
R. Glenn Brook
glenn-brook@tennessee.edu

Scaling to Petascale and Beyond: Performance
Analysis and Optimization of Applications

SC11 Tutorial - Seattle, WA – November 13, 2011

HPC Communication Considerations

• Communication Cost: tcomm = ts + L * th + m/Be
– ts = startup time ~ time to setup message and routing
– th = hop time, L = number of hops
– m = message size, Be = effective bandwidth
– Communication is expensive. Avoid it if possible!

• Considerations:
– Number and size of communications
– Transmission methods and protocols
– Network topology and routing
– Congestion and synchronization

• Applies to message passing and shared access
but this discussion focuses on message passing
via MPI

Number and Size of Communications

• Communication Cost: tcomm = ts + L * th + m/Be

• Each communication incurs a minimum cost
equal to the startup time ts.

• The size of a communication determines the
time required to transmit the associated data.

• In general, minimize both the number and size of
communications.
– Favor a minimum number over a minimum size due to

the bandwidth of modern interconnects.
– It is better to spend time transmitting useful data than

to pay startup costs. Aggregate data when possible.

Collective Communications

• Collectives typically require a large number of
messages with potentially bad routing.

• Major source of problems when scaling due to
rapidly increasing number of messages

• Most vendors provide optimized versions
• Optimized Collectives - Cray

– MPI_Allgather (small messages) & MPI_Allgatherv
– MPI_Alltoall (optimized exchange order)
– MPI_Alltoallv / MPI_Alltoallw (windowing algorithm)

• Optimized SMP-aware Collectives - Cray
– MPI_Allreduce, MPI_Barrier, MPI_Bcast, MPI_Reduce

SMP-aware Collectives – Allreduce
Example

Identify Node-Captain rank.
Perform a local on-node
reduction to node-captain.
NO network traffic.

STEP 1
Perform a local on-node
bcast. NO network traffic.

STEP 3
Perform an Allreduce with node-
captains only. This reduces the
process count by a factor of 8 on
XT5.

STEP 2

Performance Comparison of MPI_Allreduce

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

90.0%

100.0%

Message Size

Percent Improvement of SMP-aware MPI_Allreduce
(compared to MPICH2 algorithm)
 1024 PEs on an Istanbul System

Allreduce

Default vs MPICH_COLL_OPT_OFF=MPI_Allreduce

Percent Improvement of SMP-aware MPI_Allreduce
(compared to MPICH2 algorithm)
 1024 PEs on an Istanbul System

Transmission Methods and Protocols

• Communication Cost: tcomm = ts + L * th + m/Be

• Multiple interconnect devices
– SMP – Shared memory communication on nodes
– Portals, IB, TCP/IP – Message passing between nodes

• Multiple message protocols
– Short messages: eager protocol
– Long messages: rendezvous protocol (default), eager

protocol

• Automatic transitions between devices,
protocols, and algorithms (configurable via
environment variables)

Short Message Eager Protocol - Cray
• Sending rank "pushes" message to receiving

rank
– Sender assumes receiver can handle message and

blindly transmits to it

•  If matching receive is posted, receiver
–  routes incoming data directly into specified receive

buffer
– posts notification event to other event queue

•  If no matching receive is posted, receiver
–  routes incoming data into unexpected message buffer
– posts two events to unexpected event queue
– copies data into specified receive buffer when matching

receive is posted

• Message size <=
MPICH_MAX_SHORT_MSG_SIZE bytes

Long Message Rendezvous Protocol -
Cray

• Receiving rank "pulls" message from sending
rank

• Sender notifies receiver about waiting
message via a small header packet

• Receiver requests message from sender after
matching receive is posted

• Receiver routes incoming data directly into
specified receive buffer

• Message size >
MPICH_MAX_SHORT_MSG_SIZE bytes

Long Message Eager Protocol - Cray
• Sender assumes receiver will handle message

appropriately or will request retransmission
– Sender blindly transmits data to receiver

•  If matching receive is posted, receiver
–  routes incoming data directly into specified receive

buffer
– sends completion acknowledgement to sender

•  If no matching receive is posted, receiver
– creates a long protocol match entry
–  requests retransmission when matching receive is

posted
–  routes incoming data directly into specified receive

buffer
• Enabled using MPICH_PTLS_EAGER_LONG
• CAUTION: blocking sends and unexpected

messages

Network Topology and Routing

• Communication Cost: tcomm = ts + L * th + m/Be

• The routing capabilities and physical layout of the
network that interconnects compute nodes determines
most of the transmission costs.
– Number of hops between nodes
–  Time required per hop
– Maximum bandwidth

• At small scale, the transmission cost associated with
distance is often negligible, but such is not typically the
case for very large machines.

