
1

Building and
running GPU
applications on
Perlmutter

On break:
Starting
10am PT

2

Today

●9:30am PT (now): Session 1 - Building and running an application on
Perlmutter with MPI + GPUs (CUDA)

●10:30am PT: 30 minute Break
●11:00am PT: Session 2 - Additional Scenarios:

○ BLAS/LAPACK/FFTW etc with GPUs
○ Other compilers (not NVidia)
○ CUDA-aware MPI
○ Not CUDA (OpenMP offload, OpenACC)
○ cmake
○ Spack

3

Goal for this session:

• Build and run a simple application with:
o MPI to communicate between tasks
o CUDA to offload computation to GPUs within a task

4

Compiling

• *.c, *.cpp, *.f90 => CPU source code
o may include MPI
o may use directives for GPU
o compile with regular compilers (Cray wrappers)

• CC for C++
• cc for C
• ftn for Fortran

• *.cu => CUDA kernels
o compile with nvcc

• (Note: With PrgEnv-nvidia, CUDA can be incorporated into same
source files as CPU code, add "-cuda" or "-gpu" flag at compile time)

5

CUDA and the Perlmutter PrgEnv
PrgEnv-nvidia gets you Nvidia compilers plus
Cray compiler wrappers with MPI and other
library support
(loaded by default)

cudatoolkit gets you nvcc (CUDA) compiler
plus GPU libraries and tools (Nvidia CUDA
toolkit) - needed for GPU code!
(you must module load)

6

What to load?

For most applications (including today's examples) we
recommend the PrgEnv-nvidia stack (loaded by default)

To build GPU applications, you will need to load a
cudatoolkit module
• Choose the CUDA version matching what your application needs

For OpenMP/OpenACC offloading or for CUDA-aware MPI,
you also need: module load craype-accel-nvidia80

7

Try it out!

• Login to Perlmutter
• git clone https://github.com/NERSC/Perlmutter_Training_Jan2022.git

• Navigate to CUDA/Ex-3/
• module load cudatoolkit
• Run "make" and look at the output

• (Zoom: everyone raise your hand, and lower it when you have
completed this. Jump to breakout room if you have questions about
accessing Perlmutter. We'll reconvene when everyone has completed
the exercise, or after 10 minutes. For bonus points, try Ex-1 and Ex-2
too)

https://github.com/NERSC/Perlmutter_Training_Jan2022.git

8

What just happened?

You should have seen:
CC -gpu=cc80 vecAdd.cu -o vec_add

• We are using the C++ Cray compiler wrapper
• All the code is in the CUDA source file
• The Cray wrapper is calling the Nvidia C++ compiler

(nvc++) and passing a -gpu flag to target A100 GPUs

9

More exercises

Work through these at your leisure:

• Ex-1/ is a simple GPU kernel that you can build with only
nvcc

• Ex-2/ has C++ and CUDA code in separate files
o Compile the .cu file with nvcc
o Compile the .cpp file with (any) C++ compiler
o Try "module load gcc" to use the GNU compiler instead

• The README.md one level up has info about each

10

Running the GPU application

The Basics:
• Don't run on the login nodes, submit a batch job!
• When submitting a job, you must specify a GPU-enabled

account name
o Same as your "normal" (CPU, Cori) repo name but with _g suffix,

eg for today:
• #SBATCH -A ntrain3_g

11

Necessary SBATCH options (1)

#!/bin/bash

#SBATCH -q regular # "regular" QOS for most jobs

#SBATCH -t 5 # max wallclock time (5 minutes)

#SBATCH -n 8 # number of MPI tasks

#SBATCH -c 32 # reserve 32 cpus per task

#SBATCH --ntasks-per-node=4 # 8 tasks / 4 per node = 2 nodes

#SBATCH --gpus-per-task=1 # reserve 1 GPU per task

#SBATCH -A ntrain3_g # GPU version of your project/repo

#SBATCH -C gpu # use GPU nodes

#SBATCH –reservation=perlmutter_day1 # for today only

Each phase 1 (GPU) node has 64
cores x 2 hyperthreads, so 128
CPUs => 32 cpus is 1/4th of a node

12

Necessary SBATCH options (2)

