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HPC Communication Considerations 

• Communication Cost:  tcomm = ts + L * th + m/Be 
– ts = startup time ~ time to setup message and routing 
– th = hop time, L = number of hops 
– m = message size, Be = effective bandwidth 
– Communication is expensive.  Avoid it if possible! 

• Considerations: 
– Number and size of communications  
– Transmission methods and protocols 
– Network topology and routing 
– Congestion and synchronization 

• Applies to message passing and shared access 
but this discussion focuses on message passing 
via MPI 



Number and Size of Communications 

• Communication Cost:  tcomm = ts + L * th + m/Be 

• Each communication incurs a minimum cost 
equal to the startup time ts. 

• The size of a communication determines the 
time required to transmit the associated data. 

• In general, minimize both the number and size of 
communications. 
– Favor a minimum number over a minimum size due to 

the bandwidth of modern interconnects. 
– It is better to spend time transmitting useful data than 

to pay startup costs.  Aggregate data when possible. 



Collective Communications 

• Collectives typically require a large number of 
messages with potentially bad routing. 

• Major source of problems when scaling due to 
rapidly increasing number of messages 

• Most vendors provide optimized versions 
• Optimized Collectives - Cray 

– MPI_Allgather (small messages) & MPI_Allgatherv 
– MPI_Alltoall (optimized exchange order)  
– MPI_Alltoallv / MPI_Alltoallw (windowing algorithm) 

• Optimized SMP-aware Collectives - Cray 
– MPI_Allreduce, MPI_Barrier, MPI_Bcast, MPI_Reduce 



SMP-aware Collectives – Allreduce 
Example 

Identify Node-Captain rank.  
Perform a local on-node 
reduction to node-captain.  
NO network traffic. 

STEP 1 
Perform a local on-node 
bcast.  NO network traffic.  

STEP 3 
Perform an Allreduce with node-
captains only. This reduces the 
process count by a factor of 8 on 
XT5. 

STEP 2 



Performance Comparison of MPI_Allreduce 
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Transmission Methods and Protocols 

• Communication Cost:  tcomm = ts + L * th + m/Be 

• Multiple interconnect devices 
– SMP – Shared memory communication on nodes  
– Portals, IB, TCP/IP – Message passing between nodes 

• Multiple message protocols  
– Short messages: eager protocol 
– Long messages: rendezvous protocol (default), eager 

protocol 

• Automatic transitions between devices, 
protocols, and algorithms (configurable via 
environment variables) 



Short Message Eager Protocol - Cray 
• Sending rank "pushes" message to receiving 

rank 
– Sender assumes receiver can handle message and 

blindly transmits to it 

•  If matching receive is posted, receiver  
–  routes incoming data directly into specified receive 

buffer  
– posts notification event to other event queue 

•  If no matching receive is posted, receiver  
–  routes incoming data into unexpected message buffer 
– posts two events to unexpected event queue  
– copies data into specified receive buffer when matching 

receive is posted 

• Message size <= 
MPICH_MAX_SHORT_MSG_SIZE bytes 



Long Message Rendezvous Protocol - 
Cray 

• Receiving rank "pulls" message from sending 
rank 

• Sender notifies receiver about waiting 
message via a small header packet 

• Receiver requests message from sender after 
matching receive is posted 

• Receiver routes incoming data directly into 
specified receive buffer 

• Message size > 
MPICH_MAX_SHORT_MSG_SIZE bytes 



Long Message Eager Protocol - Cray 
• Sender assumes receiver will handle message 

appropriately or will request retransmission 
– Sender blindly transmits data to receiver  

•  If matching receive is posted, receiver 
–  routes incoming data directly into specified receive 

buffer  
– sends completion acknowledgement to sender 

•  If no matching receive is posted, receiver  
– creates a long protocol match entry  
–  requests retransmission when matching receive is 

posted  
–  routes incoming data directly into specified receive 

buffer 
• Enabled using MPICH_PTLS_EAGER_LONG 
• CAUTION: blocking sends and unexpected 

messages 



Network Topology and Routing 

• Communication Cost:  tcomm = ts + L * th + m/Be 

• The routing capabilities and physical layout of the 
network that interconnects compute nodes determines 
most of the transmission costs. 
– Number of hops between nodes 
–  Time required per hop 
– Maximum bandwidth 

• At small scale, the transmission cost associated with 
distance is often negligible, but such is not typically the 
case for very large machines. 

• Design your communication schemes around the 
strengths and weaknesses of your target machine.  The 
larger the machine, the more critical it is to do so. 
–  For example, consider a hierarchical scheme on large fat trees to 

minimize the impact of long, high-latency paths.   