• Design your communication schemes around the
strengths and weaknesses of your target machine. The
larger the machine, the more critical it is to do so.
–  For example, consider a hierarchical scheme on large fat trees to

minimize the impact of long, high-latency paths.

Rank Placement

•  In some cases, changing how the processes are laid out
on the machine may affect performance.
–  When point-to-point communication consumes a significant fraction of

program time and a load imbalance detected
–  When using collectives (all-to-all) on subcommunicators (GYRO)
–  When you need to spread out IO across nodes (POP)

• Default is typically SMP-style placement where
sequential MPI ranks are placed on the same node.
– MPI codes typically perform better using SMP placement -

nearest neighbor
–  Vendors typically optimize collectives to be SMP aware

• For example, a 12-process job launched on a node with 2
hex-core processors would be placed as:

PROCESSOR 0 1
RANK 0,1,2,3,4,5 6,7,8,9,10,11

Rank Placement – Cray

• The default ordering can be changed using the following
environment variable: MPICH_RANK_REORDER_METHOD

• These are the different values that you can set it to:
0: Round-robin placement – Sequential ranks are placed on the next

node in the list. Placement starts over with the first node upon
reaching the end of the list.

1: SMP-style placement – Sequential ranks fill up each node before
moving to the next.

2: Folded rank placement – Similar to round-robin placement except
that each pass over the node list is in the opposite direction of the
previous pass.

3: Custom ordering. The ordering is specified in a file named
MPICH_RANK_ORDER.

• The CrayPat performance measurement tools can
generate a suggested custom ordering.

Example of CrayPat Rank Reordering

Table 1: Suggested MPI Rank Order!

 Eight cores per node: USER Samp per node!

 Rank Max Max/ Avg Avg/ Max Node!

Order USER Samp SMP USER Samp SMP Ranks!

 d 17062 97.6% 16907 100.0% 832,328,820,797,113,478,898,600!

 2 17213 98.4% 16907 100.0% 53,202,309,458,565,714,821,970!

 0 17282 98.8% 16907 100.0% 53,181,309,437,565,693,821,949!

 1 17489 100.0% 16907 100.0% 0,1,2,3,4,5,6,7!

•  This suggests that
1.  the custom ordering “d” might be the best
2.  Folded-rank next best
3.  Round-robin 3rd best
4.  Default ordering last

Reordering example
GYRO
• GYRO 8.0

– B3-GTC problem with 1024 processes

• Run with alternate MPI orderings
– Custom: profiled with with –O apa and used reordering file

MPICH_RANK_REORDER.d

Reorder method Comm. time
Default 11.26s

0 – round-robin 6.94s
2 – folded-rank 6.68s

d-custom from apa 8.03s

CrayPAT
suggestion
almost right!

Reordering example
TGYRO

• TGYRO 1.0
– Steady state turbulent transport code using GYRO,

NEO, TGLF components

• ASTRA test case
– Tested MPI orderings at large scale

Reorder
method

TGYRO wall time (min)
20480 40960 81920

Default 99m 104m 105m
Round-robin 66m 63m 72m

Huge win!

Congestion and Synchronization

• Communication Cost: tcomm = ts + L * th + m/Be

• Excessive traffic through a network region
reduces the effective bandwidth available to any
given communication.

• Avoid routing a large number of messages to or
from a region of adjacent nodes at the same
time, when possible. Instead, stagger the
communications.

• Avoid synchronous communications when
possible, as load imbalances can lead to
significant idling of resources.

Tips &
Recommendations

MPI Environment Variables
• Many environment variables are available to

tune MPI performance
– Well documented on the MPI man page – Read it!
– Default settings generally focus on attaining the best

performance for most codes – not necessarily your
code!

• The MPI environment can change between MPT
versions - Cray
– Read the MPI man page and Cray documentation!

• MPICH_ENV_DISPLAY – set to display the MPI
environment during MPI initialization

• MPICH_VERSION_DISPLAY - set to display the
version of Cray MPT during MPI initialization

MPI Programming Techniques
Pre-posting receives
•  If possible, pre-post receives before the matching

sends
– Optimization technique for all MPICH installations (not just

MPT)
– Not sufficient to simply put receive immediately before

send
– Put significant amount of computation between receive-

send pair

• Do not go crazy pre-posting receives. You can
overrun the resources available to deal with them.

• Code example
–  Halo update – with four buffers (n,s,e,w), post all receive requests

as early as possible.

MPI Programming Techniques
Example: 9-pt stencil pseudo-code

Basic

9-pt computation!

Update ghost cell
boundaries!
East/West IRECV,
ISEND, WAITALL!