#!/bin/bash

#SBATCH -q regular # regular QOS

#SBATCH -t 5 # max wallclock time (5 minutes)

#SBATCH -n 8 # number of MPI tasks

#SBATCH -c 32 # reserve 32 cpus per task

#SBATCH --ntasks-per-node=4 # 8 tasks / 4 per node = 2 nodes

#SBATCH --gpus-per-task=1 # reserve 1 (of four) GPUs per task

#SBATCH -A ntrain3_g # GPU version of your project/repo

#SBATCH -C gpu # use GPU nodes

#SBATCH –reservation=perlmutter_day1 # for today only

Specify a constraint of "run only on
gpu nodes" and use the _g version of
your repo for GPU hours.

Use your "GPU hours" account (_g)

13

Running the GPU code

#!/bin/bash

#SBATCH -q regular

... (sbatch directives as per previous slides)

srun -n4 ./vec_add

--gpus-per-task vs -G
• With #SBATCH -G you can specify the total number of

GPUs for a job (eg with 2 nodes, you can use "-G 8")
• Handy shorthand for when you are using few or 1 nodes

14

Did it work?

If you see errors: make sure you have all the SBATCH
directives specified! Eg, when --gpus-per-task is not set:

sleak@nid001408:~/.../Ex-3> srun -n4 ./vec_add

srun: error: nid001408: tasks 0-1: Floating point exception

srun: launch/slurm: _step_signal: Terminating StepId=944530.1

srun: error: nid001409: tasks 2-3: Floating point exception

15

Try it out!
• On Perlmutter, in your clone of
• git clone https://github.com/NERSC/Perlmutter_Training_Jan2022.git

• Navigate to CUDA/Ex-3/
• make
• sbatch batch.sh
• Bonus points: modify batch.sh and run across 2 nodes

• (Zoom: everyone raise your hand, and lower it when you have
completed this. Jump to breakout room if you have questions about
accessing Perlmutter. We'll reconvene when everyone has completed
the exercise, or after 10 minutes. For more bonus points: try Ex-4/
too)

https://github.com/NERSC/Perlmutter_Training_Jan2022.git

16

Affinity and binding (1)

Experienced Cori users will be familiar with the ideas of
affinity and binding:
• Different CPU cores have affinity (closeness) to certain

memory and caches
• Binding a thread or process to certain cores ensures the

thread stays on a core close to its data
o OMP_PLACES=cores
o srun --cpu-bind=cores

17

Affinity and binding (2)

Perlmutter GPU nodes are configured as "NPS4" => 4 NUMA
nodes per socket. Each GPU is "closest" to certain cores

18

Affinity and binding (3)

• Set GPU binding with:
srun -n8 --cpu-bind=cores --gpu-bind=closest ./vec_add

https://docs.nersc.gov/jobs/affinity/#gpus

bind each task to a subset
of the CPU cores.. .. and to the closest GPU

https://docs.nersc.gov/jobs/affinity/#gpus

19

Try it out!

• On Perlmutter, in your clone of
• git clone https://github.com/NERSC/Perlmutter_Training_Jan2022.git

• Navigate to CUDA/Ex-5/
• make
• Look at script_reg.sh and script_close.sh.

Submit each and compare outputs

• Next item on agenda is a break - you can (optionally) continue the
exercise into the break, we will reconvene at 11am PT

https://github.com/NERSC/Perlmutter_Training_Jan2022.git

20

Building and
running GPU
applications on
Perlmutter - Part 2

21

Recap

We built and ran a C++ application with MPI+CUDA
• Cray compiler wrappers for CPU/MPI code
• nvcc for CUDA code

Two software stacks:
• PrgEnv-nvidia for CPU + MPI
• cudatoolkit for GPU

#SBATCH directives
GPU Affinity

22

This session:

"My application isn't that straightforward"

What to do for other common scenarios

23

Scenarios

• BLAS/LAPACK/FFTW etc with GPUs
• Other compilers (not NVidia)
• CUDA-aware MPI
• Not CUDA (OpenMP offload, OpenACC)
• cmake
• Spack

24

GPU-accelerated math libraries in CUDA

• GPU-accelerated implementations of - or alternatives to -
common math libraries are available, or obtainable