Rank Placement 

•  In some cases, changing how the processes are laid out 
on the machine may affect performance. 
–  When point-to-point communication consumes a significant fraction of 

program time and a load imbalance detected 
–  When using collectives (all-to-all) on subcommunicators  (GYRO) 
–  When you need to spread out IO across nodes (POP) 

• Default is typically SMP-style placement where 
sequential MPI ranks are placed on the same node.  
– MPI codes typically perform better using SMP placement - 

nearest neighbor  
–  Vendors typically optimize collectives to be SMP aware 

• For example, a 12-process job launched on a node with 2 
hex-core processors would be placed as:  

PROCESSOR           0            1  
RANK              0,1,2,3,4,5   6,7,8,9,10,11 



Rank Placement – Cray 

• The default ordering can be changed using the following 
environment variable:  MPICH_RANK_REORDER_METHOD 

• These are the different values that you can set it to: 
0:  Round-robin placement – Sequential ranks are placed on the next 

node in the list.  Placement starts over with the first node upon 
reaching the end of the list.  

1: SMP-style placement – Sequential ranks fill up each node before 
moving to the next. 

2: Folded rank placement – Similar to round-robin placement except 
that each pass over the node list is in the opposite direction of the 
previous pass. 

3: Custom ordering. The ordering is specified in a file named 
MPICH_RANK_ORDER. 

• The CrayPat performance measurement tools can 
generate a suggested custom ordering.  



Example of CrayPat Rank Reordering 

Table 1:  Suggested MPI Rank Order!

 Eight cores per node:  USER Samp per node!

 Rank        Max    Max/        Avg    Avg/  Max Node!

Order  USER Samp     SMP  USER Samp     SMP  Ranks!

    d      17062   97.6%      16907  100.0%  832,328,820,797,113,478,898,600!

    2      17213   98.4%      16907  100.0%  53,202,309,458,565,714,821,970!

    0      17282   98.8%      16907  100.0%  53,181,309,437,565,693,821,949!

    1      17489  100.0%      16907  100.0%  0,1,2,3,4,5,6,7!

•  This suggests that 
1.  the custom ordering “d” might be the best 
2.  Folded-rank next best 
3.  Round-robin 3rd best 
4.  Default ordering last 



Reordering example 
GYRO   
• GYRO 8.0  

– B3-GTC problem with 1024 processes 

• Run with alternate MPI orderings 
– Custom: profiled with with –O apa and used reordering file 

MPICH_RANK_REORDER.d 

Reorder method Comm. time 
Default 11.26s 

0 – round-robin 6.94s 
2 – folded-rank 6.68s 

d-custom from apa 8.03s 

CrayPAT 
suggestion 
almost right! 



Reordering example 
TGYRO   

• TGYRO 1.0  
– Steady state turbulent transport code using GYRO, 

NEO, TGLF components 

• ASTRA test case 
– Tested MPI orderings at large scale 

Reorder 
method 

TGYRO wall time (min) 
20480 40960 81920 

Default 99m 104m 105m 
Round-robin 66m 63m 72m 

Huge win! 



Congestion and Synchronization 

• Communication Cost:  tcomm = ts + L * th + m/Be 

• Excessive traffic through a network region 
reduces the effective bandwidth available to any 
given communication. 

• Avoid routing a large number of messages to or 
from a region of adjacent nodes at the same 
time, when possible.  Instead, stagger the 
communications. 

• Avoid synchronous communications when 
possible, as load imbalances can lead to 
significant idling of resources. 



Tips & 
Recommendations 



MPI Environment Variables 
• Many environment variables are available to 

tune MPI performance 
– Well documented on the MPI man page – Read it! 
– Default settings generally focus on attaining the best 

performance for most codes – not necessarily your 
code! 

• The MPI environment can change between MPT 
versions - Cray 
– Read the MPI man page and Cray documentation! 

• MPICH_ENV_DISPLAY – set to display the MPI 
environment during MPI initialization 

• MPICH_VERSION_DISPLAY - set to display the 
version of Cray MPT during MPI initialization 



MPI Programming Techniques 
Pre-posting receives 
•  If possible, pre-post receives before the matching 

sends 
– Optimization technique for all MPICH installations (not just 

MPT) 
– Not sufficient to simply put receive immediately before 

send 
– Put significant amount of computation between receive-

send pair 

• Do not go crazy pre-posting receives.  You can 
overrun the resources available to deal with them. 

• Code example 
–  Halo update – with four buffers (n,s,e,w), post all receive requests 

as early as possible.  



MPI Programming Techniques 
Example: 9-pt stencil pseudo-code 

Basic 

9-pt computation!

Update ghost cell 
boundaries!
East/West IRECV, 
ISEND, WAITALL!

North/South IRECV, 
ISEND, WAITALL!