North/South IRECV,
ISEND, WAITALL!

Maximal Irecv
preposting

Prepost all IRECV!
9-pt computation!
Update ghost cell
boundaries!
East/West ISEND,
Wait on E/W IRECV
only!

North/South ISEND,
Wait on the rest!

 *Makes use of temporary buffers!

MPI Programming Techniques
Overlapping communication with
computation
•  Use non-blocking send/recvs to overlap

communication with computation whenever possible
–  Typical pattern:

1.  Pre-post non-blocking receive

2.  Compute a “reasonable” amount to ensure effective pre-
posting

3.  Post non-blocking send

4.  Compute as much as possible to maximize overlap of
comm. and comp.

5.  Wait on communication to finish only when absolutely
necessary

MPI Programming Techniques
Overlapping communication with
computation
•  In some cases, it may be better to replace

collective operations with point-to-point
communications to overlap communication
with computation
–  Caution: Do not blindly reprogram every collective

by hand
–  Concentrate on the parts of your algorithm with

significant amounts of computation that can overlap
with the point-to-point communications when a
[blocking] collective is replaced

MPI Programming Techniques
Reduce Collective Communications
• Avoid using collective communications whenever

possible
– MPI collectives are blocking, leading to large sync times
– Collective communication can cripple scalability

• Use algorithms that only require local info when
possible
– Consider duplicating computation to reduce

communication

• When an algorithm must communicate “globally”:
– Use MPT collectives that have been optimized by Cray
– Minimize the scope of the collective operation
– Minimize the number of collectives through aggregation
– Consider implementing a non-blocking collective only if

justified after careful analysis

MPI Programming Techniques
Aggregating data

•  For very small buffers, aggregate data into fewer
MPI calls (especially for collectives)
–  1 all-to-all with an array of 3 reals is clearly better than 3 all-to-

alls with 1 real

–  Do not aggregate too much without careful consideration. The
MPI protocol switches from a short (eager) protocol to a long
message protocol using a receiver pull method once the
message is larger than the eager limit. The optimal size for
messages most of the time is less than the eager limit.

•  Example – DNS
–  Turbulence code (DNS) replaced 3 AllGatherv’s by one with a

larger message resulting in 25% less runtime for one routine

MPI Programming Techniques
Aggregating data: Example from CFD

Original  

for (index = 0; index < No; index++){  
 double tmp;  
 tmp = 0.0;  
 out_area[index] = Bndry_Area_out(A,
labels[index]);  
 gdsum(&outlet_area[index],1,&tmp);  
}  
for (index = 0; index < Ni; index++){  
 double tmp;  
 tmp = 0.0;  
 in_area[index] = Bndry_Area_in(A,
labels[index]);  
 gdsum(&inlet_area[index],1,&tmp);  
} !

void gdsum (double *x, int n, double *work)  
{  
 register int i;  
 MPI_Allreduce (x, work, n, MPI_DOUBLE,
MPI_SUM, MPI_COMM_WORLD);  
 /* *x = *work; */  
 dcopy(n,work,1,x,1);  
 return;  
} !

Improved  

 for (index = 0; index < No; index++){  
 out_area[index] = Bndry_Area_out(A,
labels[index]);  
 }!

 /* Get gdsum out of for loop */  
 tmp = new double[No];  
 gdsum (outlet_area, No, tmp);  
 delete tmp;  

 for (index = 0; index < Nin; index++){  
 in_area[index] = Bndry_Area_in(A,
labels[index]);  
 }!

 /* Get gdsum out of for loop */  
 tmp = new double[Ni];  
 gdsum(inlet_area, Ni, tmp);  
 delete tmp; !

26 TeraGrid '10

Hybridization

27 TeraGrid '10

OpenMP
• When does it pay to add/use OpenMP in my MPI

code?
– Add/use OpenMP when code is network bound
– As collective and/or point-to-point time increasingly

becomes a problem, use threading to keep number of MPI
processes per node to a minimum

– Be careful adding OpenMP to memory bound codes – can
hurt performance

– Be careful to match memory affinity to thread affinity
• Pre-touch memory from correct thread after allocation

–  It is code/situation dependent!
– Consider one MPI process on each CPU and one OpenMP

thread per available core within each process
• Often gives results almost as good as a fully optimized one-

process-per-node code (with OpenMP threads across all of the
cores on the node) with significantly less development overhead

OpenMP
aprun depth - Cray
• Must get “aprun –d” correct

– -d (depth) Specifies the number of threads (cores) for
each process. ALPS allocates the number of cores
equal to depth times processes.

– The default depth is 1. This option is used in
conjunction with the OMP_NUM_THREADS
environment variable.

