLURM

 Use in another job Delete 



21

•Using a persistent DataWarp instance
–Lifetime different from the batch job

–Usable by any batch job

–name=xyz: Name of persistent instance to use

            

C

Integration with SLURM

 Use in another job Delete 



22

•Using a persistent DataWarp instance
–Lifetime different from the batch job

–Usable by any batch job

–name=xyz: Name of persistent instance to use

            

C

Integration with SLURM

 Use in another job Delete 



Resources

•NERSC Burst Buffer Web Pages

http://www.nersc.gov/users/computational-systems
/cori/burst-buffer/

•Example batch scripts  

http://www.nersc.gov/users/computational-systems
/cori/burst-buffer/example-batch-scripts/

•Burst Buffer Early User Program Paper 

http://www.nersc.gov/assets/Uploads/Nersc-BB-EU
P-CUG.pdf

- 23 -

http://www.nersc.gov/assets/Uploads/Nersc-BB-EUP-CUG.pdf
http://www.nersc.gov/users/computational-systems/cori/burst-buffer/
http://www.nersc.gov/users/computational-systems/cori/burst-buffer/
http://www.nersc.gov/users/computational-systems/cori/burst-buffer/
http://www.nersc.gov/users/computational-systems/cori/burst-buffer/example-batch-scripts/
http://www.nersc.gov/users/computational-systems/cori/burst-buffer/example-batch-scripts/
http://www.nersc.gov/users/computational-systems/cori/burst-buffer/example-batch-scripts/
http://www.nersc.gov/assets/Uploads/Nersc-BB-EUP-CUG.pdf
http://www.nersc.gov/assets/Uploads/Nersc-BB-EUP-CUG.pdf
http://www.nersc.gov/assets/Uploads/Nersc-BB-EUP-CUG.pdf


Benchmark Performance

• Burst Buffer is doing very well against benchmark 
performance targets 

– Out-performs Lustre significantly
– Fastest IO system in the world! 

IOR Posix FPP IOR MPIO Shared File IOPS

Read Write Read Write Read Write

Best Measured (287 Burst 
Buffer Nodes : 11120 Compute 
Nodes; 4 ranks/node)* 1.7 TB/s 1.6 TB/s 1.3 TB/s 1.4 TB/s 28M 13M

*Bandwidth tests: 8 GB block-size 1MB transfers  IOPS tests: 1M blocks 4k transfer

- 24 -



Striping, granularity and pools

• DataWarp nodes are configured to have “granularity”
– Minimum amount of data that will land on one node

• Two “pools” of DataWarp nodes, with different 
granularity

– wlm_pool (default): 200GiB 
• #DW jobdw capacity=1000GB access_mode=striped type=scratch 

pool=wlm_pool

– sm_pool: 20.14 GiB
• #DW jobdw capacity=1000GB access_mode=striped type=scratch 

pool=sm_pool

• For example, 1.2TiB will be striped over 6 BB nodes in 
wlm_pool, but over 60 BB nodes in sm_pool
– No guarantee that allocation will be spread evenly over SSDs 

- may see >1 “grain” on a single node



Performance tips

• Stripe your files across multiple BB servers
– To obtain good scaling, need to drive IO with sufficient 

compute - scale up # BB nodes with # compute nodes



Summary

•NERSC has the first Burst Buffer for open science in 
the USA

–And the first in the world that is being tested for real use 
cases! 

•Users are able to take advantage of SSD performance
–Some tuning may be required to maximise performance

•Many bugs now worked through
–But care is needed when using this new technology!

•User experience today is generally good
–Let us know if you’re interested in using the Burst Buffer…

- 27 -



- 28 -

More information…

https://www.nersc.gov/users/computational-systems
/cori/burst-buffer/

https://www.nersc.gov/users/computational-systems/cori/burst-buffer/
https://www.nersc.gov/users/computational-systems/cori/burst-buffer/
https://www.nersc.gov/users/computational-systems/cori/burst-buffer/


Extra slides

- 29 -



SSD write protection

30

•SSDs support a set amount of write activity before 
they wear out

•Runaway application processes may write an excessive 
amount of data, and therefore, “destroy” the SSDs

•Three write protection policies
–Maximum number of bytes written in a period of time

–Maximum size of a file in a namespace

–Maximum number of files allowed to be created in a 
namespace

•Log, error, log and error
–-EROFS (write window exceeded)

–-EMFILE (maximum files created exceeded)

–-EFBIG (maximum file size exceeded)