• BLAS => cuBLAS (module load cudatoolkit)
• LAPACK => cuSOLVER (module load cudatoolkit)
• Note: cuSOLVER is not the same API as LAPACK

o BUT: -nvlamath option (NVidia compiler) provides a compatible
interface

• FFTW => cuFFT and cuFFTW (FFTW interface to cuFFT)
• cuSPARSE

25

Other GPU-accelerated math libraries

• MAGMA <= BLAS and a subset of LAPACK
• SLATE <= ScaLAPACK

https://docs.nersc.gov/performance/readiness/#blaslapackscalapack

https://docs.nersc.gov/performance/readiness/#blaslapackscalapack

26

Nvidia HPC SDK Training, Jan 12-13
● A hands-on training provided by Nvidia next week
● Nvidia HPC SDK compiler

○ Default and recommended compiler for Perlmutter GPU
● Topics include:

○ GPU architecture and HPC SW developer considerations
○ Standard Language Acceleration and Libraries
○ OpenACC
○ OpenMP offload
○ CUDA
○ Profiling tools

● Registration and more info at:
https://www.nersc.gov/users/training/events/nvidia-hpcsdk-training-jan2022/

https://www.nersc.gov/users/training/events/nvidia-hpcsdk-training-jan2022/

27

Other compilers (non-NVidia)

• PrgEnv-nvidia is currently the best-supported
toolchain for GPU-based applications on Perlmutter
o We recommend using PrgEnv-nvidia in most cases, and

PrgEnv-nvidia is the default.
• However different compilers have different strengths and

weaknesses, and for some applications PrgEnv-nvidia will
hit difficulties.
o PrgEnv-gnu is usually a good alternative in these cases

28

Compiler Limitations: GNU

• Must choose correct GCC version for a given CUDA
version
o eg cudatoolkit/21.9_11.4 (default) supports gcc/11.2.0 (default)

but previous cudatoolkit versions eg 21.3_11.2 only support
gcc/9.3.0

• OpenMP/OpenACC offloading not yet supported
• CUDA code must be in separate files from main source

code

29

Compiler Limitations: LLVM

Coming Soon!
• PrgEnv-llvm is a NERSC-supported PrgEnv based on the

LLVM compiler
• For C/C++ only (no Fortran)
• Support for SYCL and OpenMP offload
• Not available on Perlmutter yet, but expected soon

30

Compiler Limitations: Cray

• PrgEnv-cray offloading does not yet support our A100
GPUs
o Must module load craype-accel-host instead
o Not tested by NERSC, very limited support

31

Compiler Limitations: AOCC

• No offloading support yet
• No testing by NERSC yet, very limited support

32

Recommendation

If PrgEnv-nvidia is not viable for your application, use
PrgEnv-gnu

Support for other toolchains will improve, but for now only
PrgEnv-nvidia and PrgEnv-gnu are supported

33

Errors you might see

• srun: error: nid001408: tasks 0-1: Floating point
exception => did you specify --gpus-per-task (or -G) in your
sbatch allocation?

• slurmstepd: error: Bind request 3 (0x8) does not specify
any devices within the allocation. Binding to the first
device in the allocation instead. => Did you request all of the
GPUs on the node? (eg -N2 -G4 gets you only 2 GPUs per node)

• vec_add: error while loading shared libraries:
libnvcpumath.so: cannot open shared object file: No such
file or directory => Did you "make clean" after swapping
PrgEnvs?

34

Try it out!

• On Perlmutter, in your clone of
• git clone https://github.com/NERSC/Perlmutter_Training_Jan2022.git

• Repeat Ex-4, Ex-5 with PrgEnv-gnu
o Note: Ex-3 has CUDA and C++ code in same source file, only

supported by PrgEnv-nvidia

• (Zoom: everyone raise your hand, and lower it when you have
completed this. Jump to breakout room if you have questions about
accessing Perlmutter. We'll reconvene when everyone has completed
the exercise, or after 10 minutes. For more bonus points: try Ex-4/
too)

https://github.com/NERSC/Perlmutter_Training_Jan2022.git

35

CUDA-aware MPI (1)