– Also used to get more memory per process
• Get 1 or 2 GB limit by default (machine dependent)

– Many have gotten this wrong, so it is important to
understand how to use it properly!
• If you do not do it correctly, a hybrid OpenMP/MPI code can get

multiple threads spawned on the same core which can be
disastrous.

OpenMP aprun
depth (cont.)

 % setenv OMP_NUM_THREADS 4

 % aprun -n 4 -q ./omp1 | sort
 Hello from rank 0, thread 0, on nid00291. (core affinity = 0)
 Hello from rank 0, thread 1, on nid00291. (core affinity = 0)
 Hello from rank 0, thread 2, on nid00291. (core affinity = 0)
 Hello from rank 0, thread 3, on nid00291. (core affinity = 0)
 Hello from rank 1, thread 0, on nid00291. (core affinity = 1)
 Hello from rank 1, thread 1, on nid00291. (core affinity = 1)
 Hello from rank 1, thread 2, on nid00291. (core affinity = 1)
 Hello from rank 1, thread 3, on nid00291. (core affinity = 1)
 Hello from rank 2, thread 0, on nid00291. (core affinity = 2)
 Hello from rank 2, thread 1, on nid00291. (core affinity = 2)
 Hello from rank 2, thread 2, on nid00291. (core affinity = 2)
 Hello from rank 2, thread 3, on nid00291. (core affinity = 2)
 Hello from rank 3, thread 0, on nid00291. (core affinity = 3)
 Hello from rank 3, thread 1, on nid00291. (core affinity = 3)
 Hello from rank 3, thread 2, on nid00291. (core affinity = 3)
 Hello from rank 3, thread 3, on nid00291. (core affinity = 3)

 % setenv OMP_NUM_THREADS 4

 % aprun -n 4 -d 4 -q ./omp | sort
 Hello from rank 0, thread 0, on nid00291. (core affinity = 0)
 Hello from rank 0, thread 1, on nid00291. (core affinity = 1)
 Hello from rank 0, thread 2, on nid00291. (core affinity = 2)
 Hello from rank 0, thread 3, on nid00291. (core affinity = 3)
 Hello from rank 1, thread 0, on nid00291. (core affinity = 4)
 Hello from rank 1, thread 1, on nid00291. (core affinity = 5)
 Hello from rank 1, thread 2, on nid00291. (core affinity = 6)
 Hello from rank 1, thread 3, on nid00291. (core affinity = 7)
 Hello from rank 2, thread 0, on nid00292. (core affinity = 0)
 Hello from rank 2, thread 1, on nid00292. (core affinity = 1)
 Hello from rank 2, thread 2, on nid00292. (core affinity = 2)
 Hello from rank 2, thread 3, on nid00292. (core affinity = 3)
 Hello from rank 3, thread 0, on nid00292. (core affinity = 4)
 Hello from rank 3, thread 1, on nid00292. (core affinity = 5)
 Hello from rank 3, thread 2, on nid00292. (core affinity = 6)
 Hello from rank 3, thread 3, on nid00292. (core affinity = 7)

All on core 0
One thread
per core as
desired!!!

Closing Remarks

31 TeraGrid '10

Input/Output
• Sometimes I/O causes scalability issues

– For example, cleaning up some writes improved weak
scaling of the CFD code NektarG from 70% to 95% at 1K
to 8K cores

• Set file striping appropriately on Lustre
– The default stripe count will may be suboptimal.
– The default stripe size is usually fine.
– Once a file is written, the striping information is set

• Stripe input directories before staging data
• Stripe output directories before writing data

– Stripe for your I/O pattern
• Many-many – narrow stripes Many-one – wide stripes

• Reduce output to stdout
– Remove debugging reports (e.g. “Hello from rank n of

N”)

Conclusions/Last words
•  Vendors typically provide optimized, high-performance MPI

implementations
–  Sometimes requires guidance and tuning – also patience and

perseverance
•  Environment variables are an easy way to improve

performance
–  Familiarize yourself with ‘man mpi’ and remain up-to-date

•  The is no replacement for good MPI programming
–  Pre-posting receives, overlap computation and communication,

reduce collective communications, aggregate data for
communication

•  Rank reordering can significantly improve performance
•  Use depth option to aprun with OpenMP on Cray systems
•  Remember your parallel I/O – it can be crippling
•  Some of this may not show a benefit at <1K processes, but it

can reap huge gains at 10K to 100K processes
•  Thanks to Jeff Larkin of Cray for permission to use his slides

Contact Information

R. Glenn Brook
Director, Application Acceleration Center of Excellence
Manager, XSEDE User Engagement
National Institute for Computational Sciences
glenn-brook@tennessee.edu