Maximal Irecv 
preposting 

Prepost all IRECV!
9-pt computation!
Update ghost cell 
boundaries!
East/West ISEND, 
Wait on E/W IRECV 
only!

North/South ISEND, 
Wait on the rest!

  *Makes use of temporary buffers!



MPI Programming Techniques 
Overlapping communication with 
computation 
•  Use non-blocking send/recvs to overlap 

communication with computation whenever possible 
–  Typical pattern: 

1.  Pre-post non-blocking receive 

2.  Compute a “reasonable” amount to ensure effective pre-
posting 

3.  Post non-blocking send 

4.  Compute as much as possible to maximize overlap of 
comm. and comp. 

5.  Wait on communication to finish only when absolutely 
necessary 



MPI Programming Techniques 
Overlapping communication with 
computation 
•  In some cases, it may be better to replace 

collective operations with point-to-point 
communications to overlap communication 
with computation 
–  Caution:  Do not blindly reprogram every collective 

by hand 
–  Concentrate on the parts of your algorithm with 

significant amounts of computation that can overlap 
with the point-to-point communications when a 
[blocking] collective is replaced 



MPI Programming Techniques 
Reduce Collective Communications   
• Avoid using collective communications whenever 

possible 
– MPI collectives are blocking, leading to large sync times 
– Collective communication can cripple scalability 

• Use algorithms that only require local info when 
possible 
– Consider duplicating computation to reduce 

communication 

• When an algorithm must communicate “globally”: 
– Use MPT collectives that have been optimized by Cray 
– Minimize the scope of the collective operation 
– Minimize the number of collectives through aggregation 
– Consider implementing a non-blocking collective only if 

justified after careful analysis 



MPI Programming Techniques 
Aggregating data 

•  For very small buffers, aggregate data into fewer 
MPI calls (especially for collectives) 
–  1 all-to-all with an array of 3 reals is clearly better than 3 all-to-

alls with 1 real 

–  Do not aggregate too much without careful consideration. The 
MPI protocol switches from a short (eager) protocol to a long 
message protocol using a receiver pull method once the 
message is larger than the eager limit. The optimal size for 
messages most of the time is less than the eager limit. 

•  Example – DNS 
–  Turbulence code (DNS) replaced 3 AllGatherv’s by one with a 

larger message resulting in 25% less runtime for one routine  



MPI Programming Techniques 
Aggregating data: Example from CFD 

***Original***  

for (index = 0; index < No; index++){  
   double tmp;  
   tmp = 0.0;  
   out_area[index] = Bndry_Area_out(A, 
labels[index]);  
   gdsum(&outlet_area[index],1,&tmp);  
}  
for (index = 0; index < Ni; index++){  
  double tmp;  
  tmp = 0.0;  
  in_area[index] = Bndry_Area_in(A, 
labels[index]);  
  gdsum(&inlet_area[index],1,&tmp);  
} !

void gdsum (double *x, int n, double *work)  
{  
  register int i;  
  MPI_Allreduce (x, work, n, MPI_DOUBLE, 
MPI_SUM, MPI_COMM_WORLD);  
  /* *x = *work; */  
  dcopy(n,work,1,x,1);  
  return;  
} !

***Improved***  

   for (index = 0; index < No; index++){  
      out_area[index] = Bndry_Area_out(A, 
labels[index]);  
   }!

   /* Get gdsum out of for loop */  
   tmp = new double[No];  
   gdsum (outlet_area, No, tmp);  
   delete tmp;  

   for (index = 0; index < Nin; index++){  
     in_area[index] = Bndry_Area_in(A, 
labels[index]);  
   }!

   /*  Get gdsum out of for loop */  
   tmp = new double[Ni];  
   gdsum(inlet_area, Ni, tmp);  
   delete tmp; !
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Hybridization 

27 TeraGrid '10 



OpenMP  
• When does it pay to add/use OpenMP in my MPI 

code? 
– Add/use OpenMP when code is network bound 
– As collective and/or point-to-point time increasingly 

becomes a problem, use threading to keep number of MPI 
processes per node to a minimum 

– Be careful adding OpenMP to memory bound codes – can 
hurt performance 

– Be careful to match memory affinity to thread affinity 
• Pre-touch memory from correct thread after allocation 

–  It is code/situation dependent! 
– Consider one MPI process on each CPU and one OpenMP 

thread per available core within each process 
• Often gives results almost as good as a fully optimized one-

process-per-node code (with OpenMP threads across all of the 
cores on the node) with significantly less development overhead 



OpenMP 
aprun depth - Cray 
• Must get “aprun –d” correct 

– -d (depth) Specifies the number of threads (cores) for 
each process.  ALPS allocates the number of cores 
equal to depth times processes.  