NVidia UVA presents GPU device
memory as part of the same address
space as CPU main memory
• Allows a CUDA-aware MPI

implementation (eg Cray-MPICH)
to send and receive messages
directly from/to GPU memory -
no copy-to-main-memory needed

(from https://developer.nvidia.com/blog/introduction-cuda-aware-mpi/)

https://developer.nvidia.com/blog/introduction-cuda-aware-mpi/

36

CUDA-aware MPI (2)

If your executable uses CUDA-aware MPI, ldd should show
libmpi_gtl_cuda.so.0, eg:

libmpi_gtl_cuda.so.0 =>
/opt/cray/pe/lib64/libmpi_gtl_cuda.so.0

At runtime (in batch script) set:
export MPICH_GPU_SUPPORT_ENABLED=1

37

Try it out!

• On Perlmutter, in your clone of
• git clone https://github.com/NERSC/Perlmutter_Training_Jan2022.git

• Look at the example in CUDA-aware-MPI. Build and run
it, and use ldd to verify the presence of libmpi_gtl_cuda
o Note: Remember to switch back to PrgEnv-nvidia!

• (Zoom: everyone raise your hand, and lower it when you have
completed this. Jump to breakout room if you have questions about
accessing Perlmutter. We'll reconvene when everyone has completed
the exercise, or after 10 minutes. This example comes from
https://docs.nersc.gov/development/programming-models/mpi/#cuda-aware-mpi)

https://github.com/NERSC/Perlmutter_Training_Jan2022.git
https://docs.nersc.gov/development/programming-models/mpi/#cuda-aware-mpi

38

Try it out

rgayatri@perlmutter:login34:/pscratch/sd/r/rgayatri/Perlmutter_Training_Jan2022/CUDA
/CUDA-aware-MPI> ldd bcast_from_device
[snip]
 libz.so.1 => /lib64/libz.so.1 (0x00007f7621b2e000)
 libdl.so.2 => /lib64/libdl.so.2 (0x00007f762192a000)
 libmpi_nvidia.so.12 => /opt/cray/pe/lib64/libmpi_nvidia.so.12 (0x00007f761f1cc000)
 libmpi_gtl_cuda.so.0 => /opt/cray/pe/lib64/libmpi_gtl_cuda.so.0
(0x00007f761efbb000)
 libxpmem.so.0 => /opt/cray/xpmem/default/lib64/libxpmem.so.0 (0x00007f761edb8000)
 libcudanvhpc.so => /opt/nvidia/hpc_sdk/Linux_x86_64/21.9/compilers/lib/libcudanvhpc.so
(0x00007f761ebb4000)
linux-vdso.so.1 (0x00007ffd375ab000)
 [snip]

39

OpenMP Offload
 #pragma omp target teams distribute parallel for \
 map(to: a[:n], b[:n]) map(from: c[:n])

CXXFLAGS += -mp=gpu -gpu=cc80 -Minfo

(-Minfo is optional, prints useful info during compile)

40

OpenACC
 #pragma acc parallel loop gang vector \
 copyin(a[:n]) copyout(c[:n])

CXXFLAGS += -acc -Minfo=accel

41

Try it out!

• On Perlmutter, in your clone of
• git clone https://github.com/NERSC/Perlmutter_Training_Jan2022.git

• Look at the example in OpenMP-OpenACC
• Build and run it

o Note: Remember to switch back to PrgEnv-nvidia!

• (Zoom: everyone raise your hand, and lower it when you have
completed this. Jump to breakout room if you have questions about
accessing Perlmutter. We'll reconvene when everyone has completed
the exercise, or after 10 minutes)

https://github.com/NERSC/Perlmutter_Training_Jan2022.git

42

Using cmake on Perlmutter

● cmake modules available on perlmutter
○ Latest cmake version

● Current issues with linking math libraries (cufft and
cusolver)
○ export

CMAKE_PREFIX_PATH=/opt/nvidia/hpc_sdk/Linux_x86_64/21.9/m
ath_libs/11.4:$CMAKE_PREFIX_PATH

● Known issues
○ https://docs.nersc.gov/current/#new-issues

https://docs.nersc.gov/current/#new-issues

43

Spack on Perlmutter

Spack 0.17.0 will be available for Perlmutter soon

Configured to work with NERSC E4S deployment