– The default depth is 1. This option is used in 
conjunction with the OMP_NUM_THREADS 
environment variable. 

– Also used to get more memory per process 
• Get 1 or 2 GB limit by default (machine dependent) 

– Many have gotten this wrong, so it is important to 
understand how to use it properly! 
• If you do not do it correctly, a hybrid OpenMP/MPI code can get 

multiple threads spawned on the same core which can be 
disastrous.  



OpenMP aprun 
depth (cont.) 

       % setenv OMP_NUM_THREADS 4 

      % aprun -n 4 -q ./omp1 | sort 
       Hello from rank 0, thread 0, on nid00291. (core affinity = 0) 
       Hello from rank 0, thread 1, on nid00291. (core affinity = 0) 
       Hello from rank 0, thread 2, on nid00291. (core affinity = 0) 
       Hello from rank 0, thread 3, on nid00291. (core affinity = 0) 
       Hello from rank 1, thread 0, on nid00291. (core affinity = 1) 
       Hello from rank 1, thread 1, on nid00291. (core affinity = 1) 
       Hello from rank 1, thread 2, on nid00291. (core affinity = 1) 
       Hello from rank 1, thread 3, on nid00291. (core affinity = 1) 
       Hello from rank 2, thread 0, on nid00291. (core affinity = 2) 
       Hello from rank 2, thread 1, on nid00291. (core affinity = 2) 
       Hello from rank 2, thread 2, on nid00291. (core affinity = 2) 
       Hello from rank 2, thread 3, on nid00291. (core affinity = 2) 
       Hello from rank 3, thread 0, on nid00291. (core affinity = 3) 
       Hello from rank 3, thread 1, on nid00291. (core affinity = 3) 
       Hello from rank 3, thread 2, on nid00291. (core affinity = 3) 
       Hello from rank 3, thread 3, on nid00291. (core affinity = 3) 

      % setenv OMP_NUM_THREADS 4 

     % aprun -n 4 -d 4 -q ./omp | sort 
       Hello from rank 0, thread 0, on nid00291. (core affinity = 0) 
       Hello from rank 0, thread 1, on nid00291. (core affinity = 1) 
       Hello from rank 0, thread 2, on nid00291. (core affinity = 2) 
       Hello from rank 0, thread 3, on nid00291. (core affinity = 3) 
       Hello from rank 1, thread 0, on nid00291. (core affinity = 4) 
       Hello from rank 1, thread 1, on nid00291. (core affinity = 5) 
       Hello from rank 1, thread 2, on nid00291. (core affinity = 6) 
       Hello from rank 1, thread 3, on nid00291. (core affinity = 7) 
       Hello from rank 2, thread 0, on nid00292. (core affinity = 0) 
       Hello from rank 2, thread 1, on nid00292. (core affinity = 1) 
       Hello from rank 2, thread 2, on nid00292. (core affinity = 2) 
       Hello from rank 2, thread 3, on nid00292. (core affinity = 3) 
       Hello from rank 3, thread 0, on nid00292. (core affinity = 4) 
       Hello from rank 3, thread 1, on nid00292. (core affinity = 5) 
       Hello from rank 3, thread 2, on nid00292. (core affinity = 6) 
       Hello from rank 3, thread 3, on nid00292. (core affinity = 7) 

All on core 0 
One thread 
per core as 
desired!!! 



Closing Remarks 
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Input/Output  
• Sometimes I/O causes scalability issues 

– For example, cleaning up some writes improved weak 
scaling of the CFD code NektarG from 70% to 95% at 1K 
to 8K cores 

• Set file striping appropriately on Lustre 
– The default stripe count will may be suboptimal. 
– The default stripe size is usually fine. 
– Once a file is written, the striping information is set 

• Stripe input directories before staging data 
• Stripe output directories before writing data 

– Stripe for your I/O pattern 
• Many-many – narrow stripes  Many-one – wide stripes 

• Reduce output to stdout 
– Remove debugging reports (e.g. “Hello from rank n of 

N”) 



Conclusions/Last words 
•  Vendors typically provide optimized, high-performance MPI 

implementations 
–  Sometimes requires guidance and tuning – also patience and 

perseverance 
•  Environment variables are an easy way to improve 

performance  
–  Familiarize yourself with ‘man mpi’ and remain up-to-date 

•  The is no replacement for good MPI programming 
–  Pre-posting receives, overlap computation and communication, 

reduce collective communications, aggregate data for 
communication 

•  Rank reordering can significantly improve performance 
•  Use depth option to aprun with OpenMP on Cray systems 
•  Remember your parallel I/O – it can be crippling 
•  Some of this may not show a benefit at <1K processes, but it 

can reap huge gains at 10K to 100K processes 
•  Thanks to Jeff Larkin of Cray for permission to use his slides 
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